MIPS
Assembly Language
Programming
using QtSpim

RN
g

i

Ed Jorgensen, Ph.D.
Version 1.1.57
April 2024

Cover image:
MIPS R3000 Custom Chip

http://commons.wikimedia.org/wiki/File:RCP-NUS 01.jpg

Spim is copyrighted by James Larus and distributed under a BSD license.
Copyright (c) 1990-2011, James R. Larus. All rights reserved.

Copyright © 2013 - 2022 by Ed Jorgensen

QOB

You are free:
To Share — to copy, distribute and transmit the work
To Remix — to adapt the work

Under the following conditions:
Attribution — you must attribute the work in the manner specified by the author
or licensor (but not in any way that suggests that they endorse you or your use of
the work).
Noncommercial — you may not use this work for commercial purposes.
Share Alike — if you alter, transform, or build upon this work, you may
distribute the resulting work only under the same or similar license to this one.

http://commons.wikimedia.org/wiki/File:RCP-NUS_01.jpg

Table of Contents

1.0 INErOUCHON.....uciueericeisuicaiceisaessuicsasssesssissssssessstssssssessssssssssssssessssssssssssssssssssssanes 1
1.1 Additional References..........ccoevereriiirieniieieniereeieeteee ettt e s e s e 1
2.0 MIPS Architecture OVeIVIEW.......coucereesecssicsenssessancsasssesssnssssssesssssssssssssssasssssess 3
2.1 ATChIiteCture OVEIVIEW.....c.eeeiuiiriieiieeieeiteete ettt ettt st et et e s be e s 3
2.2 Data TYPOS/SIZES.....uueeieeeiieieeeitteeeetteeeeette e ettt e s e srteeessrteeesssrteesessssnnssnnneee 4
JZRG T\ (<1110)) O PO PP URR 4
2.4 MemMOTY LAYOUL......utiiiiiiiiiieiiieeeeeitee e ettt e eeirteeessiteeesesrreeessnsreeessnneeessssnnnnnns 6
2.5 CPU REGISLETS.etiiiiiiiieeieiieee ettt et et e e e eiare e e s artee s s e e e asnsnnnneee 6
2.5.1 ReSeIved ReGISIEIS.ccccuieiiiriieriieenieeieesee et eete et e sreestee e estaeessssaeessasaeeas 7

2.5.2 Miscellaneous RegiSters..........coveirieriieinieniieeieeieeteeee et 8

2.6 CPU/ FPU Core Configuration..........ccceeveeeeveeseersieeneesiesseessieesessseesssseesssssneens 9
3.0 Data Representation.........ccccceeessercsssencsssssesssscsssssosssssossasssssasssssssssssssssssssassssssses 11
3.1 Integer RepreSentation.........ccoccueeerrrrieeeeniiieeeeeireeeeesiteeeesrireeeeesnreeesssareeesesnnnee 11
3.1.1 Two0's COMPIEMENL......ccccciiieiriiieiieieiieeeieeeeieeeereeesteeesaeeeseaeeeseaeeessnsanens 13

3.1.2 Byte EXAMPIe.....cooiiiiiiiiiiiieeeeiecteee ettt st 13

3.1.3 Halfword EXample........cccoveeiiiiiiiieeieeciecieceecte e eve e s aeeene e 13

3.2 Unsigned and Signed Addition..........ccceeeueeviiiriernieniieeiiesieeeieeeeie e 14
3.3 Floating-point RepreSentation.............cceevueirteerieerienieeentenieeseesee e s seee e s 14
3.3.1 IEEE 32-bit Representation...........ccceceerierrueereeriieenieesieeseessieeseeessneeesnns 14
3.3.1.1 IEEE 32-bit Representation Examples.........ccccccceeeeurrieeeeriiineeeeeennns 15
3.3.1.1.1 EXAMPLe o =7.7510.uccuteeieerieeiienieeieenreeieeneesreesssesseeneneessnnes 16

3.3.1.1.2 Example — =0.12510 uccccieiiieniieieeieeeeeieete et 16

3.3.1.1.3 Example — 41440000 6......cccuereeruereerersuereenenieeneeenseeesveesnuees 17

3.3.2 IEEE 64-bit Representation..........ccccceeeeveerrieeeiieeesiessieeeesseeeesseeeessssnnnes 17

4.0 QtSpim Program FOrmats.....c..ceuieeeecsercssessssnossessssssssssssassssasssssssssssssasssssssssssss 19
4.1 ASSEIMDIY PrOCESS.....cciccuiiieiieieiieeeitieeeieeeeieeesteeesteeesteesssaeeessseesssseesssseesssnaeeas 19
4.2 COIMMEILS. .euuvteeiiieiirieeitee ettt et e et e e et esebeeeebeessbeeesmbeeessneeenaeeenaesennaeeas 19
4.3 ASSEMDIET DITECLIVES.......ceiiuiiuiiiieinieeieeete ettt ettt e et e e s saaee e 19
4.4 Data Declarations..........ceeeevuereeruerrienienieesieseeseeesteetesiee e see st et eb e e s e 20
4.4.1 Integer Data Declarations...........cccceeeeerueeniennieenieeieente et e e ssieee e 20

4.4.2 String Data Declarations..........cccueecuerrieriieenienieesienieeseeseesseeessseesseesneens 21

4.4.3 Floating-Point Data Declarations............cccceevueeevieeesiieeeniieeseecieeeeeeseveeeenn 22

4.5 CONSTANLS. ...eteiiuriieiieeeiiee ettt e ettt e e bt e s bt eseabeesembeeserbeesnaeesesnnnneeeesennnn 22
4.6 Program COde.......cccueieiuieieiiieieiieeeireeeeieeesieeesaeeesteeessteeessaeeessseesssseesssseessneeeas 23
4.7 LADEIS. .ttt sttt e 23

4.8 Program TemPIate........ccceeeueeiiieeeiieeeiieeeceeeereeeesieeesreeesreeesaeeesbeesssnasaeaeaeans 24

Table of Contents

5.0 INStruction Set QVEIVIEW.......cccceuecsersuensaccserssesssnssssssessanssssssesssssssssssssassssssssssssses 25
5.1 Pseudo-Instructions vs Bare-INStructions............ccceevueevueerieriieeniienseeneensieeeeane 25
5.2 Notational CONVENTIONS.cc.eevterterieriierierieeteneerestesreesseetesseesseseesseesseesnnenns 25
5.3 Data MOVEIMEINL.......cciiiiiiiiiiiiiiieeieiiiteeeeiteee et e e eitte e s eraee e s esraee s e ssssnssnenee 26

5.3.1 L0ad and StOTe......ccceeeeerueriieieiieienteeiteteetesie ettt sttt aeees 26
5:3.2 VIOV ..ttt ettt ettt st e st eeeas 28
5.4 Integer ArithmetiC OPerations..........ccccueeeverrierrieenieniieeseeesieeseesreessressseeseeennns 29
5.4.1 Example Program, Integer ArithmeticC.........ccccceeveeriieiniieiiniiieenieeeeeen. 32
5.5 L0gICal OPErations........cccveriuerrieriieeriienieeseesreesteesteesseesseesseesssesssseesassseesssnees 33
5.5.1 Shift OPerations.........cccueeiieriieeiieeriieeie ettt ereesereereesreeeae e reesaseeeennns 35
5.5.1.1 Logical SRift.....ccceriiriiiiniiiiieeeeeeeeeeeete e 36
5.5.1.2 Arithmetic SHift.......ccoocieviriierieeeeeeetee e 37
5.5.1.3 Shift Operations, EXamples.........c.ccecerruirriiiriieniieniieenieeeeiee e 37

5.6 Control INSIUCHIONS.ceiiveiriieeieeiteeieerteete ettt ettt et e st et esaee e e 39
5.6.1 Unconditional Control INStrucCtions..........cccceeeererreereenensienieensieeeseeeseeenne 39
5.6.2 Conditional Control INStrUCHIONS.ccoteeieiriierieeieeieeree et 39
5.6.3 Example Program, Sum of SQUAres..........cccceeveervurrreernieeneeniesneeniee e 41
5.7 Floating-Point INStrUCHIONS.eiiutirieritenieeiterte ettt 42
5.7.1 Floating-Point Register USAge..........cccceeriirruirnieriieenienieeneesseeeseessseesnnns 42
5.7.2 Floating-Point Data MOVEMEeNL...........ccccueeeiieeniieeenireeenieeesreeeseesenreeeeeennns 43
5.7.3 Integer / Floating-Point Register Data Movement............cccccveeervveeennnnennn 44
5.7.4 Integer / Floating-Point Conversion Instructions..........c.ccceevveeeeiveeennnnen. 45
5.7.5 Floating-Point Arithmetic Operations...........cccceeeveeriervieereenireeesnreeesnnneens 47
5.7.6 EXample Programs...........ccecceerieriiinieniieenieeieesteeiceste et sae e 48
5.7.6.1 Example Program, Floating-Point Arithmetic..........ccccceceevvernuennen. 49
5.7.6.2 Example Program, Integer / Floating-Point Conversion................... 50

6.0 Addressing MoOdes.........ccceeueererceisuecserssessanssanssesssessssssesssessasssssssssssssssssssssssssssssns 53
6.1 DITECt MOME. ..ottt ettt ettt sttt e s b e saee s 53
6.2 Immediate MOde........ccccoeiiiirienieieeiereeeet ettt 53
6.3 INAITECHION. .. .eiiiiiiiieieeteetee ettt ettt e s bt e e e ate e e e e e e e e anes 54

6.3.1 Bounds Checking..........cccceevieriiiiniieniienienieereeeie et seeeseeesae e 54
6.4 EXAIMNPIES....ciiiiiiiiiiieiieeecie ettt e et e e ste e e sae e s ae e e aaeesrae e e e nneaaeeeeannnns 55
6.4.1 Example Program, Sum and AVerage..........ccceeveereerrreeensveeesrueeessnveesnnns 55
6.4.2 Example Program, Median.........c..ccceceriiiriiiinieniieeieeieenieeieeseee e 57

20) - Tl N 59
7.1 Stack EXAMPIe......ccociiiiiieeieeccieeete ettt et e e ste e e ve e e saae e s aae e s aae e e e 59
7.2 Stack IMplementation..........ccceereeriierriienieenieeseeerieesreeseesreeeeesaeesseessaesssaennnns 60

Page ii

Table of Contents

7.3 PUSHL ettt sttt 60
T POP.cuiiiiiiieeeee ettt ettt e e e s ettt e e e e e s e s abeaa e e e e e se e araaaaaeeeeaeens 61
7.5 MUltiple PUSH'S/POP'S...ccccvieriiieiieiieeieeteeteet ettt e re et eae e aesbeesssa e e e e 61
7.6 Example Program, Stack USAge........ccceevvureerieieiieeeiieeeiieeereeeeveeesveeeseesnveeeas 61
8.0 ProcedureS/FUNCLONS.......ccceverecseiirensecsanssenssesssissesssessssssssssnssssssssssssssssssssssasns 65
8.1 MIPS Calling CONVENTIONS.....cccccveeriureerireerrreenieeesreeesaeeesseeesseesssseesssseesssseens 65
8.2 Procedure/Function FOIMAL.........ccceevueeiierienieniienieieeieeeesieee st 66
8.3 Caller CONVENLIONS. ..c...eerieeiteeieeriteeieesiteeteesetesteesieeeteesstesteesatessessseessaneeesans 66
8.4 LNKAGE....coouiieiieiieeiteete ettt et ettt et e st e et saa e s te et e e beesstesbeenateennneeens 67
8.5 Argument TranSmiSSION......cccuteeirriureerrriiteeieriieeeesiieeeeeseneeeessreeeeessssssssnnnnnenns 68
8.5.1 Call-Dy-ValUe......ccocviriiiriieiieieeieeieeteee ettt e s e e 68

8.5.2 Call-bDy-ReferenCe.........ccccveeieeerieeieeieeeieesieeeteeseeereeeveesreeveesaeesaeesvee e 68

8.5.3 Argument Transmission CONVENtIONS..........eeeerrureerreriureerenirreeeeeeeeeeeeeannns 68

8.6 FUunCtion RESULLS.......oiiuiiiiiiiieieeteeeetee ettt s 69
8.7 Registers Preservation CONVENTIONS..........ceteeurteereriureeeeniireeeesereeessseeeeessssnnnnns 69
8.8 Miscellaneous Register USAe.........ccceerierriierieniiienieeieente et e et e s 70
8.9 Summary, Callee CONVENLIONS.......ccccverrrerrierireerieeieesressieeseeesseeseessseesssneessnns 70
8.10 Call FIamie...ccuueeiiiiiiieiieeteeteee ettt ettt ettt et e e e e 71
8.10.1.1 Stack Dynamic Local Variables..........cccccceevuirnieincieeinieeniieeeen, 71

8.11 Procedure EXamMPIeS........ccceieeiiiriieieiieieiieeeieeeetee et eesteesseveeeseaeeessnneesssnnnns 72
8.11.1 Example Program, Power FUNCtioN..........ccccuevviernienrieenienieeniescieenieeeas 72
8.11.2 Example program, Summation Function...........ccecceeveenienneineenseenieeennne 73
8.11.3 Example Program, Pythagorean Theorem Procedure...............cccuen.ee. 76

9.0 QtSpim System Service Calls........ccccceveereiiruinssiissinssensseinsssisssesssensssnessssscsssssees 83
9.1 Supported QtSPim SYStEIM SEIVICES.......ccceerriirrierrieriieeniieeiieesressreeseessseeseesns 83
9.2 QtSpim System Services EXamples.........cccceecueeecieeniieeniieinieeeeeeeiieeeeeesennnees 84
9.2.1 Example Program, Display String and Integer............cccceevverrvercverncuneenne 85

9.2.2 Example Program, Display AITay........ccccecvveerrureeriueeesireeeesiivreeeeessnveeeeeens 86

9.2.3 Example Program, Read INteGeT..........cccceeviiriueiniinieenienieeieeieesee e 88

9.2.4 Example Program, Read String.........cccccecveeeeiieeniiieenieeecieeeciieeeeeeeivneeenn 90

10.0 Multi-dimension Array Implementation..........coceeeiessecssarsssesssssssssssssssssssssses 93
10.1 High-Level Language VIeW.......cccoocuiiriirieeiiienieeitesieeieeste et e e s 93
10.2 ROW-MaAJOT...ciiiiiiiiiieiiiieeeeieee ettt e e et e e s ettt e s ettt e e s saseeeeeeeeeeessesssnnnns 94
10.3 CoOlUMN-MaAJOT.....ciiiiieieiieeeiieeeitecetee et e e ere e e sreeeseaeessaaeesssaeessaaeesssaeessssnaeeean 95
10.4 Example Program, Matrix Diagonal Summation..........c..cceceeceeverneeneenneeennne. 96
11,0 ReCUISION....uueieiueiiiniisniissniesstesssnessesssstesssssssossssssssossssssssesssssssosssssssssssssssssssssnsnes 99

Page iii

Table of Contents

11.1 Recursion Example, Factorial..........ccceecuerviiinieniieenienieerieeieesieessieessieee e 99
11.1.1 Example Program, Recursive Factorial Function..........ccccccceeevveerneeenn. 100
11.1.2 Recursive Factorial Function Call Tree.........cccccceeveerierivencienieeneeeenne 103

11.2 Recursion Example, FIDONACCI........ccccuieriiiiriiieeniieecieeccieeccte e 104
11.2.1 Example Program, Recursive Fibonacci Function..........cccccceecueenueenee. 105
11.2.2 Recursive Fibonacci Function Call Tree.........ccccceveerieeveeiniieeenieeene 108

12.0 Appendix A — Example Programi..........cccceienseicsscssessssssssasssssesssssssssssassssssss 111
13.0 Appendix B — QtSpim TUtorial......ccccccevvererrreresseressnicssanicssasesssasessasesssasessone 115

13.1 Downloading and Installing QtSpPim.........ccceevuerrierrierrienieeieenieeseeeeee e 115
13.1.1 QtSpim Download URLS........cccceeeieiiiiieeeiieeeiieeeieeeeeeeiireee e evveee e 115
13.1.2 Installing QtSPiML......cccceerieriiienieriieenie ettt e eie et e e e seeesaeesresseeeaes 115

13.2 WOTKING DiTCLOTY...ccctiiieiieeciieecieeeciteeecteeeiteeeeeesreeesveeeesevaeeeeessnnsaeeaaeas 116

13.3 SamPle PrOogrami........ccccveeriienieeiieeieeieeeieesieeeieeseeeseeesseessseesssessseesssssessnnnns 116

13.4 QtSpim — Loading and Executing Programs............cccecueeveenvieesieeneenseeeennne 116
13.4.1 Starting QESPIIM......cciiiriiiieeeeieee ettt et e e eerree e e srreeeeeeeeeeeeennns 116
13.4.2 MAIN SCIROM......uuviiiiiiiiieeeeiteeeeeite ettt e e erree e s e esrree e s sraeeeseeesaes 117
13.4.3 L0ad Programi......c.coccueecuienieiiienieeieesieesieesteesseesseesseesseessssesssnssessnnens 117
13.4.4 Data WINAOW......ccueiiuiieiiiiieeiteeieeiteste ettt sae et satesate s e e 120
13.4.5 Program EXeCULION.......cccevrueeeririiieeiniiieeeeeitteeeerireeeseiteeeeeeeeeesessannnes 121
13.4.6 L0 Fileuouueiiieiieieeeieeeeee ettt st n 122
13.4.7 MaKing UPAALes........ccceerverrieirieeiieenieeieeseeesieeseesseesssessseesseesssessseennns 125

13.5 DeDUGEING....eiiiieieieeieeeeeeee ettt ettt n 125

14.0 Appendix C — MIPS INStrUCtiON Set.........coevereruresnrsssnosesssasessassssssssasssassssases 133

14.1 Arithmetic INStrUCHIONS.ceiiutiiiiiiieieeeeete ettt 134

14.2 Comparison INSIIUCIONS. ...c.ccuuvtteeriiieeeerireeeeeriteeeesreeeeessieeeeeeeeeeeeeeessennns 136

14.3 Branch and Jump INStruCtionS..........cceveeeeieeriieeeiieeeeeeeee e e e e e eiveeees 137

14.4 L.0ad INSIUCHONS. .c..eeruieiirieriteteeteetenieeie ettt et see st sae et saeesaeeenees 141

14.5 Logical INSIUCIONS.ccccvueeerieeeiieeriteeeieeecreeecteeeseeeeeteeesaeeessaeesssaeessssneeas 143

14.6 Store INSIUCHIONS.veiiiiiiiiieiiieiiee ettt 145

14.7 Data Movement INSIIUCHIONS.cccoevuuteiiiiiieeiiiirieeeeiteeeeereee e ecieerrreeeeeeeeees 146

14.8 Floating-Point INStrUCHIONS.ceecuerriiirieiiiinieeieesreesieesteeaeeseesaeeseaeeeenae 148

14.9 Exception and Trap Handling INStructions...........ccccceevueevueenienneennienseeneenne 152

15.0 Appendix D — ASCII Table.......ccccceveirsienseinsncssesssancssassssssssssssssssssssssssssssssses 153
16.0 Alphabetical INAeX.......ccoovurecrsercssnicssanisssancsssasesssasessasesssssessassossassssssssssssssssens 155

Page iv

1.0 Introduction

There are a number of excellent, comprehensive, and in-depth texts on MIPS assembly
language programming. This is not one of them.

The purpose of this text is to provide a simple and free reference for university level
programming and architecture units that include a brief section covering MIPS assembly
language programming. The text assumes usage of the QtSpim simulator. An appendix
is included that covers the download, installation, and basic use of the QtSpim
simulator.

The scope of this text addresses basic MIPS assembly language programming including
instruction set usage, stacks, procedure/function calls, QtSpim simulator system
services, multiple dimension arrays, and basic recursion.

1.1 Additional References

Some key references for additional information are listed below:
* MIPS Assembly-language Programmer Guide, Silicon Graphics
* MIPS Software Users Manual, MIPS Technologies, Inc.

* Computer Organization and Design: The Hardware/Software Interface,
Hennessy and Patterson

More information regarding these references can be found on the Internet.

Page 1

Chapter 1.0 « Introduction

Page 2

2.0 MIPS Architecture Overview

This chapter presents a basic, general overview of the architecture of the MIPS
processor.

The MIPS architecture is a Reduced Instruction Set Computer (RISC). This means that
there is a smaller number of instructions that use a uniform instruction encoding format.
Each instruction/operation does one thing (memory access, computation, conditional,
etc.). The idea is to make the lesser number of instructions execute faster. In general
RISC architectures, and specifically the MIPS architecture, are designed for high-speed
implementations.

2.1 Architecture Overview

The basic components of a computer include a Central Processing Unit (CPU), Primary
Storage or Random Access Memory (RAM), Secondary Storage (i.e., Disk Drive, SSD,
etc.), Input/Output devices (i.e., screen and keyboard), and an interconnection referred
to as BUS. A very basic diagram of a computer architecture is as follows:

CPU = Primary Storage -
&l Random Access
w g Memory (RAM)
BUS

(Interconnection)

Screen / Keyboard / Secondary Storage -
Mouse Disk Drive / SSD /
Other Storage Media

Illustration 1: Computer Architecture

Programs and data are typically stored on secondary storage (i.e. SSD, disk drive).

Page 3

Chapter 2.0 €4 MIPS Architecture Overview

When a program is executed, it must be copied from the disk drive into the RAM
memory. The CPU executes the program from RAM. This is similar to storing a term
paper on the disk drive, and when writing/editing the term paper, it is copied from the
disk drive into memory. When done, the updated version is stored back to the disk
drive.

2.2 Data Types/Sizes
The basic data types include integer, floating-point, and characters.

This architecture supports data storage sizes of byte, halfword (sometimes referred to as
just half), or word sizes. Floating-point must be of either word (32-bit) size or double
word (64-bit) size. Character data is typically a byte and a string is a series of sequential
bytes.

The MIPS architecture supports the following data/memory sizes:

Name Size

byte 8-bit integer

halfword 16-bit integer

word 32-bit integer

float 32-bit floating-point number
double 64-bit floating-point number

The halfword is often referred to as just 'half '. Lists or arrays (sets of memory) can be
reserved in any of these types. In addition, an arbitrary number of bytes can be defined
with the ".space"” directive.

2.3 Memory

Memory can be viewed as a series of bytes, one after another. That is, memory is byte
addressable. This means each memory address holds one byte of information. To store
a word, four bytes are required which use four memory addresses.

Additionally, the MIPS architecture as simulated in QtSpim is little-endian. This means
that the Least Significant Byte (L.SB) is stored in the lowest memory address. The Most
Significant Byte (MSB) is stored in the highest memory location.

Page 4

Chapter 2.0 » MIPS Architecture Overview

For a word (32-bits), the MSB and LSB are allocated as shown below.

31‘30‘29‘28‘27‘26‘25‘24 23‘22‘21‘20‘19‘18‘17‘16 15‘14‘13‘12‘11‘10‘ 9‘8 7‘6‘5‘4‘3 ‘ 2‘1‘0
MSB LSB

For example, assuming the following declarations:

numl: .word 42
num?2 : .word 5000000

Recall that 42,0 in hex, word size, is 0x0000002A and 5,000,000, in hex, word size, is
0x004C4B40.

For a little-endian architecture, the memory picture would be as follows:

variable value address
name

? 0x100100C
00 0x100100B
4c 0x100100A
4B 0x1001009

Num2 - 40 0x1001008
00 0x1001007
00 0x1001006
00 0x1001005

Numl - 2A 0x1001004
? 0x1001003

Based on the little-endian architecture, the LSB is stored in the lowest memory address
and the MSB is stored in the highest memory location.

Page 5

Chapter 2.0 €4 MIPS Architecture Overview

2.4 Memory Layout

The general memory layout for a program is as shown:

high memory stack

heap

uninitialized data

data

text (code)

low memory reserved

The reserved section is not available to user programs. The text (or code) section is
where the machine language (i.e., the 1's and 0's that represent the code) is stored. The
data section is where the initialized data is stored. This includes declared variables that
have been provided an initial value at assemble time. The uninitialized data section is
where declared variables that have not been provided an initial value are stored. If
accessed before being set, the value will not be meaningful. The heap is where
dynamically allocated data will be stored (if requested). The stack starts in high
memory and grows downward.

The QtSpim simulator does not distinguish between the initialized and uninitialized data
sections. Later sections will provide additional detail for the text and data sections.

2.5 CPU Registers

A CPU register, or just register, is a temporary storage or working location built into the
CPU itself (separate from memory). Computations are typically performed by the CPU
using registers.

The MIPS has 32, 32-bit integer registers ($0 through $31) and 32, 32-bit floating-point
registers ($f0 through $f31). Some of the integer registers are used for special purposes.
For example, $29 is dedicated for use as the stack pointer register, referred to as $sp.

Page 6

Chapter 2.0 » MIPS Architecture Overview

The registers available and typical register usage is described in the following table.

Register Register Register Usage
Name Number
$zero $0 Hardware set to 0
$at $1 Assembler temporary
$v0 - $v1 $2 - $3 Function result (low/high)
$a0 - $a3 $4 - $7 Argument registers
$t0 - $t7 $8 - $15 Temporary registers
$s0 - $s7 $16 - $23 Saved registers
$t8 - $t9 $24 - $25 Temporary registers
$kO - $k1 $26 - $27 Reserved for OS kernel
$gp $28 Global pointer
$sp $29 Stack pointer
$fp $30 Frame pointer
$ra $31 Return address

The register names convey specific usage information. The register names will be used

in the remainder of this document. Further sections will expand on register usage

conventions and address the 'temporary' and 'saved' registers.

2.5.1 Reserved Registers

The following reserved registers should not be used in user programs.

Register Name Register Usage
$k0 - $k1 Reserved for use by the
Operating System
$at Assembler temporary
$gp Global pointer
$epc Exception program counter

Page 7

Chapter 2.0 €4 MIPS Architecture Overview

The $k0 and $k1 registers are reserved for use by the operating system and should not
be used in user programs. The $at register is used by the assembler and should not be
used in user programs. The $gp register is used as a pointer to global data (as needed)
and should not be used in user programs.

2.5.2 Miscellaneous Registers

In addition to the previously listed registers, there are some miscellaneous registers
which are listed in the table:

Register Name Register Usage
$pc Program counter
$status or $psw Status Register
$cause Exception cause register
$hi Used for some
$lo multiple/divide operations

The $pc or program counter register points to the next instruction to be executed and is
automatically updated by the CPU after each instruction is executed. This register is not
typically accessed directly by user programs.

The $status or status register, also called $psw, is the processor status register and is
updated after each instruction by the CPU. This register is not typically directly
accessed by user programs.

The $cause or exception cause register is used by the CPU in the event of an exception
or unexpected interruption in program control flow. Examples of exceptions include
division by 0, attempting to access an illegal memory address, or attempting to execute
an invalid instruction (e.g., trying to execute a data item instead of code).

The $hi and $lo registers are used by some specialized multiply and divide instructions.
For example, a multiple of two 32-bit values can generate a 64-bit result, which is stored
in $hi and $lo (32-bits each or a total of 64-bits).

2.6 CPU/FPU Core Configuration

The following diagram shows a basic configuration of the MIPS processor internal

Page 8

architecture.

Chapter 2.0 » MIPS Architecture Overview

MIPS Chip Core Configuration

CPU

integer
operations
$0 - $31

FPU

float
operations
$f0 - $f31

The FPU (floating-point unit) is also referred to as the FPU co-processor or simply co-

processor 1.

Page 9

Chapter 2.0 €4 MIPS Architecture Overview

Page 10

3.0

Data representation refers to how information is stored within the computer. There is a
specific method for storing integers which is different than storing floating-point values
which is different than storing characters. This chapter presents a brief summary of the
integer, floating-point, and ASCII representation schemes. It is assumed the reader is
already generally familiar with the binary, decimal, and hexadecimal numbering
systems.

Data Representation

3.1 Integer Representation

Representing integer numbers refers to how the computer stores or represents a number
in memory. As you know, the computer represents numbers in binary. However, the
computer has a limited amount of space that can be used for each number or variable.
This directly impacts the size, or range, of the number that can be represented. For
example, a byte (8 bits) can be used to represent 2° or 256 different numbers. Those 256
different numbers can be unsigned (all positive) in which case we can represent any
number between 0 and 255 (inclusive). If we choose signed (positive and negative),
then we can represent any number between -128 and +127 (inclusive).

If that range is not large enough to handle the intended values, a larger size must be
used. For example, a halfword (16 bits) can be used to represent 2'° or 65,536 different
numbers, and a word can be used to represent 2** or 4,294,967,296 different numbers.
So, if you wanted to store a value of 100,000 then a word would be required.

The following table shows the ranges associated with typical sizes:

Size Size Unsigned Range Signed Range
Bytes (8 bits) 28 0 to 255 -128 to +127
Halfwords (16 bits) 216 0 to 65,535 -32,768 to +32,767
Words (32 bits) 2% 0 to 4,294,967,295 -2,147,483,648 to
+2,147,483,647

Page 11

Chapter 3.0 « Data Representation

In order to determine if a value can be represented, you will need to know the size of
storage element (byte, halfword, word) being used and if the values are signed or
unsigned values.

* For representing unsigned values within the range of a given storage size,
standard binary is used.

* For representing signed values within the range, two's complement is used.
Specifically, the two's complement encoding process applies to the values in the
negative range. For values within the positive range, standard binary is used.

Additional detail regarding two's complement is provided in the next section.

For example, the unsigned byte range can be represented using a number line as follows:

0 255

For example, the signed byte range can also be represented using a number line as
follows:

|]]
| I 1

-128 0 +127
The same concept applies to halfwords and words with larger ranges.

Unsigned values have a different, positive only, range. The range of the signed value
has some overlap with the unsigned values. For example, when the unsigned and signed
values are within the overlapping positive range (0 to +127):

* A ssigned byte representation of 12 is 0x0Cjs
* An unsigned byte representation of 12 is also 0x0C;s

When the unsigned and signed values are outside the overlapping range:
* A ssigned byte representation of -15 is 0xF16

* Anunsigned byte representation of 241 is also 0xF1¢

This overlap can cause confusion unless the data types are clearly and correctly defined.

Page 12

Chapter 3.0 » Data Representation

3.1.1 Two's Complement

The following describes how to find the two's complement representation for negative
values.

To take the two's complement of a number:
1. Take the one's complement (negate)
2. Add 1 (in binary)

The same process is used to encode a decimal value into two's complement and from
two's complement back to decimal. The following sections provide some examples.

3.1.2 Byte Example

For example, to find the byte size, two's complement representation of -9 and -12.

9 (8+1)=| 00001001 12 (8+4)=| 00001100
Step1| 11110110 Step 1:| 11110011
Step2| 11110111 11110100

-9 (in hex) = F7 -12 (in hex) = F4

Note, all bits for the given size, byte in this example, must be specified.

3.1.3 Halfword Example

To find the halfword size, two's complement representation of -18 and -40.

18 (16+2) =| 0000000000010010
Step1 | 1111111111101101
Step2 | 1111111111101110

40 (32+8) =| 0000000000101000
Step 1 1111111111010111
Step2 | 1111111111011000

-18 (hex) = FFEE -40 (hex) = FFD8

Note, all bits for the given size, halfwords in these examples, must be specified.

Page 13

Chapter 3.0 « Data Representation

3.2 Unsigned and Signed Addition

As previously noted, the unsigned and signed representations may provide different
interpretations for the final value being represented. However, the addition and
subtraction operations are the same. For example:

241 11110001 -15| 11110001
+ 7| 00000111 7| 00000111
248, 11111000 -8 11111000

248 = F8 -8 = F8

The final result of 0xF8 may be interpreted as 248 for unsigned representation and -8 for
a signed representation.

Additionally, 0xF8s is the ° (degree symbol) in the ASCII table.

As such, it is very important to have a clear definition of the sizes (byte, halfword, word,
etc.) and types (signed, unsigned) of data for the operations being performed.

3.3 Floating-point Representation

The representation issues for floating-point numbers are more complex. There are a
series of floating-point representations for various ranges of the value. For simplicity,
we will only look primarily at the IEEE 754 32-bit floating-point standard.

3.3.1 IEEE 32-bit Representation
The IEEE 754 32-bit floating-point standard is defined as follows:

3

30‘29‘28‘27‘26‘25‘24‘23 22‘21‘20‘19‘18‘17‘]6‘15‘14‘13‘]2‘11‘10‘9‘8‘7‘6‘5‘4‘3‘2‘1‘0

S biased exponent fraction

Where s is the sign (0 => positive and 1 => negative). When representing floating-point
values, the first step is to convert floating-point value into binary.

Page 14

Chapter 3.0 » Data Representation

The following table provides a brief reminder of how binary handles fractional
components:

22022 2020 2022 278
8 14121 12 1/4) 1/8
00 00 0 00

For example, 100.101, would be 4.625,,. For repeating decimals, calculating the binary
value can be time consuming. However, there is a limit since computers have finite
storage.

The next step is to show the value in binary normalized scientific notation. This means
that the normalized number should have a single, non-zero leading digit to the left of the
decimal point. For example, 8.125; is 1000.001, (or 1000.001, x 2°) and in binary
normalized scientific notation it would be written as 1.000001 x 2° (since the decimal
point was moved three places to the left). Of course, if the number was 0.125;, the
binary would be 0.001; (or 0.001, x 2°) and the normalized scientific notation would be
1.0 x 27 (since the decimal point was moved three places to the right). The numbers
after the leading 1, not including the leading 1, are stored left-justified in the fraction
portion of the word.

The next step is to calculate the biased exponent, which is the exponent from the
normalized scientific notation plus the defined bias. The bias for the IEEE 754 32-bit
floating-point standard is 12710. The result should be converted to a byte (8 bits) and
stored in the biased exponent portion of the word.

Note, converting from the IEEE 754 32-bit floating-point representation to the decimal
value is done in reverse, however the leading 1 must be added back (as it is not stored in
the word). Additionally, the bias is subtracted (instead of added).

3.3.1.1 IEEE 32-bit Representation Examples

This section presents several examples of encoding and decoding floating-point
representation for reference.

Page 15

Chapter 3.0 « Data Representation

3.3.1.1.1 Example — -7.75
For example, to find the IEEE 754 32-bit floating-point representation for -7.75:

Example 1: -7.75

determine sign -7.75 => 1 (since negative)
convert to binary =775 = -0111.11,
normalized scientific notation = 1.1111 x 22
compute biased exponent 2,127, =129,

© and convert to binary = 10000001,

write components in binary:
sign exponent mantissa

1 10000001 11110000000000000000000
convert to hex (split into groups of 4)

11000000111110000000000000000000

1100 0000 1111 1000 0000 0000 0000 0000

c o F 8 0 0 0 0

final result: COF8 0000,

3.3.1.1.2 Example — -0.125,
For example, to find the IEEE 754 32-bit floating-point representation for -0.1251,:

Example 2: -0.125

Page 16

determine sign -0.125 => 1 (since negative)
convert to binary -0.125 = -0.001,
normalized scientific notation = 1.0 x 273

compute biased exponent 3, T 127, = 124

© and convert to binary = 01111100,

write components in binary:
sign exponent mantissa

1 01111100 00000000000000000000000
convert to hex (split into groups of 4)

10111110000000000000000000000000

1011 1110 0000 0000 0000 0000 0000 0000

B E 0 0 0 0 0 O

final result: BE00 0000,

Chapter 3.0 » Data Representation

3.3.1.1.3 Example — 41440000

For example, given the IEEE 754 32-bit floating-point representation 414400006 find
the decimal value:

Example 3: 414400004

convert to binary

0100 0001 0100 0100 0000 0000 0000 0000,
split into components

0 10000010 10001000000000000000000,

determine exponent 10000010, = 130,

© and remove bias 130,,-127,, = 3,,
determine sign 0=> positive

write result +1.10001 x 2° = +1100.01 = +12.25

3.3.2 IEEE 64-bit Representation
The IEEE 754 64-bit floating-point standard is defined as follows:

63

@]

‘52 51‘ ‘O

biased exponent fraction

The representation process is the same, however the format allows for an 11-bit biased
exponent (which support large and smaller values). The 11-bit biased exponent uses a

bias of 1023.

Page 17

Chapter 3.0 « Data Representation

Page 18

4.0 QtSpim Program Formats

The QtSpim MIPS simulator will be used for programs in this text. The QtSpim
simulator has a number of features and requirements for writing MIPS assembly
language programs. This includes a properly formatted assembly source file.

A properly formatted assembly source file consists of two main parts; the data section
(where data is placed) and the text section (where code is placed). The following
sections summarize the formatting requirements and explain each of these sections.

4.1 Assembly Process

The QtSpim effectively assembles the program during the load process. Any major
errors in the program format or the instructions will be noted immediately. Assembler
errors must be resolved before the program can be successfully executed. Refer to
Appendix B regarding the use of QtSpim to load and execute programs.

4.2 Comments

The "#" character represents a comment line. Anything typed after the "#" is considered
a comment. Blank lines are accepted.

4.3 Assembler Directives

An assembler directive is a message to the assembler, or the QtSpim simulator, that tells
the assembler something it needs to know in order to carry out the assembly process.
This includes noting where the data is declared or the code is defined. Assembler
directives are not executable statements.

Assembler directives start with a ".". Assembler directives are required to define the
start and end of data declarations and to define the start and end of procedures/functions.
For example, ".data" or ".text".

Additionally, directives are used to declare data. The following sections provide some
examples of data declarations using the directives.

Page 19

Chapter 4.0 « QtSpim Program Formats

4.4 Data Declarations

The data must be declared in the ".data" section. All variables and constants are placed
in this section. Variable names must start with a letter followed by letters or numbers
(including some special characters such as the "_"), and terminated with a ":" (colon).
Variable definitions must include the name, the data type, and the initial value for the

n.n

variable. In the definition, the variable name must be terminated with a ":".

mn

The data type must be preceded with a "." (period). The general format is:

<variableName>: .<dataType> <initialValue>

Refer to the following sections for a series of examples using various data types.

The supported data types are as follows:

Declaration
-byte 8-bit variable(s)
-half 16-bit variable(s)
.word 32-bit variable(s)
.ascii ASCII string
.asciiz NULL terminated ASCII string
.float 32 bit IEEE floating-point number
.double 64 bit IEEE floating-point number
-space <n> <n> bytes of uninitialized memory

These are the primary assembler directives for data declaration. Other directives are
referenced in different sections.
4.4.1 Integer Data Declarations

Integer values are defined with the .word, .half, or .byte directives. Two's complement
is used for the representation of negative values. For more information regarding two's
complement, refer to the Data Representation section.

Page 20

Chapter 4.0 » QtSpim Program Formats

The following declarations are used to define the integer variables "wVarl" and
"wVar2" as 32-bit word values and initialize them to 500,000 and -100,000.

wVarl: .word 500000
wvVar2: .word -100000

The following declarations are used to define the integer variables "hVarl" and "hVar2"
as 16-bit word values and initialize them to 5,000 and -3,000.

hVvarl: .half 5000
hvar2: .half -3000

The following declarations are used to define the integer variables "bVar1" and "bVar2"
as 8-bit word values and initialize them to 5 and -3.

bvarl: .byte 5
bvar2: .byte -3

If a variable is initialized to a value that can not be stored in the allocated space, an
assembler error will be generated. For example, attempting to set a byte variable to 500
would be illegal and generate an error.

4.4.2 String Data Declarations

At the assembly level, a string is a series of sequentially defined byte-sized characters,
typically terminated with a NULL byte (0x00).

Strings are defined with .ascii or .asciiz directives. Characters are represented using
standard ASCII characters. Refer to Appendix D for a copy of the ASCII table for
reference.

The C/C++ style new line, "\n", and tab, "\t" tab are supported within strings.

The following declarations are used to define a string "message" and initialize it to
"Hello World".

message: .asciiz "Hello World\n"

In this example, the string is defined as NULL terminated (i.e., after the new line). The
NULL is a non-printable ASCII character and is used to mark the end of the string. The
NULL termination is standard and is required by the print string system service (to work
correctly).

To define a string with multiple lines, the NULL termination would only be required on

Page 21

Chapter 4.0 « QtSpim Program Formats

the final or last line. For example:

message: .ascii "Line 1: Goodbye World\n"
.ascii "Line 2: So, long and thanks "
.ascii "for all the fish.\n"
.asciiz "Line 3: Game Over.\n"

When printed, using the starting address of 'message’, everything up-to (but not
including) the NULL will be displayed. As such, the declaration using multiple lines is
not relevant to the final displayed output.

4.4.3 Floating-Point Data Declarations

Floating-point values are defined with the .float (32-bit) or .double (64-bit) directives.
The IEEE floating-point format is used for the internal representation of floating-point
values.

The following declarations are used to define the floating-point variables "pi" a 32-bit
floating-point value initialized to 3.14159 and "tao" a 64-bit floating-point values
initialized them to 6.28318.

pi: .float 3.14159
tao: .double 6.28318

For more information regarding the IEEE format, refer to the Data Representation
section.

4.5 Constants

Constant names must start with a letter, followed by letters or numbers including some
special characters such as the "_" (underscore). Constant definitions are created with an
"=" sign.

For example, to create some constants named TRUE and FALSE and set them to 1 and
0 respectively:

TRUE = 1
FALSE = 0

Constants are also defined in the data section. The use of all capitals for a constant is a
convention and not required by the QtSpim program. The convention helps

programmers more easily distinguish between variables (which can change values) and
constants (which can not change values). Additionally, in assembly language constants

Page 22

Chapter 4.0 » QtSpim Program Formats

are not typed (i.e., not predefined to be a specific size such as 8-bits, 16-bits, 32-bits, or
64-bits).

4.6 Program Code
The code must be preceded by the ".text" directive.

In addition, there are some basic requirements for naming a "main" procedure (i.e., the
first procedure to be executed). The ".globl name" and ".ent name" directives are used
to define the name of the initial or main procedure. The ".ent" is optional for the QtSpim
simulator. Note, the globl spelled incorrectly is the correct directive. Also, the main
procedure must start with a label with the procedure name. The main procedure (as all
procedures) should be terminated with the ".end <name>" directive.

In the program template, the <name> would be the name of the main
function/procedure, which is "main".

4.7 Labels

Labels are code locations, typically used as a function/procedure name or as the target of
a jump. The first use of a label is the main program starting location, which must be
named 'main' which is a specific requirement for the QtSpim simulator.

The rules for a label are as follows:

e Must start with a letter
* May be followed by letters, numbers, or an

* Must be terminated with a ":" (colon).
* May only be defined once.

mon

(underscore).

Some examples of a label include:

main:
exitProgram:

Characters in a label are case-sensitive. As such, Loop: and loop: are different labels.
This can be very confusing initially, so caution is advised.

Page 23

Chapter 4.0 « QtSpim Program Formats

4.8 Program Template

The following is a very basic template for QtSpim MIPS programs. This general
template will be used for all programs.

Name and general description of program

ey
Data declarations go in this section.
.data

program specific data declarations
ey
Program code goes in this section.
.text

.globl main

.ent main

main:

$ -———-

your program code goes here.

$ -————-

Done, terminate program.

1i $vo, 10
syscall # all done!
.end main

mon

The initial header (".text", ".globl main", ".ent main", and "main:") will be the same for
all QtSpim programs. The final instructions ("li $v0, 10" and "syscall") terminate the
program.

A more complete example, with working code, can be found in Appendix A.

Page 24

5.0 Instruction Set Overview

In assembly-language, instructions are how work is accomplished. In assembly the
instructions are simple, single operation commands. In a high-level language, one line
might be translated into a series of instructions in assembly-language.

This chapter presents a summary of the basic, most common instructions. The MIPS
Instruction Set Appendix presents a more comprehensive list of the available
instructions.

5.1 Pseudo-Instructions vs Bare-Instructions

As part of the MIPS architecture, the assembly language includes a number of pseudo-
instructions. A bare-instruction is an instruction that is directly executed by the CPU.
A pseudo-instruction is an instruction that the assembler, or simulator, will recognize
but then convert into one or more bare-instructions. This text will focus primarily on
the pseudo-instructions.

5.2 Notational Conventions

This section summarizes the notation used within this text which is fairly common in the
technical literature. In general, an instruction will consist of the instruction or operation
itself (i.e., add, sub, mul, etc.) and the operands. The operands refer to where the data
(to be operated on) is coming from, or where the result is to be placed.

The following table summarizes the notational conventions used in the remainder of the
document.

Operand Notation Description

Rdest Destination operand. Must be an integer register.
Since it is a destination operand, the contents will be
over written with the new result.

Rsrc Source operand. Must be an integer register.
Register value is unchanged after the instruction.

Page 25

Chapter 5.0 « Instruction Set Overview

Src Source operand. Must be an integer register or an
integer immediate value. Value is unchanged after
the instruction.

FRdest Destination operand. Must be a floating-point
register. Since it is a destination operand, the
contents will be overwritten with the new result.

FRsrc Source operand. Must be a floating-point register.
Register value is unchanged after the instruction.
Imm Immediate value.
Mem Memory location. May be a variable name or an

indirect reference (i.e., a memory address).

By default, the immediate values are decimal or base-10. Hexadecimal or base-16
immediate values may be used but must be preceded with a 0x to indicate the value is
hex. For example, 150 could be entered in hex as 0x0F.

Refer to the chapter on Addressing Modes for more information regarding memory
locations and indirection.

5.3 Data Movement

CPU computations are typically performed using registers. As such, before
computations can be performed, data is typically moved into registers from variables
(i.e., memory) and when the computations are completed the data would be moved out
of registers into other variables.

5.3.1 Load and Store

To support the loading of data from memory (e.g., variables or arrays) into registers and
storing of data in register back to memory, there are a series of load and store
instructions. The load and store instructions only move data between register and
memory. Another instruction is used to move data between registers (as described in the
next section).

There are no load or store instructions that will move a value from a memory location
directly to another memory location.

Page 26

Chapter 5.0 » Instruction Set Overview

The general forms of the load and store instructions are as follows:

Instruction Description

1<type> Rdest, mem Load value from memory location
into destination register.

li Rdest, imm Load specified immediate value
into destination register.

la Rdest, mem Load address of memory location
into destination register.

s<type> Rsrc, mem Store contents of source register
into memory location.

Assuming the following data declarations:

num:

wnum:
hnum:
bnum:
wans:
hans:
bans:

.word
.word
.half
.byte
.word
.half
.byte

To perform, the basic operations of:

num
wans
hans
bans

= 27

wnum

= hnum
= bnum

0
42
73
7

O OO

The following instructions could be used:

1i
sSw
1w
sSw
lh
sh
1b
sb

$to,
$to,
$t0,
$to,
$tl,
$tl,
$t2,
$t2,

27
num
wnum
wans
hnum
hans
bnum
bans

num = 27

wans = wnum
hans = hnum
bans = bnum

Page 27

Chapter 5.0 « Instruction Set Overview

For the halfword and byte instructions, only the lower 16-bits or the lower 8-bits are
used.

5.3.2 Move

The various forms of the move instructions are used to move data between registers.
Both operands must be registers. The most basic move instruction, move, copies the
contents of an integer register into another integer register. Another set of move
instructions are used to move the contents of registers into or out of the special registers,
$hi and $lo.

In addition, different move instructions are required to move values between integer
registers and floating-point registers (as discussed on the floating-point section).

There is no move instruction that will move a value from a memory location directly to
another memory location.

The general forms of the move instructions are as follows:

Instruction Description

move Rdest, RSrc Copy contents of integer source
register into integer destination
register.

mfhi Rdest Copy the contents from the $hi
register into Rdest register.

mflo Rdest Copy the contents from the $lo
register into Rdest register.

mthi Rdest Copy the contents to the $hi

register from the Rdest register.

mtlo Rdest Copy the contents to the $lo register
from the Rdest register.

For example, the following instructions:

1i $t0, 42
move $tl, $tO

will move the contents of register $t0, 42 in this example, into the $t1 register.

Page 28

Chapter 5.0 » Instruction Set Overview

The mfhi, mflo, mtho, and mtlo instructions are required only when performing 64-bit
integer multiply and divide operations.

The floating-point section will include examples for moving data between integer and

floating-point registers.

5.4 Integer Arithmetic Operations

The arithmetic operations include addition, subtraction, multiplication, division,
remainder (remainder after division), logical AND, and logical OR. The general format
for these basic instructions is as follows:

Instruction Description
add Rdest, Rsrc, Src Signed addition

Rdest = Rsrc + Src or Imm
addu Rdest, Rsrc, Src Unsigned addition

Rdest = Rsrc + Src or Imm
sub Rdest, Rsrc, Src Signed subtraction

Rdest = Rsrc — Src or Imm
subu Rdest, Rsrc, Src | Unsigned subtraction

Rdest = Rsrc — Src or Imm
mul Rdest, Rsrc, Src Signed multiply with no overflow

Rdest = Rsrc * Src or Imm
mulo Rdest, Rsrc, Src Signed multiply with overflow

Rdest = Rsrc * Src or Imm
mulou Rdest, Rsrc, Src | Unsigned multiply with overflow

Rdest = Rsrc * Src or Imm
mult Rsrcl, Rsrc2 Signed 64-bit multiply

$hi/$lo = Rsrcl * Rsrc2
multu Rsrcl, Rsrc2 Unsigned 64-bit multiply

$hi/$lo = Rsrcl * Rsrc2
div Rdest, Rsrc, Src Signed divide

Rdest = Rsrc / Src or Imm

Page 29

Chapter 5.0 « Instruction Set Overview

divu Rdest, Rsrc, Src Unsigned divide
Rdest = Rsrc / Src or Imm

div Rsrcl, RSrc2 Signed divide with remainder
$lo = Rsrcl / RSrc2
$hi = Rsrcl % RSrc2

divu Rsrcl, RSrc2 Unsigned divide with remainder
$lo = Rsrc1 / RSrc2
$hi = Rsrc1 % RSrc2

rem Rdest, Rsrc, Src Signed remainder
Rdest = Rsrc % Src or Imm

remu Rdest, Rsrc, Src |Unsigned remainder

Rdest = Rsrc % Src or Imm
abs Rdest, Rsrc Absolute value

Rdest = | Rsrc |
neg Rdest, Rsrc Signed negation

Rdest = - Rsrc

These instructions operate on 32-bit registers (even if byte or halfword values are placed
in the registers).

Assuming the following data declarations:

wnuml : .word 651
wnum2 : .word 42
wansl: .word 0
wans2: .word 0
wans3: .word 0
hnuml : .half 73
hnum2 : .half 15
hans: .half 0
bnuml: .byte 7
bnum2 : .byte 9
bans: .byte 0

Page 30

To perform, the basic operations of:

wansl
wans2
wans3
hans
bans

The following instructions could be used:

1w
1w
add
sSwW

1w
1w
mul
sSw

1w
1w
rem
sSw

1h
1h

mul
sh

1b
1b
div
sb

$t0,
$t1I
$t2,
$t2l

$to,
$tl,
$t2,
$t2,

$t0,
$t1,
$t2,
$t2,

$to,
$t1,

$t2,
$t2,

$to,
$tl,
$t2,
$t2,

wnuml +
wnuml *
wnuml $
= hnuml *
= bnuml /

wnuml
wnum2
$tol

wansl

$tl

wnuml
wnum2
$t0, S$t1
wans2

wnuml
wnum2
$tol

wans3

$tl
hnuml
hnum2

$to,
hans

$tl

bnuml
bnum2
$t0, S$t1
bans

wnum2
wnum2
wnum2
hnum2
bnum2

Chapter 5.0 » Instruction Set Overview

wansl

wans2

wans

hans

bans

wnuml + wnum2

wnuml * wnum2

wnuml % wnum2

hnuml * hnum2

bnuml / bnum2

For the halfword load or store instructions, only the lower 16-bits are used. For the byte

instructions, only the lower 8-bits are used.

Page 31

Chapter 5.0 « Instruction Set Overview

5.4.1 Example Program, Integer Arithmetic

The following is an example program to compute the
volume and surface area of a rectangular parallelepiped.

The formulas for the volume and surface area are as
follows:

volume = aSide* bSide * cSide
surfaceArea = 2(aSidex bSide + aSide * cSide + bSide * cSide)

This example main initializes the a, b, and c sides to arbitrary integer values.

Example to compute the volume and surface area
of a rectangular parallelepiped.

B m -
Data Declarations

.data

aSide: .word 73

bSide: .word 14

cSide: .word 16

volume: .word 0

surfaceArea: .word 0

B mm -
Text/code section

.text

.globl main

.ent main

main:

$ ————-

Load variables into registers.
lw $t0, aSide

1w $tl, bSide
1w $t2, cSide

Page 32

Chapter 5.0 » Instruction Set Overview

—_——
Find volume of a rectangular parallelpiped.
volume = aSide * bSide * cSide
mul $t3, $t0, $tl
mul $t4, $t3, $t2
sSwW $t4, volume

Find surface area of a rectangular parallelepiped.
surfaceArea = 2* (aSide*bSide+aSide*cSide+bSide*cSide)
mul $t3, $t0, $tl # aSide * bSide

mul $t4, $t0, $t2
mul $t5, $tl, $t2
add $t6, $t3, $t4
add $t7, $t6, $t5
mul $t7, $t7, 2
sw $t7, surfaceArea
$ -———-
Done, terminate program.
1i $v0, 10
syscall
.end main

aSide * cSide
bSide * cSide

call code for terminate
system call (terminate)

Refer to the system services section for information on displaying the final results to the

console.

5.5 Logical Operations

The logical operations include logical AND, logical OR, shift, and rotate instructions.
The general format for these instructions is as follows:

Instruction Description
and Rdest, Rsrc, Src Logical AND

Rdest = Rsrc & Src or Imm
nor Rdest, Rsrc, Src Logical NOR

Rdest = Rsrc | Src or Imm

Page 33

Chapter 5.0 « Instruction Set Overview

not Rdest, Rsrc Logical NOT
Rdest = = Rrc
or Rdest, Rsrc, Src |Logical OR

Rdest = Rsrc | Src or Imm

rol Rdest, Rsrc, Src |Rotate left

Rdest = Rsrc rotated left Src
or Imm places

ror Rdest, Rsrc, Src |Rotate right

Rdest = Rsrc rotated right Src
or Imm places

sll Rdest, Rsrc, Src |Shift left logical

Rdest = Rsrc shift left logical
Src or Imm places

sra Rdest, Rsrc, Src |Shift right arithmetic

Rdest = Rsrc shift right
arithmetic Src or
Imm places

srl Rdest, Rsrc, Src |Shiftright logical
Rdest = Rsrc shift right logical
Src or Imm places

xor Rdest, Rsrc, Src Logical XOR
Rdest = Rsrc A Src or Imm

The & refers to the logical AND operation, the | refers to the logical OR operation, and
the A refers to the logical XOR operation as per C/C++ conventions. The | refers to the
logical NOR operation and the - refers to the logical NOT operation.

These instructions operate on 32-bit registers (even if byte or halfword values are placed
in the registers).

Assuming the following data declarations:

wnuml : .word 0x000000£ff
wnum2 : .word 0x0000££00
wansl: .word 0
wans2: .word 0
wans3: .word 0

Page 34

Chapter 5.0 » Instruction Set Overview

To perform, the basic operations of:

wansl = wnuml & wnum2
wans2 wnuml | wnum2
wans3 = wnuml = wnum2

The following instructions

1w $t0, wnuml

1w $tl, wnum2

and $t2, $t0, $tl

sSwW $t2, wansl # wansl = wnuml & wnum2

1w $t0, wnuml

1w $tl, wnum2

or $t2, $t0, S$tl

SwW $t2, wans2 # wans2

wnuml | wnum2

1w $tl, wnum2
not $t2, S$tl

SW $t2, wans3 # wans3 - wnum2

For halfword load or store instructions, only the lower 16-bits are used. For the byte
instructions, only the lower 8-bits are used.

5.5.1 Shift Operations

The shift operations shift or move bits within a register. Two typical reasons for shifting
bits include isolating a subset of the bits within an operand for some specific purpose or
possibly for performing multiplication or division by powers of two. The two shift
operations are a logical shift and an arithmetic shift.

Page 35

Chapter 5.0 « Instruction Set Overview

5.5.1.1 Logical Shift

The logical shift is a bitwise operation that shifts all the bits of its source register by the
specified number of bits and places the result into the destination register. The bits can
be shifted left or right as needed. Every bit in the source operand is moved the specified
number of bit-positions, and the newly vacant bit-positions are filled in with zeros. The
following diagram shows how the right and left shift operations work for byte sized
operands.

Shift Right Logical Shift Left Logical
7 6 5 432 10 7 6 5 432 10
101100\1\1 101/1/0011
0 —/o/1]/o/1]1/0]0]1] 0/1/1/0/0/1/1/0]« 0O

The logical shift treats the operand as a sequence of bits rather than as a number.

The shift instructions may be used to perform unsigned integer multiplication and
division operations for powers of 2. Powers of two would be 2, 4, 8, etc. up to the limit
of the operand size (32-bits for register operands).

In the examples below, 23 is divided by 2 by performing a shift right logical one bit.
The resulting 11 is shown in binary. Next, 13 is multiplied by 4 by performing a shift
left logical two bits. The resulting 52 is shown in binary.

Shift Right Logical Shift Left Logical

Unsigned Division Unsigned Multiplication
ojojoj1/0]1]1]1/= 23 olojojoj1|1]0]1|= 13
ojojojo|1]oj1]1/= 1 olo/1/1/0/1]0]0= 52

As can be seen in the examples, a 0 was entered in the newly vacated bit locations on
either the right or left (depending on the operation).

Page 36

Chapter 5.0 » Instruction Set Overview

5.5.1.2 Arithmetic Shift

The arithmetic shift right is also a bitwise operation. This instruction shifts all bits of
the source register by the specified number of bit-positions and places the result into the
destination register. Every bit in the source operand is moved the specified number of
bit-positions, and the newly vacant bit-positions on the left are filled in. The original
leftmost bit (the sign bit) is replicated to fill in all the vacant positions. This is referred
to as sign extension. The following diagram shows how the shift right arithmetic
operations work for a byte sized operand.

Shift Right Arithmetic

76543210
\10110

WAL

HIEICIESESCICIEY

The arithmetic shift treats the operand as a signed number and extends the sign which
would be negative in this example.

However, the arithmetic shift rounds up and the standard divide instruction truncates.
As such, the arithmetic shift is not typically used to replace the signed divide instruction.

5.5.1.3 Shift Operations, Examples
This section provides a series of examples using the logical shift operations.

Assuming the following data declarations:

datal: .word 0x000000£f£
resultl: .word 0
result2: .word 0

To perform, the basic operations of:

resultl wnuml, rotate left 1 bit
result2 = wnuml, rotate right 1 bit

Page 37

Chapter 5.0 « Instruction Set Overview

The following instructions

1w $t0, wnuml
1w $tl, wnum2
rol $t2, $t0, $tl

sSw $t2, wans3 # wans3 wnuml, rotate left 1 bit

1w $t0, wnuml

1w $tl, wnum2

ror $t2, $t0, $tl

sw $t2, wans4 # wans3 = wnuml, rotate right 1 bit

For halfword instructions, only the lower 16-bits are used. For the byte instructions,
only the lower 8-bits are used.

To perform the operation, value * 8, it would be possible to shift the number in the
variable one bit for each power of two, which would be three bits in this example.
Assuming the following data declarations:

value: .word 17
answer: .word 0

The following instructions could be used to multiply a value by 8.

1w $t0, value
sll $tl, $t0, 3
SwW $tl, answer # answer = value * 8

The final value in answer would be 17 * 8 or 136.

In the context of an encoded MIPS instruction, the upper 6-bits of a 32-bit word
represent the OP or operation field. If a program was analyzing code, it might be
desirable to isolate these bits for comparison. One way this can be performed is to use a
logical right shift to move the upper six bits into the position of the lower 6-bits.

The instruction:

add $t1, $t1, 1
will be translated by the assembler into the hex value of 0x2129001.
Assuming the following data declarations:

instl: .word 0x2129001
instlOpl: .word 0
To mask out the OP field (upper 6-bits) for inst1 and place it in the variable instOp1

Page 38

Chapter 5.0 » Instruction Set Overview

(lower 6-bits), the following instructions could be used:
1w $t0, instl

srl $tl, $t0, 26
SwW $tl, instOpl

This can be done in one step since the logical shift will insert all 0's into the newly
vacated bit locations.

5.6 Control Instructions

Program control refers to basic programming structures for iteration and comparisons
such as IF statements and looping. All of the high-level language control structures
must be performed with the limited assembly-language control structures. For example,
an [F-THEN-ELSE statement does not exist at the assembly-language level. Assembly-
language provides an unconditional branch (or jump), and a conditional branch or an IF
statement that will jump to a target label or not jump (as per the conditional expression).

The control instructions refer to unconditional and conditional branching. Branching is
required for basic conditional statements (i.e., IF statements) and looping.

5.6.1 Unconditional Control Instructions

The unconditional instruction provides an unconditional jump to a specific location.

Instruction Description
j <label> Unconditionally branch to the
specified label.

The "b" (branch) may be used instead of the "j" (jump). Both are encoded as the same
instruction (an unconditional jump). An error is generated by QtSpim if the label is not
defined.

5.6.2 Conditional Control Instructions

The conditional instruction provides a conditional jump based on a comparison. In
high-level language terms, this is a basic IF statement.

Page 39

Chapter 5.0 « Instruction Set Overview

The conditional control instructions include the standard set; branch equal, branch not
equal, branch less than, branch less than or equal, branch greater than, and branch
greater than or equal.

The general format for these basic instructions is as follows:

Instruction Description

beq <Rsrc>, <Src>, <label> Branch to label if <Rsrc> and
<Src> are equal

bne <Rsrc>, <Src>, <label> Branch to label if <Rsrc> and
<Src> are not equal

blt <Rsrc>, <Src>, <label> | Sjgned branch to label if <Rsrc>
is less than <Src>

ble <Rsrc>, <Src>, <label> Signed branch to label if <Rsrc>
is less than or equal to <Src>

bgt <Rsrc>, <Src>, <label> | Sjgned branch to label if <Rsrc>
is greater than <Src>

bge <Rsrc>, <Src>, <label> | Sjgned branch to label if <Rsrc>
is greater than or equal to <Src>

bltu <Rsrc>, <Src>, <label> | Unsigned branch to label if <Rsrc>
is less than <Src>

bleu <Rsrc>, <Src>, <label> | Unsigned branch to label if <Rsrc>
is less than or equal to <Src>

bgtu <Rsrc>, <Src>, <label> ' Unsigned branch to label if <Rsrc>
is greater than <Src>

bgeu <Rsrc>, <Src>, <label> ' Unsigned branch to label if <Rsrc>
is greater than or equal to <Src>

These instructions operate on 32-bit registers (even if byte or halfword values are placed
in the registers).

In addition, these conditional control instructions can be modified by adding or
appending a ‘z’ to the end which means a comparison to zero (0) without typing the
immediate O in the instruction.

Page 40

Chapter 5.0 » Instruction Set Overview

For example, the following instruction,

bne $t0, 0, loopl

could be written as,

bnez $t0, loopl

which does exactly the same thing. This short-handed method is used in some of the
text examples. A more complete list is included in Appendix C.

5.6.3 Example Program, Sum of Squares

The following is an example program to find the sum of squares from 1 to n. For
example, the sum of squares from 1 to 10 is as follows:

1>+22+ - +10* = 385

This example program initializes the n to 10 to match the example above example.
Other limits can be specified as desired.

Example program to compute the sum of squares.

-

Data Declarations

.data
n: .word 10
sumOfSquares: .word 0
ey
text/code section
.text
.globl main
.ent main
main:
$ ————-
Compute sum of squares from 1 to n.
1w $t0, n #
1i $tl, 1 # loop index (1 to n)
1li $t2, 0 # sum

Page 41

Chapter 5.0 « Instruction Set Overview

sumLoop:
mul $t3, $tl1l, S$tl # index*2
add $t2, $t2, $t3

add S$t1, $t1, 1
ble $t1, $t0, sumLoop

sw $t2, sumOfSquares

$ -

Done, terminate program.
1i $v0, 10 # call code for terminate
syscall # system call

.end main

Refer to the system services section for information on displaying the final results to the
console.

5.7 Floating-Point Instructions

This section presents a summary of the basic, most common floating-point arithmetic
instructions. The MIPS Instruction Set Appendix presents a more comprehensive list
of the available instructions.

5.7.1 Floating-Point Register Usage

The floating-point instructions are similar to the integer instructions, however, the
floating-point register must be used with the floating-point instructions. Specifically,
this means the architecture does not support the use of integer registers for any floating-
point arithmetic operations.

When single-precision (32-bit) floating-point operation is performed, the specified 32-
bit floating-point register is used. When a double-precision (64-bit) floating-point
operation is performed, two 32-bit floating-point registers are used; the specified 32-bit
floating-point register and the next numerically sequential register is used by the
instruction. For example, a double-precision operation using $f12 will use
automatically $f12 and $f13.

Page 42

Chapter 5.0 » Instruction Set Overview

5.7.2 Floating-Point Data Movement

Floating-point CPU computations are typically performed using floating-point registers.
As such, before computations can be performed, data is typically moved into the
floating-point registers from other floating-point registers or variables (i.e., memory).
When a computation is completed the data might be moved out of the floating-point
register into a variable or another floating-point register.

To support the loading of data from memory into floating-point registers and storing of
data in floating-point registers to memory, there are a series of specialized load and store
instructions. The basic format is the same as the integer operations, however the type is
either ".s" for single-precision 32-bit IEEE floating-point representation or ".d" for
double-precision 64-bit IEEE floating-point representation. More information regarding
the representations can be found in Chapter 2, Data Representation.

The general forms of the floating-point load and store instructions are as follows:

Instruction Description

1.<type> FRdest, mem Load value from memory location
memory into destination register.

s.<type> FRsrc, mem Store contents of source register
into memory location.

mov.<type> Frdest, FRsrc | (Copy the contents of source register
into the destination register.

In this case, the floating-point types are ".s" for single-precision and ".d" for double-
precision.

Assuming the following data declarations:

fnuml: .float 3.14
fnum?2: .float 0.0
dnuml: .double 6.28
dnum2 : .double 0.0

The ".float" directive declares a variable as a 32-bit floating-point value and the
".double" declares a variable as a 64-bit floating-point variable.

Page 43

Chapter 5.0 « Instruction Set Overview

To perform, the basic operations of:

fnum2 = fnuml
dnum2 = dnuml

The following instructions :

1l.s $f6, fnuml
s.s $£f6, fnum2
1.4 $£f6, dnuml

mov.d $£8, $£f6

s.d $£8, dnum2

fnum2 = fnuml

unnecessary use of mov
just as an example
dnum2 = dnuml

The two double-precision operations (1.d and mov.d) reference registers $f6 and $f8 but
use registers $f6/$f7 and $£8/$f9 to hold each of the two 64-bit values.

5.7.3 Integer / Floating-Point Register Data Movement

The arithmetic instructions require either floating-point registers or integer registers and
will not allow a combination. In order to move data between integer and floating-point
registers, special instructions are required. As noted in Chapter 2, MIPS Architecture
Overview, the floating-point operations are performed in a floating-point co-processor.

The general form of the integer and floating-point data movement instructions are as

follows:

Instruction

Description

mfcl Rdest, FRsrc

Copy the contents from co-
processor 1 (FPU) float register
FRsrc into Rdest integer register.

mfcl.d Rdest, FRsrc

Copy the contents from co-
processor 1 (FPU) float registers
FRsrc and FRsrc+1 into integer
registers Rdest and Rdest+1.

mtcl Rsrc, FRdest

Copy the contents from integer Rsrc
register to co-processor 1 (FPU)
float register FRdest.

Page 44

Chapter 5.0 » Instruction Set Overview

mtcl.d Rsrc, FRdest Copy the contents from integer
registers Rsrc and Rsrc+1 to co-
processor 1 (FPU) float registers
FRdest and FRdest+1.

Note, the above instructions use a 1 (number one) and not a lower-case letter L.

For example, assuming an integer value is in integer register $s0, to copy the value into
floating-point register $f12, the following instruction could be used.

mtcl $s0, $£f12

To copy the contents of $f12, into an integer register $t1, the following instruction could
be used.

mfcl $tl, $£12

The value copied has not been converted into a different representation.

In this example, the integer value in $s0 that was copied into $f12 is still represented as
an integer in two's complement. As such, the value in $f12 is not ready for any floating-
point arithmetic operations. The representation of the value must be converted (see next
section).

5.7.4 Integer / Floating-Point Conversion Instructions

When data is moved between integer and floating-point registers, the data representation
must be addressed. For example, when moving an integer value from an integer register
into a floating-point register, the data is still represented as an integer value in two's
complement. Floating-point operations require an appropriate floating-point
representation (32-bit or 64-bit). When data is moved between integer and floating-
point registers, a data conversion would typically be required.

The general format for the conversion instructions is as follows:

Instruction Description

cvt.d.s FRdest, FRsrc Convert the 32-bit floating-point value
in register FRsrc into a double
precision value and put it in register
FRdest.

Page 45

Chapter 5.0 « Instruction Set Overview

Instruction Description

cvt.d.w FRdest, FRsrc Convert the 32-bit integer in register
FRsrc into a double precision value and
put it in register FRdest.

cvt.s.d FRdest, FRsrc Convert the 64-bit floating-point value
in register FRsrc into a 32-bit floating-
point value and put it in register
FRdest.

cvt.s.w FRdest, FRsrc Convert the 32-bit integer in register
FRsrc into a 32-bit floating-point value
and put it in register FRdest.

cvt.w.d FRdest, FRsrc Convert the 64-bit floating-point value
in register FRsrc into a 32-bit integer
value and put it in register FRdest.

cvt.w.s FRdest, FRsrc Convert the 32-bit floating-point value
in register FRsrc into a 32-bit integer
value and put it in register FRdest.

Assuming the following data declarations:

iNum: .word 42
fNum: .float 0.0

To convert the integer value in variable iNum and place it as a 32-bit floating-point
value in variable fNum, the following instructions could be used:

1w $t0, iNum
mtcl $t0, S$f6
cvt.s.w $£8, S$f6
s.s $£8, f£Num

This code fragment loads the integer value in variable iNum into $t0, and then copies
the value into $f6. The integer value in $£6 is converted into a 32-bit floating-point
value and placed in $f8. The 32-bit floating-point value is then copied into the fNum
variable. The conversion instruction could have over-written the $£6 register.

Page 46

Chapter 5.0 » Instruction Set Overview

Assuming the following data declarations:
pPi: .double 3.14
intPi: .word 0

To convert the 64-bit floating-point value in variable pi and place it as a 32-bit integer
value in variable intPi, the following instructions could be used:

1.4 $£10, pi
cvt.w.d $£12, $£10
mfcl $tl, $f12
sw $tl, intPi

This code fragment initially loads the 64-bit floating-point value into $f10. The 64-bit
floating-point value in $f10 is converted into a 32-bit integer value and placed in $f12.
The integer value in $f12 is copied into $t1 and then copied into the variable intPi.
Since conversion from floating-point truncates, the final value in intPi is 3.

5.7.5 Floating-Point Arithmetic Operations

The arithmetic operations include addition, subtraction, multiplication, division,
remainder (remainder after division), logical AND, and logical OR.

The general format for these basic instructions is as follows:

Instruction Description

add.<type> FRdest, FRsrc, FRsrc FRdest = FRsrc + FRsrc
sub.<type> FRdest, FRsrc, FRsrc FRdest = FRsrc - FRsrc
mul .<type> FRdest, FRsrc, FRsrc FRdest = FRsrc * FRsrc
div.<type> FRdest, FRsrc, FRsrc FRdest = FRsrc / FRsrc

Assuming the following data declarations:

fnuml: .float 6.28318
fnum?2: .float 3.14159
fansl: .float 0.0
fans2: .float 0.0
dnuml: .double 42 .3
dnum?2 : .double 73.6

Page 47

Chapter 5.0 « Instruction Set Overview

dansl: .double 0.0
dans2: .double 0.0

To perform, the basic operations of:

fansl = fnuml + fnum2

fans2 fnuml * fnum2
dansl = dnuml - dnum2
dans2 = dnuml / dnum2

The following instructions:

1l.s $f4, fnuml

l.s $£6, fnum2

add.s $£f8, $f4, $f6

s.s $£8, fansl # fansl = fnuml + fnum2
mul.s $£10, $£f4, S$f6

s.s $£10, fans2 # fans2 = fnuml * fnum2
1.d $£f4, dnuml

l.d $£6, dnum2

sub.d $£f8, $f4, $f6

s.d $£8, dansl # dansl = dnuml - dnum2
div.d $£10, $£f4, S$f6

s.d $£10, dans2 # dans2 = dnuml / dnum2

For the double-precision instructions, the specified register and the next numerically
sequential register is used. For example, the L.d instruction sets the $f4 and $f5 32-bit
registers with the 64-bit value.

5.7.6 Example Programs

This section provides some example using the floating-point instructions to perform
some basic calculations.

Page 48

Chapter 5.0 » Instruction Set Overview

5.7.6.1 Example Program, Floating-Point Arithmetic

The following is an example program to compute the surface area
and volume of a sphere.

The formulas for the surface area and volume of a sphere are as
follows:

. . 2
surfaceArea = 4.0 * pi * radius

volume = 4(;% * radius®

This example main initializes the radius to an arbitrary floating-point value.

Example program to calculate the surface area
and volume of a sphere given the radius.
B m

Data Declarations

.data

pi: .float 3.14159
fourPtZero: .float 4.0
threePtZero: .float 3.0
radius: .float 17.25
surfaceArea: .float 0.0
volume: .float 0.0

B mm -
text/code section

.text

.globl main

.ent main

main:

Compute: (4.0*pi) which is used for both equations.

1l.s $£f2, fourPtZero

l.s $f4, pi

mul.s $£4, S$f2, $f£4 # 4.0 * pi
l.s $£6, radius # radius

Page 49

Chapter 5.0 « Instruction Set Overview

$ -
Calculate surface area of a sphere.
surfaceArea = 4.0 * pi * radius”2
mul.s $£f8, $f6, Sf6 # radius”*2
mul.s $£f8, $f4, S$f8 # 4.0*pi * radius”2
s.s $£f8, surfaceArea # store final answer
$ -
Calculate volume of a sphere.
volume = (4.0 * pi / 3.0) * radius”*3
l.s $£f8, threePtZero
div.s $f2, $f4, $f8 # (4.0 * pi / 3.0)
mul.s $£10, $f2, $f2
mul.s $£10, $£f10, S$f6 # radius*3
mul.s $£12, $f6, $£f10 # * 4.0*pi/3.0
s.s $£12, volume # store final answer
T
Done, terminate program.
1i $v0, 10 # terminate
syscall # system call
.end main

Refer to the system services section for information on displaying the final results to the
console.

5.7.6.2 Example Program, Integer / Floating-Point Conversion

The following is an example program to sum an array of integer values and compute the
average as a floating-point value. This requires conversion of 32-bit integer values into
32-bit floating-point values.

Page 50

Chapter 5.0 » Instruction Set Overview

Example program to sum an array of integers
and compute the float average.

oo
Data Declarations

.data

iArray: .word 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
length: .word 12

iSum: .word 0

fAve: .float 0.0
oo
Text/code section

.text

.globl main

.ent main

main:

T ——

Find the sum of the integer numbers.

la $t0, iArray # array starting addr
1w $tl, length # array length
1i $t2, 0 # set sum=0

sumLoop:
1w $t3, ($t0) # get iArray (n)
add $t2, $t2, $t3 # sum=sum+iArray (n)
addu $t0, $t0, 4 # update iArray addr
sub $tl, $t1, 1
bnez $tl, sumLoop
sSwW $t2, iSum # save integer sum
mtel $t2, $f6 # move to flt reg
cvt.s.w $f6, S$f6 # cvt to flt format
1w $tl, length
mtcl tl, Sf8 # move to float reg
cvt.s.w $£f8, S$f8 # cvt to float format

Page 51

Chapter 5.0 « Instruction Set Overview

div.s $£10, $f6, S$f8
s.s $£10, fAve

Done, terminate program.
1i $v0, 10

syscall
.end main

Page 52

sum / length

terminate
system call

6.0 Addressing Modes

This chapter provides basic information regarding addressing modes and the associated
address manipulations on the MIPS architecture. The addressing modes are the
supported methods for specifying the value or address of a data item being accessed
(read or written). This might include an actual value, the name of a variable, or the
location in an array.

Since the MIPS architecture, as simulated in the QtSpim simulator, is a 32-bit
architecture, all addresses are words (32-bits).

6.1 Direct Mode

Direct addressing mode is when the register or memory location contains the actual
values.

For example:

1w $t0, varl
1w $tl, var2

Registers and variables $t0, $t1, var1, and var2 are all accessed in direct mode
addressing.

6.2 Immediate Mode
Immediate addressing mode is when the actual value is one of the operands.

For example:
1i $t0, 57
add $t0, $t0, 57

The value 57 is immediate mode addressing. The register $t0 is direct mode addressing.

Page 53

Chapter 6.0 <« Addressing Modes

6.3 Indirection

The pair of parenthesis, ()'s, are used to denote an indirect memory access. An indirect
memory access means the CPU will read the provided address and then go to that
address to access the value located there. This involves more work for the CPU than the
previously presented addressing modes (direct and immediate). This is typically how
elements are accessed in a list or array. For example, to get a value from a list of longs:

la $t0, 1lst
1w $sl, ($t0)

The address, in $t0, is a word size (32-bits). Memory is byte addressable. As such, if
the data items in "Ist" (from above) are words, then four must be added to get the next
element.

For example, the instructions:

add $t0, $to, 4
1w $s2, ($t0)

will get the next word value in array (named Ist in this example).

A form of displacement addressing is allowed. For example, to get the second item
from a list of word sized values:

la $t0, 1lst
1w $sl, 4($t0)

The "4" is added to the address before the memory access. However, the register is not
changed. Thus, the location or address being accessed is displaced or temporarily
changed as needed.

6.3.1 Bounds Checking

In a high-level language, the compiler is capable of ensuring that the index for an
element in an array is legal and within the boundary of the array being accessed. Thus,
the compiler can issue an error message and help identify when and where a program is
trying to access beyond the end of an array (e.g., accessing the 110th element of a 100
element array).

This type of bounds checking is not available at the assembly-language level.

Page 54

Chapter 6.0 » Addressing Modes

If the assembly-language program attempts to access the 110" element of an array, the
value at that memory location will be returned with no error. Of course, the value
returned is not likely to be useful.

If the memory access attempting to be accessed is outside the general scope of the
program, an exception will be generated. An exception is a run-time error, and the
QtSpim simulator will provide the line where the exception occurred. For example,
attempting to access a memory location in the reserved section would not be allowed
and thus generate an exception. This could easily occur if the programmer uses a
register with a data item instead of a correct address.

Additionally, no error is generated when a program attempts to access a word (32-bits)
in an array of halfwords (16-bits). In this case two halfwords will be read into the
registers and treated as a single value. Of course, the value will not be correct or useful.

6.4 Examples

This section provides some example using the addressing modes to access arrays and
perform basic calculations.

6.4.1 Example Program, Sum and Average

The following example computes the sum and average for an array integer values. The
values are calculated and saved into memory variables.

Example to compute the sum and integer average
for an array of integer values.
B m -

Data Declarations

.data

array: .word i, 3, 5, 17, 9, 11, 13, 15, 17, 19
.word 21, 23, 25, 27, 29, 31, 33, 35, 37, 39
.word 41, 43, 45, 47, 49, 51, 53, 55, 57, 59

length: .word 30

sum: .word 0

average: .word 0

Page 55

Chapter 6.0 <€ Addressing Modes

Basic approach:

- loop through the array

access each value, update sum

- calculate the average

. text

.globl main

.ent main

main:

$ ————-

Loop through the array to calculate sum

la $t0, array # array starting address
1i $tl, O # loop index, i=0
1w $t2, length # length
1i $t3, 0 # initialize sum=0
sumLoop:
1w $td4, (5t0) # get array[i]
add $t3, $t3, S$t4 # sum = sum + array[i]
add $tl1, $t1, 1 #i=i+1
add $t0, $t0, 4 # update array address
blt $tl1, $t2, sumLoop # if i<length, continue
sSwW $t3, sum # save sum
$ -
Calculate average
note, sum and length set in section above.
div $t5, $t3, $t2 # ave = sum / length
sw $t5, average
$ -
Done, terminate program.
1i $v0, 10 # terminate
syscall # system call
.end main

Page 56

Chapter 6.0 » Addressing Modes

This example program does not display the results to the screen. For information
regarding displaying values and strings to output (console), refer to the QtSpim System
Services section.

6.4.2 Example Program, Median

The following example finds the median for a sorted array of values. In this example,
the length is given as always even. As such, the integer median is the integer average
for the two middle values. Specifically, the formula for median is:

(array|length/ 2] + array|length/2—1))
2

medianEvenOnly =

The 'length/2' notation refers to using division by two to generate the correct index of
the appropriate value from the array. In assembly, we must convert the index into the
offset from the base address (i.e., starting address) of the array. Since the array elements
in this example are words (i.e., 4 bytes), it will be necessary to multiply by four to
convert the index into an offset. That offset is from the start of the array, so the final
address is the array base address plus the offset.

This requires a series of calculations as demonstrated in the following example.

Example to find the median of a sorted
array of integer values of even length.
g

Data Declarations

.data

array: .word i, 3, 5, 7, 9, 11, 13, 15, 17, 19
.word 21, 23, 25, 27, 29, 31, 33, 35, 37, 39
.word 41, 43, 45, 47, 49, 51, 53, 55, 57, 59

length: .word 30

median: .word 0

#
text/code section

The median for an even length array is defined as:

median = (array[len/2] + array[len/2-1]) / 2

Note, the len/2 is the index. Must convert the index
into the an offset from the base address (of the

array. Since the data is words (4 bytes), multiply

Page 57

Chapter 6.0 <€ Addressing Modes

the index by four to convert to the offset.

.text

.globl main

.ent main

main:
la $t0, array # starting addr of array
1w $tl, length # value of length
div $t2, $tl1, 2 # length / 2
mul $t3, $t2, 4 # cvt index into offset
add $t4, $t0, $t3 # add base addr of array
1w $t5, ($t4) # get array[len/2]
sub $t4, $t4, 4 # addr of prev value
1w $t6, ($t4) # get array[len/2-1]
add $t7, $t6, $t5 # a[len/2] + a[len/2-1]
div $t8, $t7, 2 # /2
sSwW $t8, median # save median

N

Done, terminate program.
1i $v0, 10 # terminate
syscall # system call

.end main

This example program does not display the results to the screen. For information
regarding displaying values and strings to output (console), refer to the QtSpim System
Services section.

Finding the median for an odd length list is left to the reader as an exercise.

Page 58

7.0 Stack

In a computer, a stack is a type of data structure where items are added and then
removed from the stack in reverse order. That is, the most recently added item is the
very first one that is removed. This is often referred to as Last-In, First-Out (LIFO).

A stack is heavily used in programming for the storage of information during procedure
or function calls. The following chapter provides information and examples regarding
procedure and function calls.

Adding an item to a stack is referred to as a push or push operation. Removing an item
from a stack is referred to as a pop or pop operation.

It is generally expected that the reader will be familiar with the general concept of a
stack.

7.1 Stack Example

To demonstrate the usage of the stack, given an array, a = {7, 19, 37}, consider
the operations:

push a[0]
push a[l]
push a[2]

Followed by the operations:

pop a[0]
pop a[l]
pop a[2]

The initial push will push the 7, followed by the 19, and finally the 37. Since the stack
is last-in, first-out, the first item popped off the stack will be the last item pushed, or 37
in this example. The 37 is placed in the first element of the array (over-writing the 7).
As this continues, the order of the array elements is reversed.

Page 59

Chapter 7.0 « Stack

The following diagram shows the progress and the results.

stack stack stack stack stack stack
37
19 19 19
7 7 7 7 7 empty
push push push Pop Pop Popr
al[0] a[l] al[2] a[o0] a[l] al[2]
a= {7, a= {7, a= {7, a= a= a=
19, 37} 19, 37} 19, 37} {37, {37, {37,
19, 37} 19, 37} 19, 7}

The following sections provide more detail regarding the implementation and applicable
instructions.

7.2 Stack Implementation

The current top of the stack is pointed to by the $sp register. The stack grows
downward in memory and it is generally expected that all items pushed and/or popped
should be of word size (32-bit).

There is no push or pop instruction. Instead, you must perform the push and pop
operations manually.

While it is possible to push/pop items of various sizes (byte, halfword, etc.) it is not
recommended. For such operations, it is recommended to use the entire word (4-bytes).

7.3 Push

For example, a push would subtract the $sp by 4 bytes and then copy the operand to that
location (in that order). The instructions to push $t9 would be implemented as follows:

subu $sp, $sp, 4
sw $t9, ($sp)

Which will place the contents of the $t9 register at the top of the stack.

Page 60

Chapter 7.0 » Stack

7.4 Pop

A pop would copy the top of the stack to the operand and then add 4 bytes (in that
order). To pop the stack into $t2, the instructions would be as follows:

1w $t2, (Ssp)
addu $sp, $sp, 4

Which will copy the contents of the top of the stack into the $t2 register.

7.5 Multiple push's/pop's

The preferred method of performing multiple pushes or pops is to perform the $sp
adjustment only once. For example, to push registers, $s0, $s1, and $s2:

subu $sp, $sp, 12
sw $s0, (Ssp)
sw $s1, 4(S$sp)
sw $s2, 8(S$sp)

And, the commands to pop registers, $s0, $s1, and $s2 as follows:

1w $s0, (Ssp)
1w $s1l, 4($sp)
1w $s2, 8(S$sp)
addu $sp, $sp, 12

By performing the stack adjustment only once, it is more efficient for the architecture to
execute.

7.6 Example Program, Stack Usage

The following example uses a stack to reverse the elements in an array. The program
will push all elements of the array to the stack and then pop all elements back into the
array. This will place the elements back into the array in reverse order based on the
basic functionality of the stack.

Example to reverse values in an array
by using the stack.
ey

Data Declarations

Page 61

Chapter 7.0 « Stack

7, 9, 11, 13, 15, 17, 19

21, 23, 25, 27, 29, 31, 33, 35, 37, 39

1, 3, 5,
41, 43, 45,
30

47, 49, 51, 53, 55, 57, 59

- loop to push each element onto the stack
- loop to pop each element off the stack
Final result is all elements reversed.

Loop to read items from array and push to stack.

array

0
length

($t0)

$sp, 4
($sp)

$tl, 1
$to, 4

.data
array: .word
.word
.word

length .word

#

Text/code section

Basic approach:

#

#

#

.text

.globl main

.ent main

main:

$ ————-
la $to,
1i $tl,
1w $t2,

pushLoop:
1w $t4,
subu $sp,
3% $t4,
add $t1,
add $to0,
blt $t1,

Loop to pop items from stack

Page 62

la
1i

$t0,
$t1,

$t2, pushLoop

array
0

3 3

#
#

array starting address
loop index, i=0

length

get array[i]

push arrayl[i]

i=i+1

update array address

if i<length, continue

and write into array.

array starting address
loop index, i=0

1w $t2, length
popLoop:

1w $t4, (Ssp)

addu $sp, $sp, 4

sw $td, ($t0)

add $tl1, $t1, 1

add $t0, $to0o, 4

blt $tl1, $t2, popLoop
F ———
Done, terminate program.

1i $v0, 10

syscall
.end main

H HH H F*

Chapter 7.0 » Stack

length (redundant line)

pop array[i]
set array[i]

i=i+1
update array address

if i<length, continue

terminate
system call

It must be noted that there are easier ways to reverse a set of numbers, but they would
not help demonstrate stack operations.

Page 63

Chapter 7.0 « Stack

Page 64

8.0 Procedures/Functions

This chapter provides an overview of using assembly language procedures/functions. In
C/C++ a procedure is referred to as a void function. Other languages refer to such
functions as procedures. A function returns a single value in a more mathematical
sense. C/C++ refers to functions as value returning functions.

With regard to calling a procedure/function, there are two primary activities; linkage and
argument transmission. Each is explained in the following sections. Additionally, using
procedures/functions in MIPS assembly language requires the use of a series of special
purpose registers. These special purpose registers are part of the basic integer register
set but have a dedicated purpose based upon standardized and conventional usage.

8.1 MIPS Calling Conventions

When writing MIPS assembly-language procedures, the MIPS standard calling
conventions should be utilized. This ensures that the code can be more effectively re-
used, can interact with other compiler-generated code or mixed-language programs, and
utilize high-level language libraries.

The calling conventions address register usage, argument passing and register
preservation.

There are two categories of procedures as follows:

* Non-leaf procedures
o These procedures call other procedures.
* Leaf procedures
o These procedures do not call other procedures (or themselves).

The standard calling convention specifies actions for the caller (routine that is calling)

and the callee (routine that is being called). The specific requirements for each are
detailed in the following sections.

Page 65

Chapter 8.0 « Procedures/Functions

8.2 Procedure/Function Format

The basic format for a procedure/function declaration uses a global declaration directive
(".globl <procName>"), an entry point directive (".ent <procName>"), and an entry label
for the procedure. Generally, a procedure declaration is terminated with an end
directive (".end <procName>"). The general syntax is as follows:

.globl functionName
.ent functionName
functionName:

code goes here

.end functionName

The use of the ".end <functionName>" directive is optional in the QtSpim simulator.

8.3 Caller Conventions

The calling convention addresses specific requirements for the caller or routine that is
calling a procedure.

* The calling procedures are expected to save any non-preserved registers ($a0 -
$a3, $t0 - $t9, $v0, $v1, $f0 - $f10 and $£16 - $£18) that are required after the
call is completed.

* The calling procedure should pass all arguments.

o The first argument is passed in either $a0 or $f12 ($a0 if integer or $f12 if
float single or double precision).
© The second argument is passed in either $al or $f14 ($a1l if integer or $f14 if
float single or double precision).

The third argument is passed in $a2 (integer only).

If the third argument is float, it must be passed on the stack.

The fourth argument is passed in $a3 (integer only).

If the fourth argument is float, it must be passed on the stack.

O O O O

Remaining arguments are passed on the stack. Arguments on the stack should be placed
on the stack in reverse order. Call-by-reference arguments load address (la instruction)
and call-by-value load the value.

Calling procedure should use the "jal <proc>" instruction.

Page 66

Chapter 8.0 » Procedures/Functions

Upon completion of the procedure, the caller procedure must restore any saved non-
preserved registers and adjust the stack point ($sp) as necessary if any arguments were
passed on the stack.

Note, for floating-point arguments appearing in registers you must allocate a pair of
registers (even if it's a single precision argument) that start with an even register.

8.4 Linkage

The term linkage refers to the basic process of getting to a procedure and getting back to
the correct location in the calling routine. This does not include argument transmission,
which is addressed in the next section.

The basic linkage operation use the jal and jr instructions. Both instructions utilize the
$ra register. This register is set to the return address as part of the procedure call.

The call to a procedure/function requires the procedure/function name, generically
labeled as <procName>, as follows:

jal <procName>

The jal, or jump and link, instruction, will copy the $pc into the $ra register and jump
to the procedure <procName>. Recall that the $pc register points to the next instruction
to be executed. That will be the instruction immediately after the call, which is the
correct place to return to when the procedure/function has completed.

If the procedure/function does not call any other procedures/functions, nothing
additional is required with regard to the $ra register.

A procedure that does not call another procedure is referred to as a "leaf procedure". A
procedure that calls another procedure is referred to as a "non-leaf procedure".

The return from procedure is as follows:

jr $Sra

If the procedure/function calls yet another procedure/function, the $ra must be
preserved. Since $ra contains the return address, it will be changed when the
procedure/function calls the next procedure/function. As such, it must be saved and
restored from the stack in the calling procedure. This is typically performed only once
at the beginning and then at the end of the procedure (for non-leaf procedures).

Refer to the example programs for a more detailed series of examples that demonstrate
the linkage.

Page 67

Chapter 8.0 « Procedures/Functions

8.5 Argument Transmission

Based on the context, parameters may be transmitted to procedures/functions as either
values or addresses. These basic approaches are implemented in high-level languages.

The basic argument transmission is accomplished via a combination of registers and the
stack.

8.5.1 Call-by-Value

Call-by-value involves passing a copy of the information being passed to the procedure
or function. As such, the original value can not be altered.

8.5.2 Call-by-Reference

Call-by-reference involves passing the address of the variables. Call-by-reference is
used when passing arrays or when passing variables that will be altered or set by the
procedure or function.

8.5.3 Argument Transmission Conventions

The basic argument transmission is accomplished via a combination of registers and the
stack.

Integer arguments can be passed in registers $a0, $al, $a2, and $a3 and floating-point
values passed in $f12 and $£14 (single or double precision floating-point).

* The first argument is passed in either $a0 or $f12 ($a0 if integer or $£12 if float
single or double precision).

* The second argument is passed in either $al or $f14 ($al if integer or $f14 if
float single or double precision).

* The third argument is passed in $a2 (integer only).

» If the third argument is float, it must be passed on the stack.

* The fourth argument is passed in $a3 (integer only).

» If the fourth argument is float, it must be passed on the stack.

If the first argument is integer, $a0 is used and $f12 should not be used at all. If the first
argument is floating-point value, $f12 is used and $a0 is not used at all. Any additional
arguments are passed on the stack.

Page 68

Chapter 8.0 » Procedures/Functions

The following table shows the argument order and register allocation.

1st 2nd 3rd 4th Sth Nth

integer $al $al $a2 $a3 | stack | stack
or or or or
floating- $f12 | $f14 | stack | stack | stack | stack

point value

Recall that addresses are integers, even when pointing to floating-point values. As such,
addresses are passed in integer registers.

8.6 Function Results

A function is expected to return a result (i.e., value returning function).

Integer registers $v0 or $v1/$v0 are used to return an integer value from a
function/procedure call. Floating-point registers $f0 and $f1 are used to return a
floating-point value from a function/procedure.

8.7 Registers Preservation Conventions

The MIPS calling convention requires that only specific registers (not all) be saved
across procedure calls.

* Integer registers $s0 - $s7 must be saved by the procedure.
* Floating-point registers $£20 - $£30 must be saved by the procedure.

When writing a procedure, this will require that the registers $s0 - $s7 or $£20 - $f30
(single or double precision) be pushed and popped from the stack if those registers are
utilized/changed. When calling a procedure, the main routine must be written so that
any values required across procedure calls be placed in register $s0 - $s7 or $£20 - $£30
(single or double precision).

Integer registers $t0 - $t9 and floating-point registers $f4 - $£f10 and $f16 - $f18 (single
or double precision) are used to hold temporary quantities that do not need to be
preserved across procedure calls.

Page 69

Chapter 8.0 « Procedures/Functions

8.8 Miscellaneous Register Usage

Registers $at, $k0, and $k1 are reserved for the assembler and operating system and
should not be used by programs. Register $fp is used to point to the procedure call
frame on the stack. This can be used when arguments are passed on the stack.

Register $gp is used as a global point (to point to globally accessible data areas). This
register is not typically used when writing assembly programs directly.

8.9 Summary, Callee Conventions

The calling convention addresses specific requirements for the callee or routine that is
being called from another procedure (which includes the main routine).

* Push any altered "saved" registers on the stack.
o Specifically, this includes $s0 - $s7, $£20 - $£30, $ra, $fp, or $gp.
o If the procedure is a non-leaf procedure, $ra must be saved.
o If $fp is altered, $fp must be saved which is required when arguments are
passed on the stack
o Space for local variables should be created on the stack for stack dynamic
local variables.
* Note, when altering the $sp register, it should be done in a single operation
(instead of a series).
» If arguments are passed on the stack, $fp should be set as follows:
o $fp = $sp + (frame size)
o This will set $fp pointing to the first argument passed on the stack.

The procedure can access first 4 integer arguments in registers $a0 - $a3 and the first
two float registers $f12 - $f14.

Arguments passed on the stack can be accessed using $fp. The procedure should place
returned values (if any) into $v0 and $v1.

* Restore saved registers
o Includes $s0 - $s7, $fp, $ra, $gp if they were pushed.
o Return to the calling procedure via the jr $ra instruction.

The procedures example section provides a series of example procedures and functions
including register usage and argument transmission.

Page 70

Chapter 8.0 » Procedures/Functions

8.10 Call Frame

The procedure/function call frame or activation record is what the information placed on
the stack is called. As noted in the previous sections, the procedure call frame includes
passed parameters (if any) and the preserved registers. In addition, space for the
procedures’ local variables (if any) is allocated on the stack.

A general overview of the call frame is shown as follows:

Call Arguments
Frame
Preserved
Registers
Local
Variables

Each part of the call frame may be a different size based on how many arguments are
passed (if any), which registers must be preserved (if any), or the amount and size of the
local variables (if any).

8.10.1.1 Stack Dynamic Local Variables

The local variables, also referred to as stack dynamic local variables, are typically
allocated by the compiler and assigned to stack locations. This allows a more efficient
use of memory for high-level languages. This can be very important in large programs.

For example, assume there are 10 procedures each with a locally declared 100,000
element array of integers. Since each integer typically requires 4-bytes, this would
mean 400,000 bytes for each procedure with a combined total of 4,000,000 bytes (or
about ~4MB) for all ten procedures.

For the standard method of stack dynamic local variables, each array is only allocated
when the procedure is active (i.e., being executed). If none of the procedures/functions
are called, no memory is allocated. If only two of the arrays are active at any given
time, only 800,000 bytes are allocated at any given time.

Page 71

Chapter 8.0 « Procedures/Functions

However, if the arrays were to be declared statically (i.e., not the standard local
declaration in the previous examples), the ~4MB of memory is allocated even if none of
the procedures are ever called. This can lead to excessive memory usage which can
slow a program down.

8.11 Procedure Examples

This section presents a series of example procedures of varying complexity.

8.11.1 Example Program, Power Function

This section presents a very simple example of a function call. The example includes a
simple main procedure and a simple function that computes x” (i.e., x to the y power).
The high-level language call, shown in C/C++ here, would be:

answer = power(x, y);

Where x and y are passed by value and the result is returned to the variable answer. The
main passes the arguments by value and receives the result in $v0 (as per the
convention). The main then saves the result into the variable answer.

Example function to demonstrate calling conventions
Function computes power (i.e., x to y power).

e
Data Declarations

.data

X: .word 3

y: .word 5

answer: .word 0
-

Main routine.
Call simple procedure to add two numbers.

.text
.globl main
.ent main
main:

Page 72

Chapter 8.0 » Procedures/Functions

pass arg's to function

terminate

Function to find and return x"y

$a0
1

1w $a0, x
1w $al, y
jal power
sw $v0, answer
1i $vo, 10
syscall
.end main
$ ————-
Arguments
$a0 - x
$al - y
Returns
$v0 - x*y
.globl power
.ent power
power:
1i $vo, 1
1i $t0, O
powLoop:
mul $v0, $vO,
add $t0, $tO,
blt

jr

.end power

$t0, $al, powLoop

Sra

Refer to the next section for a more complex example.

8.11.2

Example program, Summation Function

The following is an example program to demonstrate a procedure call.

Example function to demonstrate calling conventions.
Simple function to sum six arguments.

 ————

Data Declarations

Page 73

Chapter 8.0 « Procedures/Functions

.data

numl : .word 3
num?2 : .word 5
num3: .word 3
num4 : .word 5
num5: .word 3
numé6 : .word 5
sum: .word 0

#
Main routine.

Call function to add six numbers.

First 4 arguments are passed in $a0-$a3.
Next 2 arguments are passed on the stack.

.text
.globl main
.ent main
main:
1w $a0, numl # pass arg's
1w $al, num2
1w $a2, num3
1w $a3, num4
1w $t0, numb
lw $tl, numé
subu $sp, $sp, 8
sw $t0, ($sp)
sw $tl, 4($sp)
jal addem
sw $v0, sum
addu $sp, $sp, 8 # clear stack
1i $v0,10
syscall # terminate

.end main

S
Example function to add 6 numbers

Arguments

$a0 - numl

Page 74

Chapter 8.0 » Procedures/Functions

$al - num2
$a2 - num3
$a3 - num4
($fp) - numb5
4 ($fp) - numé
Returns
$v0 — numl+num2+num3+numd4+num5+numé
.globl addem
.ent addem
addem:
subu $sp, $sp, 4 # preserve registers
sw $fp, (Ssp)
addu $fp, $sp, 4 # set frame pointer
$ -
Perform additions.
1i $v0, O
add $v0, $v0, $al # numl
add $v0, $v0, $al # num2
add $v0, $v0, $a2 # num3
add $v0, $v0, $a3 # numd
add $v0, $v0, $t0
1w $t0, 4($£fp) # numé
add $v0, $v0, $t0
N
Restore registers.
1w $fp, (Ssp)
addu $sp, $sp, 4
jr S$ra

.end addem

Refer to the next section for a more complex example.

Page 75

Chapter 8.0 « Procedures/Functions

8.11.3 Example Program, Pythagorean Theorem Procedure

The following is an example of a procedure that calls another function.
Given the a and b sides of a right triangle, the c side can be computed
as follows:

cSide = + aSide® + bSide’

This example program will call a procedure to compute the ¢ sidesofa +
series of right triangles. The a sides and b sides are stored in an a
arrays, aSides[] and bSides[] and results stored into an array, cSides[]. The procedure
will also compute the minimum, maximum, sum, and average of the cSides[] values.
All values are integers. In order to compute the integer square root, a iSqrt() function is
used. The iSqrt() function uses a simplified version of Newton’s method.

Example program to calculate the cSide for each

right triangle in a series of right triangles

given the aSides and bSides using the

Pythagorean theorem.

Pythagorean theorem:

cSide = sqrt (aSide”2 + bSide”*2)

Provides examples of MIPS procedure calling.

B o m e -

Data Declarations

.data

aSides: .word 19, 17, 15, 13, 11, 19, 17, 15, 13, 11
.word 12, 14, 16, 18, 10

bSides: .word 34, 32, 31, 35, 34, 33, 32, 37, 38, 39
.word 32, 30, 36, 38, 30

cSides: .space 60

length: .word 15

min: .word 0

max: .word 0

sum: .word 0

ave: .word 0

Page 76

text/code section
.text

.globl main

.ent main
main:

$ ————-

Chapter 8.0 » Procedures/Functions

Main program calls the cSidesStats routine.
The HLL call is as follows:

cSidesStats (aSides, bSides,
max,

aSides
bSides
cSides
length

min
max
sum
ave

$sp, 16
($sp)

4 ($sp)
8 (Ssp)
12 ($sp)

jal cSidesStats

$sp, 16

sum, ave)

The arrays are passed by reference
The length is passed by value
The min, max, sum, and ave are pass by reference.

H = H = H

Done, terminate program.

#

#

Note:

#

#

#
la $a0,
la $al,
la $a2,
1w $a3,
la $to,
la $tl,
la $t2,
la $t3,
subu $sp,
sSwW $tO0,
sSwW $tl,
sw $t2,
sw $t3,
addu $sp,

$ -
1i $vo,
syscall

.end main

10

cSides, length, min,

address of array
address of array
address of array
value of length

address for min
address for max

address for sum
address for ave

push addresses

call routine
clear arguments

terminate
system call

Page 77

Chapter 8.0 « Procedures/Functions

HH = H I 3H* I HH = H I

HH = H W 3= 3 3 33

Function to calculate the cSides[] for each right
triangle in a series of right triangles given the
aSides[] and bSides[] using the Pythagorean theorem.

Pythagorean theorem formula:
cSides[n] = sqrt (aSides[n]”2 + bSides[n]”*2)

Also finds and returns the minimum, maximum, sum,
and average for the cSides.

Uses the iSqrt() routine to find the integer
square root of an integer.

Arguments:
$a0 - address of aSides]|]
$al - address of bSides|[]
$a2 - address of cSides|[]
$a3 - list length
($fp) - addr of min
4 ($fp) - addr of max
8($fp) - addr of sum
12 ($fp) - addr of ave

Returns (via passed addresses):
cSides|]
min
max
sum
ave

.globl cSidesStats
.ent cSidesStats
cSidesStats:

Page 78

subu $sp, $sp, 32 # preserve registers

sw $s0, 0($sp)
sw $sl, 4(S$sp)
sw $s2, 8(S$sp)
sw $s3, 12($sp)
sw $s4, 16($sp)
sw $s5, 20($sp)
sw $fp, 24 ($sp)

cSidesLoop:

1w
mul
1w
mul
add

jal
swW

addu
addu
addu
addu

statsLoop:

1w

$ra,

$fp,

calculate cSides][]

28 ($sp)

$sp, 32

#

Chapter 8.0 » Procedures/Functions

set frame pointer

must use $s<n> registers due to iSqrt() call

$s0,
$sl,
$s2,
$s3,
$s4,
$s5,

$to,
$tol
$t11
$t11
$ao0,

isqgrt

$vo,

$s0,
$sl,
$s2,
$s3,

$s3,

find minimum, maximum,

$s2,
$to,
$tl,
$t2,
$t3,

$t4,

$a0
$Sal
$a2
0

$a3
Sa2

($s0)
$t0, $t0
($s1)
$tl, Stl
$t0, s$tl

($s2)

$s0,
$s1,
$s2,
$s3,

Lol

$s4, cSidesloop

$s5
0
($s2)
($s2)
0

($s2)

HH = H H I HHHH

3= HH = H H+ 3

H = H

address of aSides
address of bSides
address of cSides
index = 0

list length

2nd copy of cSides

get aSides|[n]
aSides[n]*2
get bSides[n]
bSides[n]*2

call iSqrt()
save to cSides|[n]

update aSides addr
update bSides addr
update cSides addr
index++

if indx<len, loop

and sum.

strt addr of cSides
index = 0

min cSides|[0]

max cSides|[0]

sum 0

get cSides|[n]

Page 79

Chapter 8.0 « Procedures/Functions

notNewMin:

notNewMax:

Page 80

bge

move

ble

move

add

addu
addu

blt

1w
sSwW

1w
sw

1w
3%

div

$t4,

S$t1,

$t4,

$t2,

$t3,

$s2,
$to,

$t0,

$t5,
$t1,

$t5,
$t2,

$t5,
$t3,

$t0,

$t5,
$t0,

$s0,
$s1,
$s2,
$s3,
$s4,
$s5,
$fp,
$ra,

$tl, notNewMin

$ta

$t2, notNewMax

S$t4

$t3, $t4
$s2, 4
$t0, 1

$s4, statsLoop

($£p)
($t5)

4 ($fp)
($t5)

8 ($fp)
($t5)

$t3, $s4

12 ($£p)
($t5)

0($sp)
4 ($sp)
8 (Ssp)
12 ($sp)
16 ($sp)
20 ($sp)
24 ($sp)
28 ($sp)

HH I =

3H* = H*

H* = ** H* 3 H* = H* I 3= H* = **

if cSides|[n]
>= item -> skip
set new min value

if cSides|[n]
<= item -> skip
set new max value

sum += cSides|[n]

update cSides addr
index++

if indx < len, loop

get address of min
save min

get address of max
save max

get address of sum
save sum

ave = sum / len

get address of ave
save ave

restore registers and return to calling routine.

Chapter 8.0 » Procedures/Functions

addu $sp, $sp, 32
jr $ra
.end cSidesStats

Function to compute integer square root for
an integer value.

#
#
#
Uses a simplified version of Newtons method.
#
#
#
#

x =N
iterate 20 times:
x' = (x + N/x) / 2
x = x'
$ ————-
Arguments
$a0 - N
Returns
$v0 - integer square root of N
.globl isqgrt
.ent isqgrt
isqrt:
move $v0, $al # Sv0 = x =N
1i $t0, O # counter
sqgrLoop:
div $tl, $a0, $vO # N/x
add $v0, $tl, $vO # x + N/x
div $v0, $v0, 2 # (x + N/x)/2

add $t0, $t0, 1
blt $t0, 20, sqgrLoop

jr $ra
.end iSqrt

This example uses a simplified version of Newton's method. Further improvements are
left to the reader as an exercise.

Page 81

Chapter 8.0 « Procedures/Functions

Page 82

9.0 QtSpim System Service Calls

The operating system must provide some basic services for functions that a user
program can not easily perform on its own. Some key examples include input and
output operations. These functions are typically referred to as system services. The
QtSpim simulator provides a series of operating system like services by using a syscall
instruction.

To request a specific service from the QtSpim simulator, the 'call code' is loaded in the
$v0 register. Based on the specific system service being requested, additional
information may be needed which is loaded in the argument registers (as noted in the
Procedures/Functions section).

9.1 Supported QtSpim System Services

A list of the supported system services is listed in the below table. A series of examples
are provided in the following sections.

Service Name Call | Input Output
Code

Print Integer (32-bit) | 1 |$a0 : integer to be printed

Print Float (32-bit) 2 | $f12 : 32-bit floating-point
value to be printed

Print Double (64-bit)| 3 | $f12 : 64-bit floating-point
value to be printed

Print String 4 | $%a0 : starting address of
NULL terminated string to be
printed
Read Integer (32-bit)| 5 $v0 : 32-bit integer entered
by user
Read Float (32-bit) 6 $£0 : 32-bit floating-point

value entered by user

Page 83

Chapter 9.0 <« QtSpim System Service Calls

Read Double (64- 7 $£0 : 64-bit floating-point
bit) value entered by user
Read String 8 |$a0 : starting address of

buffer (of where to store
character entered by user)
$al : length of buffer

Allocate Memory 9 | $a0 : number of bytes to $v0 : starting address of
allocate allocated memory

Terminate 10

Print Character 11 |$a0 : character to be printed

Read Character 12 $v0 : character entered by

user

File Open 13 | $a0 : file name string, NULL |$v0 : file descriptor

terminated

$al : access flags
$a2 : file mode, (UNIX style)

File Read 14 | $a0 : file descriptor $v0 : number of bytes
$al : buffer starting address | actually read from file (-1
$a2 : number of bytes to read |= error, 0 = end of file)

File Write 15 |$a0 : file descriptor $v0 : number of bytes
$al : buffer starting address | actually written to file (-1
$a2 : number of bytes to read | = error, 0 = end of file)

File Close 16 | $a0 : file descriptor

The file open access flags are defined as follows:

Read = 0x0, Write = 0xl1l, Read/Write = 0x2
OR Create = 0x100, Truncate = 0x200, Append = 0x8
OR Text = 0x4000, Binary = 0x8000

For example, for a file read operation, the 0x0 would be selected. For a file write
operation, the 0x1 would be selected.

9.2 QtSpim System Services Examples

This section provides a series of examples using system service calls.

Page 84

Chapter 9.0 » QtSpim System Service Calls

The system service calls follow the standard calling convention in that the temporary
registers ($t0 - $t9) may be altered and the saved registers ($s0 - $s7, $fp, $ra) will be
preserved. As such, if a series of values is being printed in a loop, a saved register
would be required for the loop counter and the current array address/index.

9.2.1 Example Program, Display String and Integer

The following code provides an example of how to display a string and an integer.

Example program to display a string and an integer.
Demonstrates use of QtSpim system service calls.
B m

Data Declarations

.data
hdr: .ascii "Example\n"
.asciiz "The meaning of life is: "
number: .word 42
B m -
text/code section
.text
.globl main
.ent main
main:

la $a0, hdr # addr of NULL
terminated string
1i $vo, 4 # call code, print string
syscall # system call
1i $vo, 1 # call code, print int
1w $a0, number # value for int to print
syscall # system call
$ -
Done, terminate program.
1i $v0, 10 # terminate
syscall # system call
.end main

Page 85

Chapter 9.0 <« QtSpim System Service Calls

Note, in this example, the string definition ensures the NULL termination as required by
the system service.

The output for the example would be displayed to the QtSpim console window. For
example:

Console

Example
The meaning of life is: 42

The console window can be displayed or hidden from the Windows menu (on the top
bar).

9.2.2 Example Program, Display Array

This section provides an example of how to display an array. In this example, an array
of numbers is displayed to the screen with five numbers per line (arbitrarily chosen) to
make the output appear more pleasing.

Since the system service call is utilized for the print function, the saved register must be
used. Refer to the Procedures/Functions section for additional information regarding the
MIPS calling conventions.

Example program to display an array.
Demonstrates use of QtSpim system service calls.

Data Declarations

.data
hdr: .ascii "Array Values\n"
.asciiz N e - \n\n"
spaces: .asciiz " "
newLine: .asciiz "\n"
array: .word 11, 13, 15, 17, 19
.word 21, 23, 25, 27, 29
.word 31, 33, 35, 37, 39
.word 41, 43, 45, 47
length: .word 19

Page 86

Chapter 9.0 » QtSpim System Service Calls

4
hdr
array

length

($s0)

4
spaces

$s0, 4
$s1, 1

$sl, 5
skipNewLine

4
newLine

$s2, printLoop

terminate program.

10

text/code section
.text
.globl main
.ent main
main:
1i $vo,
la $ao0,
syscall
la $s0,
1i $sl,
1w $s2,
printLoop:
1i $vo,
1w $ao,
syscall
1i $vo,
la $ao,
syscall
addu $s0,
add $s1,
rem $tO0,
bnez $tO0,
1i $vo,
la $ao0,
syscall
skipNewLine:
bne $sl,
$ ————-
Done,
1i $vo,
syscall
.end main

print header string

call code for print int
get array[i]
system call

print spaces

update addr (next word)

increment counter

print new line

if cnter<len -> loop

terminate
system call

Page 87

Chapter 9.0 <« QtSpim System Service Calls

The output for the example would be displayed to the QtSpim console window.

For example:

Console

Array Values

This example program does not align the values (when printed). The values only appear
aligned since they all have the same number of digits.

9.2.3 Example Program, Read Integer

This section provides an example of how to display a prompt string, read an integer
value, square that integer value, and display the final result.

It must be noted that the QtSpim read integer system service is fairly basic and does not
perform error checking or handle backspace/delete. As such, the number must be
entered correctly by the user. If invalid numbers, such as (al2 or 12q34) are entered, the
input will be mis-interpreted resulting in unexpected or invalid values.

If desired, the numeric input can be read as a string and converted into an integer with
the appropriate error handling. This is left to the user as an exercise.

Example program to display an array.
Demonstrates use of QtSpim system service calls.

ey
Data Declarations
.data
hdr: .ascii "Squaring Example\n"
.asciiz "Enter Value: "
ansMsg: .asciiz "Value Squared: "
value: .word 0
ey

text/code section

Page 88

Chapter 9.0 » QtSpim System Service Calls

.text

.globl main

.ent main

main:
1i $vo, 4
la $a0, hdr
syscall
1i $v0, 5
syscall
mul $t0, $vO0, $vO
sSwW $t0, value
1i $vo, 4
la $a0, ansMsg
syscall
1i $vo, 1
lw $a0, value
syscall

Done, terminate program.
1i $v0, 10
syscall

.end main

H = H* HH H *H* 3 3H 3= *H* = HF

call code for print string
addr of NULL terminated str
system call

call code for read integer
system call (result in $vO0)

square answer
save to variable

call code for print string
addr of NULL terminated str
system call

call code for print integer

value for integer to print
system call

terminate
system call

Page 89

Chapter 9.0 <« QtSpim System Service Calls

The output for the example would be displayed to the QtSpim console window. For
example:

Console

Squaring Example
Enter Value: 12
Value Squared: 144

The console window must be selected in order to enter input. Note, the default console
window size will typically be larger than what is shown above.

9.2.4 Example Program, Read String

This section provides an example of how to display a prompt string and read a string of
characters. As previously noted, at the assembly level, strings are a series of
contiguously defined byte-sized characters, typically terminated with a NULL byte
(0x00).

In order to read a string, some space for where to place the characters read must be
created. The QtSpim system service for read string will always terminate the string with
a NULL byte which must be accommodated for in the space allocated.

In this example, a variable, userAns, was defined with fifty-two (52) bytes of space.
This allows up to fifty (50) characters, a line feed (0x0A), and the NULL termination. It
should be noted that if fifty-one (51) or more characters are entered, the input will be
automatically terminated, without the user pressing enter, and the NULL added to the
string (without the LF). This can very awkward when users are entering input, so input
string sizes should be chosen carefully.

When the QtSpim system service is called, the string address (in $a0) and length (in
$al) must be provided. It is important that the correct length be provided as an error
could result in memory, and thus other variables, being over-written. Such problems
can be very difficult to find as the symptom will typically be in a different location than
the actual problem.

Example program to demonstrate string input
ey

Data Declarations

Page 90

Chapter 9.0 » QtSpim System Service Calls

.data
hdr: .ascii "Reading Characters Example\n\n"
.asciiz "Enter Your Name: "

hiMsg: .asciiz "\nHello, "

userAns: . space 50

B e

text/code section

.text

.globl main

.ent main

main:
1i $vo, 4 # call code, print string
la $a0, hdr # addr of string
syscall # system call
1i $v0, 8 # call code, read string
la $a0, userAns # addr, where to put chars
1i $al, 52 # max chars for string
syscall # system call
1i $vo, 4 # call code, print string
la $a0, hiMsg # address string
syscall # system call
1i $vo, 4 # call code, print string
la $a0, userAns # address string

syscall # system call
1i $v0, 10 # call code for terminate
syscall # system call

.end main

The output and input for the example would be displayed to the QtSpim console
window.

Page 91

Chapter 9.0 « QtSpim System Service Calls

For example:

o Console

FReading Characters Example
Enter Your MName: Homer Simpson

Hello, Homer Simpaon

The console window must be selected in order to enter input. Note, the default console
window size will typically be larger than what is shown above.

Page 92

10.0 Multi-dimension Array Implementation

This chapter provides a summary of the implementation of multiple dimension arrays as
viewed from assembly language.

Memory is inherently a single dimension entity. As such, a multi-dimension array is
implemented as sets of single dimension array. There are two primary ways this can be
performed; row-major and column-major. Each is explained in subsequent sections.

To simplify the explanation, this section focuses on two-dimensional arrays. The
general process extends to higher dimensions.

10.1 High-Level Language View

Multi-Dimension arrays are sometimes used in high-level languages. For example, in
C/C++, the declaration of: int arr [3][4] would declare an array as follows:

arr[2][0] | arr[2][1] | arr[2][2] | arr[2][3]

arr[1][0] | arr[1][1]| arr[1][2] | arr[1][3]

arr | arr[0][0] | arr[0][1] arr[0][2] arr[O][3]

It is expected that the reader is generally familiar with the high-level language use of
two-dimensional arrays.

Page 93

Chapter 10.0 « Multi-dimension Array Implementation

10.2 Row-Major

Row-major assigns each row as a single dimension array in memory, one row after the
next until all rows are in memory.

=
=

arr[2][3]
arr[2][2]
arr[2][1]
arr[2][0]
arr[1][3]
arr[1][2]
arr[1][1]
arr[1][0]
arr[0][3]
arr[0][2]
arr[0][1]
arr[0][0]

=
o

arr

— L

Ol P N W Ul O| N0 ©

The formula to convert two-dimensional array indexes (row, column) into a single
dimension, row-major memory offset is as follows:

addr = baseAddr + (rowldx * numOfCols + colIdx) * dataSize

Where the base address is the starting address of the array, dataSize is the size of the
data in bytes, and numOfCols is the dimension or number of the columns in the two-
dimension array. In this example, the number of columns in the array is 4 (from the

previous high-level language declaration).

For example, to access the arr[1][2] element (labeled '6' in the above diagram),
assuming the array is composed of 32-bit sized elements it would be:

arr + (1 * 4 + 2) * 4 = arr + (4 + 2) * 4
arr + 6 * 4 = arr + 24

address

Which generates the correct, final address.

Page 94

Chapter 10.0 » Multi-dimension Array Implementation

10.3 Column-Major

Column-major assigns each column as a single dimension array in memory, one column
after the next until all rows are in memory.

=
=

arr[2][3]
arr[1][3]
arr[0][3]
arr[2][2]
arr[1][2]
arr[0][2]
arr[2][1]
arr[1][1]
arr[0][1]
arr[2][0]
arr[1][0]
arr[0][0]

=
o

arr

10

Ol P N W Ul O| N0 ©

The formula to convert two-dimensional array indexes (row, column) into a single
dimension, column-major memory offset is as follows:

addr = baseAddr + (colldx * numOfRows + rowIdx) * dataSize

Where the base address is the starting address of the array, dataSize is the size of the
data in bytes, and numOfRows is the dimension or number of the rows in the two-
dimension array. In this example, the number of rows in the array is 3 (from the
previous high-level language declaration).

For example, to access the arr[1][2] element (labeled '7' in the above diagram),
assuming the array is composed of 32-bit sized elements it would be:

address arr + (2 * 3 + 1) * 4 = arr + (6 + 1) * 4

= arr + 7 * 4 = arr + 28

Which generates the correct, final address.

Page 95

Chapter 10.0 « Multi-dimension Array Implementation

104 Example Program, Matrix Diagonal Summation

The following code provides an example of how to access elements in a two-
dimensional array. This example adds the elements on the diagonal of a two-
dimensional array.

For example, given the logical view of a five-by-five square matrix:

11 |12 | 13 | 14 | 15
16 | 17 1 18 | 19 | 20
21 | 22 | 23 | 24 | 25
26 | 27 | 28 | 29 | 30
31 | 32 | 33| 34 | 35

The main diagonal contains the numbers, 11, 17, 23, 29, and 35.

Example program to compute the sum of diagonal
in a square two-dimensional, row-major array
Demonstrates multi-dimension array indexing.
Assumes row-major ordering.
B m -
Data Declarations
.data
mdArray: .word 11, 12, 13, 14, 15
.word 16, 17, 18, 19, 20
.word 21, 22, 23, 24, 25
.word 26, 27, 28, 29, 30
.word 31, 32, 33, 34, 35
size: .word 5
dSum: .word 0
DATASIZE = 4 # 4 bytes for words
finalMsg: .ascii "Two-Dimensional Diagonal"
.ascii "Summation\n\n"
.asciiz "Diagonal Sum = "

Page 96

Chapter 10.0 » Multi-dimension Array Implementation

Text/code section
.text

.globl main

.ent main
main:

$ ————-

Call function to sum the diagonal
(of square two-dimensional array)

la $a0, mdArray
1w $al, size

jal diagSummer
sw $v0, dSum

Display final result.

1i $vo, 4
la $a0, finalMsg
syscall

1i $vo, 1
1w $a0, dSum
syscall

Done, terminate program.

1i $v0, 10
syscall
.end main

#
#

HH 3+

base address of array
array size

print prompt string

print integer

terminate
system call

Simple function to sum the diagonals of a

Approach
loop i = 0 to len-1

#
#
square two-dimensional array.
#
#
#

sum = sum + mdArray[i] [1]

Page 97

Chapter 10.0 « Multi-dimension Array Implementation

Note, for two-dimensional array:
addr = baseAddr + (rowIdx * numOfCols + colIdx)
* dataSize
Since the two-dimensional array is given as square,
the row and column dimensions are the same size.
$ ————-
Arguments
$a0 - array base address
$al - size (of square two-dimension array)
Returns
$v0 - sum of diagonals
.globl diagSummer
.ent diagSummer
diagSummer:
1i $v0, 0 # sum=0
1i $tl, O # loop index, i=0
diagSumLoop:
mul $t3, tl, Sal # (rowIdx * colSize
add $t3, $t3, $t1 # + colldx)
note, rowIdx=colldx
mul $t3, $t3, DATASIZE # * dataSize
add S$t4, $a0, $t3 # + base address
1w $t5, ($t4) # get mdArray[i] [i]
add $v0, $v0, $t5 # sum = sum+mdArray[i] [i]
add S$t1, $t1, 1 #i=1i+1
blt $tl, $al, diagSumLoop

Done, return to calling routine.

jr

Sra

.end diagSummer

While not mathematically useful, this does demonstrate how elements in a two-
dimensional array are accessed.

Page 98

11.0 Recursion

The Google search result for recursion, shows "Did you mean: Recursion".

Recursion is the idea that a function may call itself (which is the basis for the joke).
Recursion is a powerful general-purpose programming technique and is used for some
important applications including searching and sorting.

Recursion can be very confusing in its simplicity. The simple examples in this section
will not be enough in themselves for the reader to obtain recursive enlightenment. The
goal of this section is to provide some insight into the underlying mechanisms that
support recursion. The simple examples here which are used to introduce recursion are
meant to help demonstrate the form and structure for recursion. More complex
examples (than will be discussed here) should be studied and implemented in order to
ensure a complete appreciation for the power of recursion.

The procedure/function calling process previously described supports recursion without
any changes.

A recursive function must have a recursive definition that includes:

1. Base case, or cases, that provide a simple result (that defines when the recursion
should stop).

2. Rule, or set of rules, that reduce toward the base case.

This definition is referred to as a recursive relation.

11.1 Recursion Example, Factorial

The factorial function is mathematically defined as follows:

n! = Hk
k=1

Or more familiarly, you might see 5! as:
5 = 5X4X3x2X1

It must be noted that this function could easily be computed with a loop. However, the
reason this is done recursively is to provide a simple example of how recursion works.

Page 99

Chapter 11.0 « Recursion

A typical recursive definition for factorial is:

1 ifn=0

torial =
factorial(n) n X factorial(n—1) ifnx=1

This definition assumes that the value of n is positive.

11.1.1 Example Program, Recursive Factorial Function

The following code provides an example of the recursive factorial function.

Example program to demonstrate recursion.

$ ———————— e

Data Declarations

.data
prompt: .ascii "Factorial Example Program\n\n"
.asciiz "Enter N value: "
results: .asciiz "\nFactorial of N = "
n: .word 0
answer: .word 0
oo
Text/code section
.text
.globl main
.ent main
main:
T ——
Read n value from user
1i $vo, 4 # print prompt string
la $a0, prompt
syscall
1i $v0, 5 # read N (as integer)

Page 100

Chapter 11.0 » Recursion

syscall
sw $v0, n
 ——
Call factorial function.
1w $al0, n
jal fact
sw $v0, answer
 ——
Display result
1i $vo, 4 # print prompt string
la $a0, results
syscall
1i $vo, 1 # print integer
lw $a0, answer
syscall
T ——
Done, terminate program.
1i $v0, 10 # call code for terminate
syscall # system call
.end main
oo
Factorial function
Recursive definition:
= n * fact(n-1) if n>=1
 ——
Arguments
$a0 - n
Returns
$Sv0 set to n!
.globl fact
.ent fact
fact:

Page 101

Chapter 11.0 « Recursion

subu $sp, $sp, 8

SW
SW

1i
beq

move
sub
jal

mul

factDone:
1w
1w
addu
jr

.end fact

$ra,
$s0,

$vo,
$ao0,

$s0,
$ao0,
fact

$vo,

$ra,
$s0,
$sp,
Sra

($sp)
4 ($sp)

1 # check base case
0, factDone

$ao0 # fact(n-1)
$a0, 1

$s0, $vO # n * fact(n-1)

($sp)
4 ($sp)
$sp, 8

The output for the sample program would be displayed to the QtSpim console window.

For example:

Factorial Example Program

Enter N value: 10

Factorial of N = 3628800

Refer to the next section for an explanation of how this function works.

Page 102

Chapter 11.0 » Recursion

11.1.2 Recursive Factorial Function Call Tree

In order to help understand recursion, a recursion tree can show how the recursive calls

interact.
main:
f = fact(5 ‘
act(>) Step 10

I: fact:
5 * fact(4 J—
\ act(4) Step 9

Step 1

Step 2 4 * fact(3) | Step 8

Step 3 3 * fact(2)

| Step 7

Step 4 ‘ fact:
P 2 * fact(1 «J—
\ act(l)) Step 6
‘ fact:
Step 5

return 1

When the initial call occurs from main, the main will start into the fact() function
(shown as step 1). Since the argument of 5 is not a base case, the fact() function must
call fact() again with the argument of n-1 or 4 in this example (step 2). And, again,
since 4 is not the base case, the fact() function must call fact() again with the argument
of n-1 or 3 in this example (step 3).

This process continues until the argument passed into the fact() function meets the base
case which is when the argument is equal to 1 (shown as step 5). When this occurs, only
then is a return value provided to the previous call (step 6). This return argument is then

Page 103

Chapter 11.0 « Recursion

used to calculate the previous multiplication which is 2 times 1 which will return a value
to the previous call (as shown in step 7).

These returns will continue (steps 8, 9, and 10) until the main has a final answer.

Since the code being executed is the same, each instance of the fact() function is
different from any other instance only in the arguments and temporary values. The
arguments and temporary values for each instance are different since they are
maintained on the stack as required by the standard calling convention.

For example, consider a call to factorial with n = 2 (step 4 on the diagram). The return
address, $ra, and previous contents of $s0 are preserved by pushing them on the stack in
accordance with the standard calling convention. The base case is checked and since n
1 it continues to save the original value of 1 into $s0, decrements the original
argument, n, by 1 and calls the fact() function (with n = 1). The call for the fact()
function (step 5 in the diagram) is like any other function call in that it must follow the
standard calling convention, which requires preserving $ra and $s0 (since they are
changed). This is when the function returns an answer, 1 in this specific case, that
answer in $v0 is then multiplied by the original n value in $s0 and returned to the
calling routine.

As such, the foundation for recursion is the procedure call frame or activation record. In
general, it can be simply stated that recursion is stack-based.

It should also be noted that the height of the recursion tree is directly associated with the
amount of stack memory used by the function.

11.2 Recursion Example, Fibonacci

The Fibonacci function is mathematically defined as follows:
Fn = Fn—1+Fn—2
for positive integers with seed values of F, = 0 and F; = 1 by definition.
As such, starting from 0 the first 14 numbers in the Fibonacci series are:
0,1,1,2,3,5, 8,13, 21, 34, 55, 89, 144, 233

It must be noted that this function could easily be computed with a loop. However, the
reason this is done recursively is to provide a simple example of how recursion works.

Page 104

Chapter 11.0 » Recursion

For example, a typical recursive definition for Fibonacci is:

0 if n=0
fib(n) = |1 ifn=1
fib(n—1) + fib(n—2) if n>1

This definition assumes that the value of n is positive.

11.2.1 Example Program, Recursive Fibonacci Function

The following code provides an example of the recursive Fibonacci function.

Recursive Fibonacci program to demonstrate recursion.

§ ———

Data Declarations

.data
prompt: .ascii "Fibonacci Example Program\n\n"
.asciiz "Enter N value: "
results: .asciiz "\nFibonacci of N = "
n: .word 0
answer: .word 0

Text/code section
.text
.globl main
.ent main
main:

Read n value from user
1i $vo, 4 # print prompt string
la $a0, prompt
syscall

Page 105

Chapter 11.0 « Recursion

syscall
sw $v0, n
Call Fibonacci function.
1w $a0, n
jal f£fib
sw $v0, answer
Display result
1i $v0, 4
la $a0, results
syscall
1i $vo, 1
1w $a0, answer
syscall
Done, terminate program.
1i $v0, 10
syscall
.end main
Fibonacci function
Recursive definition:
=0
=1
= fib(n-1) + £ib(n-2)
Arguments
$a0 - n
Returns
$v0 set to fib(n)
.globl fib
.ent fib

Page 106

1i $v0, 5

read N (as integer)

print prompt string

print integer

terminate
system call

ifn=20
ifn=1
ifn>2

fib:
subu
3%
sSwW

move
ble

move
sub
jal

move
sub
move
jal

add

fibDone:
1w
1w
addu
jr

.end fib

$sp,
$ra,
$s0,

$vo,
$ao,

$s0,
$ao,
fib

$ao0,
$ao0,
$s0,
fib

$vo,

$ra,
$s0,
$sp,
Sra

$sp, 8
($sp)
4 ($sp)

$a0
1, fibDone

Sa0
$a0, 1

$s0
$a0, 2
SvO0

$s0, $vO

($sp)
4 ($sp)
$sp, 8

** HH = HF

Chapter 11.0 » Recursion

check for base cases

get fib(n-1)

set n-2
save fib(n-1)
get fib(n-2)

fib (n-1)+£ib (n-2)

The output for the example would be displayed to the QtSpim console window.

For example:

Fibonacci Example Program

Enter N value: 13

Fibonacci of M = 233

Refer to the next section for an explanation of how this function works.

Page 107

Chapter 11.0 « Recursion

11.2.2 Recursive Fibonacci Function Call Tree

The Fibonacci recursion tree appears more complex than the previous factorial tree since
the Fibonacci function uses two recursive calls. However, the general process and use
of the stack for arguments and temporary values is the same.

As noted in the factorial example, the basis of recursion is the stack. In this example,
since two recursive calls are made, the first call will make another call, which may make
yet another call. In this manner, the call sequence will follow the order shown in the
following diagram.

Page 108

Chapter 11.0 » Recursion

The following is an example of the call tree for a Fibonacci call with n = 4.
main:
fib(4)

step 16
step 1

fib:
fib(3) + L
fig)

step2 B step 10

step 15

fib: step9 step 12 | fib:
D o k Rt ﬂ D s L o 14

fib(1) fib(0) 4
step 3 step 8 step 11 step 13 :
RS o 4 b + % fio { ib: ib:)

: fib(0) : return 1 ” return 1 : return O

step 4 step 7
I step 6 | : step 7
L ib: fib:
return 1 return O

The calls are shown with a solid line and the returns are shown with a dashed line.

Page 109

Chapter 11.0 « Recursion

Page 110

12.0 Appendix A — Example Program

Below is a simple example program. This program can be used to test the simulator
installation and as an example of the required program formatting.

Example program to find the minimum and maximum from
a list of numbers.

B oo o
data segment
.data
array: .word 13, 34, 16, 61, 28
.word 24, 58, 11, 26, 41
.word 19, 7, 38, 12, 13
len: .word 15
hdr: .ascii "\nExample program to find max and"
.asciiz " min\n\n"
newLine: .asciiz "\n"
alMsg: .asciiz "min = "
a2Msqg: .asciiz "max = "
B oo o

text/code segment
QtSpim requires the main procedure be named "main".

.text

.globl main

.ent main

main:

This program will use pointers.
t0 - array address

tl - count of elements

s2 - min

s3 - max

Page 111

Appendix A — Example Program

t4 - each word from array

Display header
Uses print string system call

la $a0, hdr
1i $vo, 4

syscall # print header
T —
Find max and min of the array.
Set min and max to first item in list and then
loop through the array and check min and max
against each item in the list, updating the min
and max values as needed.
la $t0, array # $t0 addr of array
lw $tl, len # $tl to length
1w $s2, ($t0) # min, $s2 to array[0]
lw $s3, ($t0) # max, $s3 to array|[O0]
loop:
1w $t4, ($t0) # get array|[n]
bge $t4, $s2, NotMin# is new min?
move $s2, $t4 # set new min
NotMin:
ble $t4, $s3, NotMax# is new max?
move $s3, $t4 # set new max
NotMax:
sub $tl, $t1, 1 # decrement counter
addu $t0, $t0, 4 # increment addr by word
bnez $tl, loop
—

Display results min and max.
First display string, then value, then a print a
new line (for formatting). Do for each max and min.

la $a0, alMsg

1i $vo, 4
syscall # print "min = "

Page 112

Done,

move $a0,
1i $vo,
syscall

la $ao,
1i $vo,
syscall

la $a0,
1i $vo,
syscall

move $a0,
1i $vo,
syscall

la $a0,
1i $vo,
syscall

1i $vo,
syscall

.end main

$s2

newLine

4

a2Msg

$s3

newLine
4

terminate program.

10

Appendix A — Example Program

print min

print a newline

print "max = "

print max

print a newline

all done!

Page 113

Appendix A — Example Program

Page 114

13.0 Appendix B — QtSpim Tutorial

This QtSpim Tutorial is designed to prepare you to use the QtSpim simulator and
complete your MIPS assignments more easily.

13.1 Downloading and Installing QtSpim

The first step is to download and install QtSpim for your specific machine. QtSpim is
available for Windows, Linux, and MAC OS's.

13.1.1 QtSpim Download URLs
The following are the current URLs for QtSpim.
The QtSpim home page is located at:

http://spimsimulator.sourceforge.net/

The specific download site is located at:
http://sourceforge.net/projects/spimsimulator/files/

At the download site there are multiple versions for different target machines. These
include Windows (all versions), Linux/Ubuntu (32-bit), Linux/Ubuntu (64-bit), and Mac
OS (all versions). Download the latest version for your machine.

These URLs are subject to change. If they do not work, a Google search will find the
correct URLSs.

13.1.2 Installing QtSpim

Once the package is downloaded, follow the standard installation process for the
specific OS being used. This typically will involve double-clicking the downloaded
installation package and following the instructions. You will need administrator
privileges to perform the installation. Additionally, some installations will require
Internet access during the installation.

Page 115

http://sourceforge.net/projects/spimsimulator/files/
http://spimsimulator.sourceforge.net/

Appendix B — QtSpim Tutorial

13.2 Working Directory

Create a working directory for the QtSpim assembly source files. This directory can be
named anything, but must be legal on the chosen operating system.

13.3 Sample Program

Copy or type the provided example program (from Appendix A) to a file in your
working directory. This file will be used in the remainder of the tutorial. It
demonstrates assembler directives, procedure calls, console I/O, program termination,
and good programming practice. Notice in particular the assembler directives ".data’ and
".text' as well as the declarations of program constants. Understanding the basic flow of
the example program will help you to complete your SPIM assignment quickly and
painlessly. Once you have created the file and reviewed the code, it is time to move
onto the next section.

13.4 QtSpim — Loading and Executing Programs

After the QtSpim application installation has been complete and the sample program has
been created, you can execute the program to view the results. The use of QtSpim is
described in the following sections.

13.4.1 Starting QtSpim

For Windows, this is typically performed with the standard "Start Menu -> Programs ->
QtSpim" operation. For macOS, enter LaunchPad and click on QtSPim. For Linux,
find the QtSpim icon (location is OS distribution dependent) and click on QtSpim.

Page 116

13.4.2

Main Screen

Appendix B — QtSpim Tutorial

The initial QtSpim screen will appear as shown below. There will be some minor
differences based on the specific Operating System being used.

E & H & a # b
FP Regs Int Regs [16] Data
Int Regs [16] @ ® Text
BC 0
EPC =0 [00400000]
Cause =0 [00400004]
BadVAddr = 0 (004000081
Status 3000££10 [0040000c]
[00400010]
HI 0 [00400014]
prel =0 [00400018]
[0040001c]
RO [x0] = O [00400020]
Rl [at] = O
R2 [v0] =0
R3 [vl] =0 [80000180]
R4 [a0] = 1 [80000184]
R5 [al] JTffffadc trust Ssp
R6 [a2] = Tffffa54 [80000188]
R7 [a3] =0 [8000018c]
R8 [t0] = O registers
RS [t1] = O [80000190]
R1D [t2] = O [80000194]
R11 €3] =0 [80000198]
R12 [t4] = O [8000019c]
R13 [t5] = O [800001a0]
R14 [t6] = O [800001a4d]
R15 [t7] = O [800001a8]
Rl6 [s0] = O [800001ac]
R17 [s1] = 0 [800001b0]
R18 [s2] = 0 [800001b4]
R19 [s3] = 0 [800001b8]
R20 [s4] = 0 [800001bc]
R21 [s5] = O [800001c0]
R22 [s6] = O [800001c4]
R23 [s7] = O [800001c8]
R24 [E8] = O [800001cc]
R25 [t3] = O [800001d0]
R26 [k0] = O [800001d4]
R27 [k1] = 0 ~| | [800001d8]

Copyright 1990-2012, James R.

All Rights Reserved.
SPIM is distributed under a BSD license.
See the file README for a full copyright notice.

13.4.3

Larus.

Text

8£a40000
27a50004
24a60004
00041080
00c23021
0c000000
Q0000000
3402000a
0000000c

0001d821
3c019000

ac220200
3c019000

ac240204
401a6800
001a2082
3084001£
34020004
3c049000
0000000c
34020001
001a2082
3084001f
0000000c
34020004
3344003c
3c019000
00240821
8c240180
00000000
0000000c
34010018

Load Program

User Text Segment
1w 54, 0($29)
addiu $5, 529, 4
addiu 56, §5, 4
s11 52, 54, 2
addu $6, $6, 52
jal 0x00000000 [main]
n.
ori %2,
syscall

$0, 10

Kernel Text Segment

addu $27, $0, §1 ;
lui $1, -28672 i
sw $2, 512(%51)

lui §1, -28672 H

sw 54, 516(51)

mfcO $26, S$13 f
srl $4, $26, 2 F
andi $4, $4, 31 7
ori 52, 50, 4 7
lui $4, -28672 [__ml_] ;
syscall F
ori $2, $0, 1 7
srl 54, $26, 2 i
andi $4, $4, 31 &
syscall F
ori $2, %0, 4 F
andi $4, $26, 60 H
lui $1, -28672 ;
addu $1, §1, S4

1w 54, 384(%1)

nop ;
syscall 7
ori $1, $0, 24 5

[00400000] ..[00440000]
3: 1w 520 0(Ssp)
: ad

[80000000] . . [80010000]
move $kl1

80:

82;

[

L)
7: addu $a2 $a2 $vl
: jal main

: sw Sal s2 # But we nee

: andi

@@

argc
ddiu $al $sp 4 # argv
ddiu Sa2 $al 4 # envp
11 $v0 $a0 2

(exit)

Sat # Save fat

51 Not re-entrant and we can't

sw §vl

to use these

: syseall

¢ 13 sl 1

Sal sal OxIf

: syseall

: 11 Sv0 4 # sy
: andi Sal $k0
: 1w 5al __excp

14

scal
Ox3c
(5a0)

: nop
: syscall

5: bne $k0 0x18 ok_pec # Bad PC exception

To load the example program (and all programs), you can select the standard

"File — Reinitialize and Load File" option from the menu bar. However, it is typically
easier to select the Reinitialize and Load File Icon from the main screen (second file
icon on the top left side).

Page 117

Appendix B — QtSpim Tutorial

Note, the Load File option can be used on the initial load, but subsequent file loads will
need to use the Reinitialize and Load File to ensure the appropriate reinitialization
occurs.

Reinitialize and Load File Icon

E & d &8 o # » n =

11
&

FP Regs Int Regs [16] Data Text
Int Regs [16] @ & Text = NES)
BC =0 User Text Segment [00400000]..[00440000]
EPC =0 [00400000] Bfa40000 1w $4, 0($29) ; 183: 1 0 0(ssp) # argc
Cause =0 [00400004]1 27a50004 addiau $5, $29, 4 ; 1B4;: a Sal Ssp 4 # argv
BadVAddr = 0 [00400008] 24a60004 addiu $6, §5, 4 ; 185: a $a2 Sal 4 # envp
Status = 3000££10 [0040000c] 00041080 s11 $2, %4, 2 ; 186: s11 Sv0 Sal0 2

Once selected, a standard open file dialog box will be displayed. Find and select
'asst0.asm' file (or whatever you named it) created in section 3.0.

|#| | 4/|imied | tmp)]

Places Name ¥ Size Modified
Q, search L5 mips0.asm 0 bytes 15:16
& Recently Used L mipsl.asm 0 bytes| 15:16

= ed

B Desktop

1 File system
— Floppy Drive
i©l Documents
@ Music

[m Pictures

3 videos

i Downloads
[float

Add | |Assembly | v |

| <Cancel ||: Open J

Navigate as appropriate to find the example file previously created. When found, select
the file (it will be highlighted) and click Open button (lower right hand corner).

Page 118

Appendix B — QtSpim Tutorial

The assembly process occurs as the file is being loaded. As such, any assembly syntax
errors (i.e., misspelled instructions, undefined variables, etc.) are caught at this point.
An appropriate error message is provided with a reference to the line number that
caused the error.

When the file load is completed with no errors, the program is ready to run, but has not
yet been executed. The screen will appear something like the following image.

E & H & a # >
FP Regs Int Regs [16] Data
Int Regs [16] @ ® Text
BC -0
ERC =B [00400000]
Cause =0 [00400004]
BadVAddr = ([(004000081
Status = 3000££10 [0040000c]
[00400010]
HI =0 [00400014]
Lo =0 (004000181
[0040001c]
RO [r0] = O [00400020]
Rl [at] =0 [00400024]
R2 ([v0] =0 (004000281
R3 ([vl] =0 [0040002c]
R4 [a0] = 1 [00400030]
R5 [al] 4 [00400034]
R6 [a2] = 7 as54 [00400038]
R7 [a3] =0 [0040003c]
RE [t0] = O [00400040]
R [tl] =0 [00400044]
R10 [t2] = O [00400048]
R11 [£3] = O [0040004c]
R12 [t4] = O [00400050]
R13 [£5] = O [00400054]
Rl4 [t6] = O [00400058]
R15 [t7] = O [0040005c]
Rl6 [=0] = O [00400060]
R17 [s1] = 0 [00400064]
R1E [s2] = 0 [00400068]
R19 [s3] =0 [0040006c]
R20 [s4] = O (004000701
Rzl [s5] = 0 [00400074]
R22 [s6] = 0 [00400078]
R23 [s7] = O [0040007c]
R24 [t8] = O (004000801
R25 [£9] = O [00400084]
R26 [k0] = O [00400088]
R27 [k1] = O .| | [004gg0sc]

Copyright 1990-2012, James R.

All Rights

SPIM is distributed under a BS|
See the file README for a fu

Reserved.

Addresses

Text

8£a40000
27a50004
24a60004
00041080
00c23021
0c100009
00000000
3402000a
0000000c
3c011001
34240040
34020004
0000000c
3c081001
3c011001
8c29003c
8d120000
8d130000
8d0c0000
0192082a
10200002
000c8021
026c082a
10200002
000c9821
25080004
1520£££7

3c011001
34240089
34020004
0000000c
00122021
34020001
0000000c

OpCodes

5 @
@®
User Text Segment [00400000]..[00440000]
1w $4, 0(529) ;s 183: lw 5a0 0(Ssp) # argc
addiu $5, $29, 4 ; 184: iu Sal $sp 4 # argv
addiu $6, $5, 4 ; 185: a Sa2 Sal 4 # envp
sll $2, S4, 2 ; 186: s11 §v0 $al 2
addu $6, $6, $2 ; 187: addu 5aZ 5a2 SviO
jal 0x00400024 [main] ; 188: jal main
nep ; 189: nop
ori $2, %0, 10 ; 181; 1i sv0 10
syscall ;7 182: syscall # syscall 10 (exit)
lui $1, 4097 [hdr] ; 45: la Sa0, hdr
ori $4, $1, 64 [hdr]
ori $2, %0, 4 ; 46: 1i sv0, 4
syscall ; 47: syscall
lui $8, 4097 [array] L
lui $1, 4097 7: 1w
1w §9, 60(51)
1w 518, 0(58) ; 59: 1w 8s2, #
1w $19, 0(s$8) ;i 60: lw 553 #
1w $12, 0(58) ; 62: lw $td, (5t0) # get arrayin]
slt 51, 512, $1s ; 64: bge 5td, 552, NotMin # is new min?
beq $1, $0, & [NotMin-0x00400050]
addu $18, $0, $12 ; €65: move §s2, S5td # set new min
slt $1, %19, $12 ; 67: ble std, 553, NotMax # is new max?
beq $1, 50, 8 [NotMax-0x0040005c]
addu $19, 30, $12 ;7 EB: move $s3, 5td # set new max
addi $9, $9%, -1 ; 71: sub St1, $tl1, 1 # decrement counter
addiu $8, $8, 4 ; 72: addu st0, $t0, 4 # increment addr by word
bne $2, 50, -36 [loop—0x0040006c]

lui $1, 4097 [al_msg]
ori $4, $1, 105 [al msg]
ori $2, %0, 4

syscall
addu $4,
ori $2,
syscall
lui $1, 4097,

50, $1s

s0, 1

ew_1n]

3

;

80:

la $al, al_msg

81: 1i sv0, 4

; 82: sysecall # print "min = "
; 84: move $5al, 5s2

7 B5: 13 8vD, 1

; 86: syscall # pri

; 88: la $al0, new_1r

Bare-Instructions

Pseudo-Instructions

The code is placed in Text Window. The first column of hex values (in the []'s) is the
address of that line of code. The next hex value is the OpCode or hex value of the 1's
and 0's that the CPU understands to be that instruction.

Page 119

Appendix B — QtSpim Tutorial

MIPS includes pseudo-instructions. That is an instruction that the CPU does not
execute, but the programmer is allowed to use. The assembler, QtSpim here, accepts the
instruction and inserts the real or bare instruction as appropriate.

13.4.4 Data Window

The data segment contains the data declared by your program (if any). To view the data
segment, click on the Data Icon. The data window will appear similar to the following:

E & H g o # Poouw @ = @

FP Regs Int Regs [16] Data Text
Int Regs [16] ® Data &
PC = 400070 ", |User data segment [10000000]..[l0040000]
EPC = 400070 [10000000] .. [1000££££€] 00000000
Cause = 24 [10010000] 00000004 00000022
BadVAddr = 0 [10010010] 0000001 00000018
Status = 3000££10 110010020] 0000001a 00000029

[10010030] 00000026 0000000c
HI =0 [10010040] 6178450a 656c706d E x
Lo -0 [10010050] 206£7420 64626966 to
[10010060] 6e696d20 0al00ala 62696400 min
RO [r0] - O [10010070] 2078616d 0000203d 00000000 mMaX = ...
Rl [at] = O [10010080]..[1003££f£€] 00000000
R2 [v0] = 4
R3 [vl] = O
R4 [a0] - User Stack [Tffffads8]..[80000000]
RS [al] - I £a48) 00000001 7 ade e e e
RE [a2] - 5 00000000 fed TEffffel TEEEFECA . o 4 4 0 4 e e e e e e e .
R7 [a3] - O b FOf TJEEfffde TEFfffla Nooowoe e
RS [t0] — 1001003c £ TEEEfeIb TEEEEEDD . o« v v e e e e e e e e e .
RS [£1] - O TEfEfdbd TEE£EdB2 T
R10 [t2] - O TEEEEATL TEEEFASE G e e
R11 [t3] = O TEEEfcd6 TEEEfchO Bovov e e e e e e e e e e e
Riz [£4] - d TELEfcOf TEE£fbb3 e e e e e
R13 [£5] - O TEEEfb2d TEfffb0a P
R14 [t6] = O 00000000 Bd6EEBZE /hom
R15 [£7] = O G£72442f TEBGE6ZT70 6cBeT52f e/ed/Dropbox/unl
R16 [s0] = O 42£7370 2 7 2fBcBlED v/ mips/tutorial/
R17 [s1] = 0 7361230 414c5f4f asst0.asm.GIO_LA
R18 [s2] - 7 445£4445 465E504€ UNCHED _DESKTOP_F
RIS [s3] - 3d 3d444950 4£494700 ILE_PID=8039.GIO
R20 [s4] - O 4548434e 4£544b53 _LAUNCHED_DESEKTO
R21 [s5] = 0 2f3dd54c P_FILE=/usr/shar
R22 [s6] = O 63696cT0 6£697461 e/applications/qg
R23 [s7] = O 65642e6d 6fT46b7T3 tspim.desktop.GP
R24 [t8] = O 4£464e48 G_AGENT_INFO=/tmn
R25 [t9] = O 6d662d67 4f774a56 p/keyring-fmvVdJdwo
R26 [KO] = O 47445800 5255435f /gpg:0:1.XDG_CUR
R27 [K1] - O . 504£544b 696e553d RENT_DESK/OF=Uni -
Copyright 1990-2012, James
All Rights Reserved. -
SPIM is distributed under, ‘ |
See the file README F full copyright notice. =
Running
. .
Addresses Data (Hex Representation) Data (ASCII Representation)

As before, the addresses are shown on the left side (with the []'s). The values at that
address are shown in hex (middle) and in ASCII (right side). Depending on the specific
type of data declarations, it may be easier to view the hex representation (i.e., like the

Page 120

Appendix B — QtSpim Tutorial
array of numbers from the example code) or the ASCII representation (i.e., the declared
strings).

Note, right clicking in the Data Window will display a menu allowing the user to change
the default hex representation to decimal representation (if desired).

13.4.5 Program Execution

To execute the entire program (uninterrupted), you can select the standard "Simulator
— Run/Continue" option from the menu bar. However, it is typically easier to select
the Run/Continue Icon from the main screen or to type the F5 key.

Run/Continue

E & H 8 o # | R @
FP Regs Int Regs [16] Data Text
Ink Regs [16] @ Text &3]

User Text Segment [00400000]..[00440000]
[00400000] 2£a40000 1w $4, 0($29) ; 183: 1w $a0 0(§sp) # a

[00400004] 27a50004 addiu $5, $29, 4 s $al Ssp
BadVAddr [00400008] 24a60004 addiu $6, $5, 4 ; 18 5a2 5al 4 #
Status

3000££10 [0040000c] 00041080 sl11 $2, $4, 2 ; 186:

Once typed, the program will be executed.

If a program performs input and/or output, it will be directed to the Console window.

Page 121

Appendix B — QtSpim Tutorial

For example, the sample program (from Appendix A) will display the following in the
Console window when executed.

Example program to find max and min

min=7
max =61

For the sample program and the initial data set, these are the correct results.

13.4.6 Log File

QtSpim can create a log file saving and documenting the program results. To create a
log file, you can select the standard "File — Save Log File" option from the menu bar.
However, it is typically easier to select the Save Log File Icon from the main screen.

Save Log File

E & d a9 o #@ boow @ = @

FP Regs Int Regs [16] Data Text
Int Regs [16] & ® Text g ®
PC = User Text Segment [00400000]..[00440000]
EPC =0 [00400000] 8£a40000 1w 54, 0($29) ; 183: lw $ab 0(Ssp) # argc
Cause =0 [00400004] 27a50004 addiu §5, $29, 4 ; 184: i Sal $sp 4 # argv
BadvAddr - 0 [00400008] 24a60004 addiu $6, $5, 4 $aZ $al 4 # envp
Status - 3000££10 [0040000c] 00041080 =11 $2, $4, 2 0 $a0 2

Page 122

Appendix B — QtSpim Tutorial

When selected, the Save Windows to Log File dialog box will be displayed as shown
below on the left.

@ Save Windows To Log File @ save Windows To Log File

Select windows to write to log File Select windows to write to log File
[] Registers ["] Registers
[] Text Segments [Text Segments
[] Data Segments [] Data segments
[console & console
Save to file Save to file =
cancel | (0K | Cancel | Lok

In general, the Text Segments and Console options should be selected as shown on the
left.

Additionally, there is no default file name or location (for the log file). As such, a file
name must be entered before it can be saved. This can be done by manually entering the
name in the Save to file box or by selecting the ... box (on the lower right side).

Page 123

Appendix B — QtSpim Tutorial

When the ... option is selected, a Save to Log File dialog box is displayed allowing
selection of a location and the entry of a file name.

@ Save To Log File

Look in: |l /home/ed | s A & |.@.| [E]

! Computer | | | Desktop
| ed |l Documents
|l Downloads
|l Dropbox
|l Music
|l Pictures
|l Public
|l Templates
|l Ubuntu One

|l Videos

T

File name: [

Files of type: | Text files (*.kxt) 2] | cCancel

When completed correctly, the Save Windows To Log File box will appear similar the

below image.
@ Save Windows To Log File x

Select windows to write to log File
[] Registers

[Text Segments

["] Data Segments

B Console

save to file | fhomefed/Desktop/logFile.txt

| cancel || OK |

When the options are selected and the file name entered, the OK box can be selected
which will save the log file.

Page 124

Appendix B — QtSpim Tutorial

13.4.7 Making Updates

In the highly unlikely event that the program does not work the first time or the program
requirements are changed, the source file will need to be updated in a text editor. After
the program source file is updated, it must be explicitly reloaded into QtSpim. The
Reinitialize and Load File option must be used as described in section 13.4.3. Every
change made to the source file must be re-loaded into QtSpim.

Once re-loaded, the program can be re-executed as noted in section 13.4.5. Refer to
section 5.0 for information regarding debugging and controlling program execution.

13.5 Debugging

Often, looking at program source code will not help to find errors. The first step in
debugging is to ensure that the file assembles correctly (or "reads" in the specific case of
QtSpim). However, even if the file assembles, it still may not work correctly. In this
case, the program must be debugged. In a broad sense, debugging is comparing the
expected program results to actual program results. This requires a solid understanding
of what the program is supposed to do and the specific order in which it does it — that
is understanding the algorithm being used to solve the program. The algorithm should
be noted in the program comments and can be used as a checklist for the debugging
process.

Page 125

Appendix B — QtSpim Tutorial
One potentially useful way to check the program status is to view the register contents.

The current register contents are shown in registers window (left side) as shown in the
image below.

Register Window

FP Regs Int Regsdls] Data Text

Int Regs [16 @ & Text & =

PC =
EPC =
Cause =

User Text Segment [00400000]..[00440000]
1w $4, 0($29) ; 183: 1 0 0(ssp) #
4 addiu $5, $29, 4 =g

[00400000] Bfad00C
[00400004]

BadVAddr 4 addiu $6, $5, 4
Status 000££10 1 s11 $2, $4, 2

1 00c23021 addu $6, $6, $2
HI =0 0c000000 jal Ox00000000 [main]
Lo =0 00000000 nep

3 ori $2, 50, 10

RO [r0] = O [00400020] 0000000c syscall 11 10 (exit)
Rl [at] = O
R2 [v0] = O Kernel Text Segment [80000000]..[80010000]
R3 [wl] = 0 [80000180] 0001d821 addu $27, $0, $1 ; 90: move Sk1 $at # Save $Sat

The overall debugging process can be simplified by using the QtSpim controlled
execution functions. These functions include single stepping through the program and
using one or more breakpoints. A breakpoint is a programmer selected location in the
program where execution will be paused. When the program is paused the current
program status can be checked by viewing the register contents and/or the data segment.
Typically, a breakpoint will be set, the program executed (to that point), and from there
single stepping through the program watching execution and checking the results (via
register contents and/or data segment).

When stepping through the program, the next instruction to be executed is highlighted.
As such, that instruction has not yet been executed. This highlighting is how to track
the progress of the program execution.

To set a breakpoint, select an appropriate location. This should be chosen with a
specific expectation in mind. For example, if a program does not produce the correct
average for a list of numbers, a typical debugging strategy would be to see if the sum is
correct (as it is required for the average calculation). As such, a breakpoint could be set
after the loop and before the average calculation.

Page 126

Appendix B — QtSpim Tutorial

As an example, to set a breakpoint after the loop in the sample program (from Appendix
A), the first instruction after the loop can be found in the Text Window. This will
require looking at the pseudo-instructions (on the right side of the Text Window).

The first instruction after the loop in the example program is highlighted in orange (for

reference) in the image below.

Note, the orange highlighting was added to this document for reference and will not be
displayed in QtSpim during normal execution.

=B & H 3 @ 4 [@

FP Regs Int Regs [16] Data Text
Int Regs [16] @ @ Text

TN UUUUUT S TE U
RE [0040000c] 00041080
EEC [00400010] 00c232021
s [00400014] 0c100009
BV ASIT [00400018] 00000000
Statum [0040001c] 3402000a

[00400020] 0000000c
HI =i [00400024] 3c011001
Lo =g [00400028] 34240040

[0040002c] 34020004
RO [r0] = O [00400030] 0000000c
R1 [at] 10010000 [00400034] 3c081001
R2 [vO] = 4 [00400038] 3c011001
R3 [vl] = 0 [0040003c] 8c29003c
R4 [a0] 10010040 [00400040] 8d120000
RS [al] - Tffffadc [00400044] 8d130000
R6 [a2] = TEfffa54 [00400048] 8d0c0000
R7 [a3] = O [0040004c] 0192082a
R8 [t0] = O [00400050] 10200002
R? [tl] = 0 [00400054] 000c9021
R10 [t2] = O [00400058] 026c082a
R11 [£3] = O [0040005c] 10200002
R1z [t4] = O 1004000601
R13 [£5] = O [00400064]
R14 [t6] = O 1004000681 25080004
R15 [t7] = O [0040006c] 1520f
Rl6 [s0] = O (EEEGEEER! 3co011
R17 [s1] = O [00400074] 34240069
R18 [s2] = O [00400078] 34020004
R15 [s3] = O [0040007c] 0000000c
R20 [s4] = O [00400080] 00122021
R21 [s5] = O [00400084] 34020001
R22 [s6] = 0 1004000881 0000000c
R23 [s7] = O [0040008c] 3c011001
R24 [t8] = O [00400090] 34240067
R25 [t9] = O 1004000941 34020004
R26 [kO] = O [00400098] 0000000c
R27 [k1] = O -] [10040009c] 3c011001

Copyright 1990-2012, James R. Larus.

All Rights Reserved.

SPIM is distributed under a BSD license.

See the file README For a Full copyright notice.

auuru ww, wa,
=11 $2, $a, 2

addu $6, $6, $2

jal 0x00400024 [main]
nop
ori $2,
syscall
lui $1,
ori $4,
ori $2,
syscall
lui $s8,
lui $1,
1w $9,
1w 31s,
1w $13,
1w $12,
sit $1,
beq $1,
addu $18, $0,
=1t $1, $1s,
beq $1, 350,
addu $139, $0, $1z
addi $9, $3, -1
addiu $8, $8, 4
bne $39, $0,
lui $1, 4057 [al _msg]
ori $4, $1, 105 [al msg]
ori $z, $0, 4

syscall
addu $4,
ori $2,
syscall
1ui $1,
ori $4,
ori $2,
syscall
lui $1,

$0, 10

4057 [hdr]
$1, 64 [hdr]
$0, &

4097 [array]
4037
60(S1)
0 ($8)
0(58)
o(s8)
s1z, sis
$1z
$12

$o, $is

so, 1

4097 [new_1in]
$1, 103 [new_1n]
$0, 4

4057 [a2_msg]

o

8 [NotMax—0x00

&1
6.
2

g
0:
2
4

$0, 8 [NotMin-0x00400050]
65: 1
67: ble §t4,
40005

68: I
71:

-36 [loop-0x0040006c]
80:

: 511 Svld Sal0 2
: addu $a2 sa2 SvO

: 1w $s2,
e
: 1w $td,

v woEnve

dw

bge Std,

new mi

el

I # print min
new_ln # print a newline

. 4

a2_msg 5

Page 127

Appendix B — QtSpim Tutorial

When an appropriate instruction is determined, move the cursor to the instruction
address and right-click. The right-click will display the breakpoint menu as shown in
the image below.

E & H &8 a # » o @ I @
FP Regs Int Regs [16] Data Text
Int Regs [16] B & Text [=RE]
[UUSUUUUS] ESOUUUUY auuiu 99, ed; % 7 T EuuIu vaz vaI 9 W CIv]
rC = 40002¢ ~ | [0040000c] 00041080 =11 $2, 54, 2 ; 186: =11 $v0 a0 2 . r
EPC =0 [00400010] 00c23021 addu $6, $6, $2 ¥ : addu $a2 $a2 $v0 ~
Cause =0 [00400014] 0Dc100009 jal 0x00400024 [main]) : jal main
BadVAddr = 0 [00400018] 00000000 nep :
Status = 3000££10 [0040001c] 3402000a ori $2, $0, 10 :
[00400020] 0000000c syscall 5 syscall 10 (exit)
HI =0 [00400024] 3c011001 1ui $1, 4037 [hdr]) hdr
Lo =0 [00400028] 34240040 ori $4, $§1, 64 [hdr]
[0040002c] 34020004 ori $2, $0, 4 ; 4
RO [r0] = 0 [00400030] 0000000c syscall i # print header
Rl [at] = 10010000 [00400034] 3c081001 1lui $8, 4097 [array] ; array # set §t0 addr of array
R2 [vO] = 4 [00400038] 3c011001 1ui $1, 4097 ¥ len # set $tl1 to length
R3 [vl] = O [0040003c] 8c29003c 1w 59, 60(51)
R4 [a0] = 10010040 [00400040] 84120000 1w 518, O(58) ; (St0) # set min, St2 to array
RS [mal] = Tffffadc [00400044] 8d130000 1w $19, 0($8) = (5t0) # set max, $t3 to array[0]
R6 [a2] 0400048] Bd0cO000 1w $12, 0(S$58) } (5c0) # get array(n]
R7 [a3] = O 040004c] 0192082a sit $1, $12, $18 ; 64: bge 5td, 5s2, NotMin # is new min?
R8 [t0] =0 [00400050] 10200002 beq $1, $0, 8 [NotMin-0x00400050]
R [t1] =0 [00400054] 000c92021 addu $18, $0, $§12 ; 65: move $§s2, Std # set new min
R10 [t2] = 0 [00400058] 026c082a =1t $1, $19, §12 ; 67: ble 5td4, 553, NotMax # is new max?
R11l [£3] =0 [0040005c] 10200002 beq $1, $0, 8 [NotMax-0x0040005c]
R12 [t4] = O [00400060] 000c9821 addu $19, $0, $12 ; 68: move 553, Std # set new max
R13 [t5] = O [00400064] 2129ffff addi $3, §3, -1 ; 71: sub $t1, $ti1, 1 # decrement counter
Rl4 [t6] = 0 [00400068] 25080004 addiu $8, 58, 4 ; 72: addu $t0, 5$t0, 4 # increment addr by word
R15 [t7] = 0 [0040006c] 1320£ff7 bne §2, $0, -36 [leop-0x0040006c]
R16 [s0] = O [004000701 3c011001 lui §1, 40697 [al_msg] ; 80: la 5a0, al_msg
R17 [s1] = 0 [of) ., §1, 105 [al_msg]
R18 [s2] = 0 [Of L, S0, 4 e i
R19 [s3] = 0 rof bsalect All ctrl+A 1 ; 82: "min = "
R20 [s4] = 0 [0f 4, $0, S18 ; 84
R21 [s5] = O [0/ Set Breakpoint , 0, 1 ; 85: 1i §v0, 1
R22 [s6€] = 0] Clear Breakpoint n ; 86 rscall # print min
R23 [s7] = 0 [0UgvuoscT SCUTTUUL —1ul-¥l, 4027 [new_ln] ; 88: la $al, new_1ln # print a newline
R24 [t8] = O [00400090] 34240067 ori $4, $1, 103 [new_ln]
R25 [t9] = O [00400094] 34020004 ori $2, SO, 4 ; 89:
R26 [k0] = 0 [004000%8] 0000000c syscall 7 90:
R27 [k1] = 0 -/ | [004000%c] 3c011001 1ui $1, 4097 [a2_m=g] FRdi =

Copyright 1990-2012, James R. Larus.
All Rights Reserved. ~
| SPIM is distributed under a BSD license. H
See the file README For a full copyright notice. -

To set a breakpoint, select the Set Breakpoint option. If a breakpoint has already been
set, it can be cleared by selecting the Clear Breakpoint option.

Page 128

Appendix B — QtSpim Tutorial

Once the breakpoint has been set, it will be highlighted with a small red icon such as an
N as shown in the following image. Note, different operating systems may use a
different icon.

E & H 4S8 o # b o @ I @
FP Regs Int Regs [16] Data Text

Int Regs [16] B 6@ Text @®
[UUSUUUUOT STAUUUUY audiu e, wdy 7 IUUT auUlu var val % w Shvp 2

2C =N0Ee | | [0040000c] 00041080 sl1 $2, $4, 2 ; 186: s11 $v0 $a0 2

EPC =0 [00400010] 00c23021 addu 56, $6, $2 ; 187: addu $aZ $a2 $vl ~

Cause =0 [00400014] 0c100009 jal 0x00400024 [main] ; 188: jal main

RaAVAdy =) [00400018] 00000000 nop ; 189: nop

Status = 3000££10 [0040001c] 34020002 eori $2, $0, 10 ; 191: 1i $v0 10
[00400020] 0000000c syscall i :

HI =0 [00400024] 3c011001 1lui $1, 4057 [hdr] ;

Lo =0 [00400028] 34240040 ori $4, $1, 64 [hdr]
[0040002c] 34020004 ori $2, $0, & i

RO [x0] =0 [00400030] 0000000c syscall ; # print header

Rl [at] = 10010000 [00400034] 3c081001 1lui $8, 4097 [array] ; array # set $t0 addr of array

Rz [v0] = 4 [00400038] 3c011001 1lui $1, 4097 ; len # set S5tl to length

R3 [vl] = 0 [0040003c] 8c28003c 1w $9, 60($1)

R4 [a0] = 10010040 [00400040] 84120000 1w $18, 0($8) ;7 59: 1w $s2, ($t0) # set min, $t2 to

R5 [al] = Tffffadc [00400044] 8d130000 1w $19, ©(58) ; 60; 1w $s3, ($t0) # set max, $t3 to

RE6 [a2] = ¢ [00400048] 8d0c0000 1w $12, 0($8) ; 62: 1w §t4, (5£0) # get array[n]

R7 [a3] =10 [0040004c] 0192082a slt $1, 512, $1s ; 64: bge S5t4d, $s2, NotMin # is new min?

R8 [t0] = 0 [00400050] 10200002 beq $1, $0, 8 [NotMin-0x00400050]

R [tl1l] =0 [00400054] 000c%021 addu $18, $0, $12 ; 65: move 552, S$t4d # set new min

R10 [t2] = 0O [00400058]1 026c082a slt $1, $19, S12 ; 67: ble 5t4, $s3, NotMax # is new max?

R11 [t3] = 0 [0040005c] 10200002 beq $1, $0, 8 [NotMax-0x0040005c]

R12 [t4] = 0 [00400060] 000c9%321 addu $19, $0, $12 ; 68: move 553, S5td # set new max

R13 [t5] = 0 [00400064] 2129ffff addi $9, 59, -1 ;i 71: sub $t1, $t1, 1 # decrement counter

R1l4 [t6] = 0 [00400068] 25080004 addiu $8, $8, 4 ; 72: addu 5t0, $t0, 4 # increment addr by word

R15 [t7] = 0 [0040006c] 1520£ff7 bne $9, $0, -36 [loop-0x0040006&c]

R16 [s0] = O N [00400070] 3c 001 1lui $1, 4097 [al_msg] ; 80: la 5al, al_msg

R17 [=1] = 0 [00400074] 34240069 ori $4, $1, 105 [al_msgq]

R18 [s2] = 0 [00400078] 34020004 ori $2, $0, 4 FoaBdn s L 4

R19 [s3] = O [0040007c] 0000000c syscall i B2: sy # print "min = "

R20 [s4] = 0O [00400080] 00122021 addu $4, $0, $18 ; 84: m Y, §52

R21 [s5] = O [00400084] 34020001 ori $2, $0, 1 ; 85: 1 1

R22 [s6] = 0 [00400088] 0000000c sysecall 7 iBhz: 8 # print min

R23 [s7] = 0 [0040008c] 3c011001 1lui $1, 4097 [new_ln] 78023 new_ln # print a newline

R24 [t8] = O [00400030] 34240067 ori $4, $1, 103 [new_ln]

R25 [t9] = 0 [00400094] 34020004 ori $2, $0, & ; 89: 1i $v0, 4

R26 [kO] = O [00400098] 0000000c syscall ; 90:

R27 [k1] = 0 -/ | [0040009¢c] 3c011001 1lui $1, 4097 [a2_msg] ; 92: la $al, a2 _msg -

Copyright 1990-2012, James R. Larus.
All Rights Reserved. -
SPIM is distributed under a BSD license. I ‘
See the file README for a full copyright notice. =

Select the Run/Continue option (as described in section 13.4.5) which will execute the
program up to the selected breakpoint.

Page 129

Appendix B — QtSpim Tutorial

When program execution reaches the breakpoint, it will be paused and a Breakpoint
dialog box displayed as shown in the below image.

& Breakpoint

Execution stopped at breakpoint at 0x0

I Continue | |Single Step| | Abort

The program execution can be halted by selecting the Abort box. The breakpoint can be
ignored, thus continuing to the next breakpoint or program termination, whichever
comes first.

Page 130

Appendix B — QtSpim Tutorial

However, typically the Single Step box will be selected upon entering the single step
mode. The following image shows the result of selecting Single Step. Note, the
highlighted instruction represents the next instruction to be executed and thus has not
yet been executed.

E & B & o # » 0 @ I @

FP Regs Int Regs [16] Data Text
Int Regs [16] B ® Text =R
CUUSUUUUD T SR aUTUU Y e ey e FTUTT auaTuvaE v s T vy -
BC = 4oooTo | [0040000c] 00041080 s11 $2, $4, 2 ; 186: s11 $v0 $a0 2
EPC = 400070 [00400010] 00c23021 addu $6, $6, §2 ; 187: addu $a2 $a2 $v0 ~
Canse =24 [00400014] 0c100009 Jjal 0x00400024 [main] ; 188: jal main
A [00400018] 00000000 nop ; 189: nop
Status = 3000££10 [0040001c] 3402000a ori $2, $0, 10 ; 191: 1i $v0 10
[004000201 0000000c syscall ; 192: syscall # syscall 10 (exit)
HI 0 [00400024] 3c011001 lui $1, 4097 [hdr] ; 45: 1a Sa0, hdr
Lo 0 [00400028] 34240040 ori $4, $1, 64 [hdr]
[0040002c] 34020004 ori $2, $0, 4 i 4
RO [xD] = O [004000301 0000000c syscall - # print header
Rl [at] = O [00400034] 3c081001 lui $8, 4057 [array] i array # set $t0 addr of array
R2 [vD] = 4 [00400038] 3c011001 1lui $1, 4097 ; len # set $tl1 to length
R3 [v1] = O [0040003c] 8c29003c 1w $9, 60(51)
R4 [a0] = 10010040 (004000401 84120000 1w $18, 0($8) ; 59: 1w $s2, ($t0) # set min, 5t2 to arrayl0] m
RS [al] = Tffffadc [00400044] 84130000 1w $19, 0($8) ; 60: 1w §s3, ($t0) # set max, S$t3 to array[0]
R6 [mz] = TEfffa54 -|| [0D400048] 8400000 1w $12, 0($8) ; 62: 1w 5td, ($t0) # get array(n]
R7 [a3] = O [0040004c] 0192082a slt $1, $12, §18 ; 64: bge $td, §s2, NotMin # is new m
R8 [t0] = 1001003c [00400050] 10200002 beq $1, $0, 8 [NotMin-0x00400050]
R? [E1l] = O [00400054] 000c9021 addu $18, $0, §$12 ; 65: move $s2, $td # set new min
R1D [t2] = O [00400058] 026cD82a slt $1, $19, $12 ; 67: ble $td4, $s3, NotMax # is new max?
R11 [t3] = O [0040005c] 10200002 beq $1, $0, 8 [NotMax-0x0040005c]
Rlz [t4] = d [004000601 000c9821 addu $19, $0, $12 ;/ B8: move 553, 5td # set new max
R13 [E5] = O [00400064] 2129ffff addi $9, $9, -1 ; 71: sub §t1, $t1, 1 # decrement counter
R14 [t6] = O [00400068] 25080004 addiu $8, $8, 4 ; 72: addu $t0, $t0, 4 # increment addr by word
R15 [t7] = O [0040006c] 1520fff7 bne $9, $0, -36 [loop-0x0040006c]
Rl6é [s0] = O N [00400070] 3c011001 1lui $1, 4057 [al msg] 80: la Sall, al i
R17 [s1] = 0 [00400074] 34240069 ori $4, $1, 105 [al_msg]
R18 [s2] = 7 [00400078] 34020004 ori $2, $0, 4 ; B1: 1i $v0, 4
R19 [s3] = 3d [0040007c] 0000000c syseall ; 82: syscall # print "min = "
R20 [s4] = 0 [00400080] 00122021 addu $4, $0, $18 ; B4: move $a0, §s2
R21 [85] = 0 || [oo4000841 34020001 orxi $2, $0, 1 SR lor e B
R22 [s6] = 0 [00400088] 0000000c syscall ; 86: syscall # print min
R23 [s7] = 0 [0040008c] 3c011001 1lui $1, 4097 [new_1n] ; 88: la $a0, new_ln # print a newline
R24 [t8] = 0 [00400090] 34240067 ori $4, $1, 103 [new_ln]
R25 [t5] = O [00400094] 34020004 ori $2, $0, 4 ; B9: 1i $v0, 4
R26 [k0] = 0 [00400098] 0000000c syscall ; 90: syscall
R27 [kl] = 0 ~/| [0040009c] 3c011001 1lui $1, 4097 [a2_msg] ; 92: la $a0, a2 msg -
Copyright 1990-2012, James R. Larus. -
All Rights Reserved.
SPIM is distributed under a BSD license. H
See the file README For a full copyright notice. |
Running

Page 131

Appendix B — QtSpim Tutorial

Page 132

14.0 Appendix C — MIPS Instruction Set

This appendix presents a summary of the MIPS instructions as implemented within the
QtSpim simulator. The instructions are grouped by like-operations and presented
alphabetically.

The following table summarizes the notational conventions used.

Operand Notation | Description

Rdest Destination operand. Must be a register. Since it is a
destination operand, the contents will be over written
with the new result.

FRdest Destination operand. Must be a floating-point
register. Since it is a destination operand, the
contents will be over written with the new result.

Rsrc Source operand. Must be a register. Register value
is unchanged.
FRsrc Source operand. Must be a floating-point register.
Register value is unchanged.
Src Source operand. Must be a register or an immediate
value. Value is unchanged.
Imm Immediate value
Mem Memory location. May be a variable name or an

indirect reference.

Refer to the chapter on Addressing Modes for more information regarding indirection.

Page 133

Appendix C — MIPS Instruction Set

14.1 Arithmetic Instructions

Below are a summary of the basic integer arithmetic instructions.

abs Rdest, Rsrc Absolute Value
Sets Rdest = absolute value of integer in
Rsre

add Rdest, Rsrc, Src Addition (with overflow)

Sets Rdest = Rsrc + Src (or imm)

addu Rdest, Rsrc, Src Addition (without overflow)
Sets Rdest = Rsrc + Src (or imm)

div Rsrcl, Rsrc2 Divide (with overflow)
Set $lo = Rsrc / Src (or imm)
Remainder is placed in $hi

divu Rsrcl, Rsrc2 Divide (without overflow)
Set $lo = Rsrc / Src (or imm)
Remainder is placed in $hi

div Rdest, Rsrc, Src Divide (with overflow)
Sets: Rdest = Rsrc / Src (or imm)

divu Rdest, Rsrc, Src Divide (without overflow)
Sets: Rdest = Rsrc / Src (or imm)

mul Rdest, Rsrc, Src Multiply (without overflow)
Sets: Rdest = Rsrc (Src (or imm)

mulo Rdest, Rsrc, Src Multiply (with overflow)
Sets: Rdest = Rsrc * Src (or imm)

Page 134

mulou

mult

multu

neg

rem

remu

sub

subu

Rdest,

Rsrcl,

Rsrcl,

Rdest,

Rdest,

Rdest,

Rdest,

Rdest,

Rsrc,

Rsrc2

Rsrc2

Rsrc

Rsrc,

Rsrc,

Rsrc,

Rsrc,

Src

Src

Src

Src

Src

Appendix C — MIPS Instruction Set

Unsigned Multiply (with overflow)
Sets: $lo = Rsrc * Src (or imm)

Multiply
Sets $hi:$lo = Rsrc / Src (or imm)

Unsigned Multiply
Sets $hi:$lo = Rsrc / Src (or imm)

Negate Value (with overflow)
Rdest = negative of integer in register
Rsrc

Remainder after division
Rdest = remainder from Rsrc / Src (or
imm)

Unsigned Remainder
Rdest = remainder from Rsrc / Src (or
imm)

Subtract (with overflow)
Rdest = Rsrc — Src (or imm)

Subtract (without overflow)
Rdest = Rsrc — Src (or imm)

Page 135

Appendix C — MIPS Instruction Set

14.2

Comparison Instructions

Below is a summary of the compare and set instructions. Programmers generally use
the conditional branch and jump instructions as detailed in the next section.

seq

sge

sgeu

sgt

sgtu

sle

sleu

Page 136

Rdest,

Rdest,

Rdest,

Rdest,

Rdest,

Rdest,

Rdest,

Rsrcl,

Rsrcl,

Rsrcl,

Rsrcl,

Rsrcl,

Rsrcl,

Rsrcl,

Src2

Src2

Src2

Src2

Src2

Src2

Src2

Set Equal
- Sets register Rdest to 1 if register Rsrcl
equals Src2 and to 0 otherwise

Set Greater Than Equal

- Sets register Rdest to 1 if register Rsrcl
is greater than or equal Src2 and to 0
otherwise

Set Greater Than Equal, Unsigned

- Sets register Rdest to 1 if register Rsrcl
is greater than or equal to Src2 and to 0
otherwise

Set Greater Than
- Sets register Rdest to 1 if register Rsrcl
is greater than Src2 and to 0 otherwise

Set Greater Than, Unsigned
- Sets register Rdest to 1 if register Rsrcl
is greater than Src2 and to 0 otherwise

Set Less Than Equal

- Sets register Rdest to 1 if register Rsrcl
is less than or equal to Src2 and to 0
otherwise

Set Less Than Equal, Unsigned

- Sets register Rdest to 1 if register Rsrcl
is less than or equal to Src2 and to 0
otherwise

slt Rdest, Rsrcl,

slti Rdest, Rsrcl,

sltu Rdest, Rsrcl,

sltiu Rdest, Rsrcl,

sne Rdest, Rsrcl,

Src2

Imm

Src2

Imm

Src2

Appendix C — MIPS Instruction Set

Set Less Than
- Sets register Rdest to 1 if register Rsrcl
is less than to Src2 and to 0 otherwise

Set Less Than, Immediate

- Sets register Rdest to 1 if register Rsrcl
is less than or equal to Imm and to 0
otherwise

Set Less Than, Unsigned
- Sets register Rdest to 1 if register Rsrcl
is less than to Src2 and to 0 otherwise

Set Less Than Unsigned, Immediate

- Sets register Rdest to 1 if register Rsrcl
is less than Src2 (or Imm) and to 0
otherwise

Set Not Equal
- Sets register Rdest to 1 if register Rsrcl
is not equal to Src2 and to 0 otherwise

14.3 Branch and Jump Instructions

Below are a summary of the basic conditional branch and jump instructions.

b 1label

bczt label

Branch instruction
- Unconditionally branch to the instruction
at the label

Branch Co-processor z True

- Conditionally branch to the instruction at
the label if co-processor z's condition flag
is true (false)

Page 137

Appendix C — MIPS Instruction Set

beczf

beq

beqgz

bge

bgeu

bgez

label

Rsrcl,

Rsrc,

Rsrcl,

Rsrcl,

Rsrc,

bgezal Rsrc,

Page 138

Src2,

label

Src2,

Src2,

label

label

label

label

label

Branch Co-processor z False

- Conditionally branch to the instruction at
the label if co-processor z's condition flag
is true (false)

Branch on Equal

- Conditionally branch to the instruction at
the label if the contents of register Rsrcl
equals Src2

Branch on Equal Zero
- Conditionally branch to the instruction at
the label if the contents of Rsrc equals 0

Branch on Greater Than or Equal

- Conditionally branch to the instruction at
the label if the contents of register Rsrcl
are greater than or equal to Src2

Branch on G Than or Equal, Unsigned

- Conditionally branch to the instruction at
the label if the contents of register Rsrcl
are greater than or equal to Src2

Branch on Greater Than or Equal Zero

- Conditionally branch to the instruction at
the label if the contents of Rsrc are greater
than or equal to 0

Branch on Greater Than or Equal Zero
and Link

- Conditionally branch to the instruction at
the label if the contents of Rsrc are greater
than or equal to 0. Saves the address of
the next instruction in $ra

bgt

bgtu

bgtz

ble

bleu

blez

blezal

Rsrcl,

Rsrcl,

Rsrc,

Rsrcl,

Rsrcl,

Rsrc,

Rsrc,

Src2, label

Src2,

label

Src2,

Src2,

label

label

label

label

label

Appendix C — MIPS Instruction Set

Branch on Greater Than

- Conditionally branch to the instruction at
the label if the contents of register Rsrcl

is greater than Src2

Branch on Greater Than, Unsigned

- Conditionally branch to the instruction at
the label if the contents of register Rsrcl
are greater than Src2

Branch on Greater Than Zero

- Conditionally branch to the instruction at
the label if the contents of Rsrc are greater
than 0

Branch on Less Than or Equal

- Conditionally branch to the instruction at
the label if the contents of register Rsrcl
are less than or equal to Src2

Branch on Less Than or Equal, Unsigned
- Conditionally branch to the instruction at
the label if the contents of register Rsrcl
are less than or equal to Src2

Branch on Less Than or Equal Zero

- Conditionally branch to the instruction at
the label if the contents of Rsrc are less
than or equal to 0

Branch on Less Than Equal or Zero And
Link

- Conditionally branch to the instruction at
the label if the contents of Rsrc are greater
or equal to 0 or less than 0, respectively.
Saves the address of the next instruction
in register $ra

Page 139

Appendix C — MIPS Instruction Set

bltzal Rsrc,

blt

bltu

bltz

bne

bnez

Page 140

Rsrcl,

Rsrcl,

Rsrc,

Rsrcl,

Rsrc,

label

label

Src2,

Src2,

label

Src2,

label

label

label

label

Branch on Less Than And Link

- Conditionally branch to the instruction at
the label if the contents of Rsrc are less
than 0O or less than 0, respectively. Save
the address of the next instruction in
register $ra

Branch on Less Than

- Conditionally branch to the instruction at
the label if the contents of register Rsrcl
are less than Src2

Branch on Less Than, Unsigned

- Conditionally branch to the instruction at
the label if the contents of register Rsrcl
are less than Src2

Branch on Less Than Zero

- Conditionally branch to the instruction at
the label if the contents of Rsrc are less
than 0

Branch on Not Equal

- Conditionally branch to the instruction at
the label if the contents of register Rsrcl
are not equal to Src2

Branch on Not Equal Zero

- Conditionally branch to the instruction at
the label if the contents of Rsrc are not
equal to 0

Jump
- Unconditionally jump to the instruction
at the label

Appendix C — MIPS Instruction Set

jal label Jump and Link
- Unconditionally jump to the instruction
at the label or whose address is in register
Rsrc. Saves the address of the next
instruction in register $ra

jalr Rsrc Jump and Link Register
- Unconditionally jump to the instruction
at the label or whose address is in register
Rsrc. Saves the address of the next
instruction in register $ra

jr Rsrc Jump Register
- Unconditionally jump to the instruction
whose address is in register Rsrc

14.4 Load Instructions

Below are a summary of the basic load instructions.

la Rdest, address Load Address

- Load computed address, not the contents
of the location, into register Rdest

1b Rdest, address Load Byte
- Load the byte at address into register
Rdest. The byte is sign-extended by the
Ib, but not the /bu, instruction

1lbu Rdest, address Load Unsigned Byte
- Load the byte at address into register
Rdest. The byte is sign-extended by the
Ib, but not the /bu, instruction

1d Rdest, address Load Double-Word

- Load the 64-bit quantity at address into
registers Rdest and Rdest + 1

Page 141

Appendix C — MIPS Instruction Set

1h

lhu

1w

lwecz

1wl

lwr

ulh

Page 142

Rdest,

Rdest,

Rdest,

Rdest,

Rdest,

Rdest,

Rdest,

address

address

address

address

address

address

address

Load Halfword

- Load the 16-bit quantity (halfword) at
address into register Rdest. The halfword
is sign-extended

Load Unsigned Halfword

- Load the 16-bit quantity (halfword) at
address into register Rdest. The halfword
1s not sign-extended

Load Word
- Load the 32-bit quantity (word) at
address into register Rdest

Load Word Co-processor z
- Load the word at address into register
Rdest of co-processor z (0-3)

Load Word Left

- Load the left bytes from the word at the
possibly-unaligned address into register
Rdest

Load Word Right

- Load the right bytes from the word at the
possibly-unaligned address into register
Rdest

Unaligned Load Halfword

- Load the 16-bit quantity (halfword) at
the possibly-unaligned address into
register Rdest. The halfword is sign-
extended.

Appendix C — MIPS Instruction Set

ulhu Rdest, address Unaligned Load Halfword Unsigned
- Load the 16-bit quantity (halfword) at
the possibly-unaligned address into
register Rdest. The halfword is not sign-
extended

ulw Rdest, address Unaligned Load Word
- Load the 32-bit quantity (word) at the
possibly-unaligned address into register

Rdest

1i Rdest, imm Load Immediate
- Move the immediate imm into register
Rdest

lui Rdest, imm Load Upper Immediate

- Load the lower halfword of the
immediate imm into the upper halfword of
register Rdest. The lower bits of the
register is set to 0

14.5 Logical Instructions

Below are a summary of the basic logical instructions.

and Rdest, Rsrcl, Src2 AND

andi Rdest, Rsrcl, Imm AND Immediate

- Put the logical AND of the integers from
register Rsrcl and Src2 (or Imm) into
register Rdest

nor Rdest, Rsrcl, Src2 NOR

- Put the logical NOR of the integers from
register Rsrcl and Src2 into register Rdest

Page 143

Appendix C — MIPS Instruction Set

not

or

ori

rol

ror

sll

sra

srl

Page 144

Rdest,

Rdest,

Rdest,

Rdest,

Rdest,

Rdest,

Rdest,

Rdest,

Rsrc

Rsrcl,

Rsrcl,

Rsrcl,

Rsrcl,

Rsrcl,

Rsrcl,

Rsrcl,

Src2

Imm

Src2

Src2

Src2

Src2

Src2

NOT

- Put the bitwise logical negation of the
integer from register Rsrc into register
Rdest

OR
- Put the logical OR of the integers from
register Rsrcl and Src2 into register Rdest

OR Immediate
- Put the logical OR of the integers from
register Rsrcl and Imm into register Rdest

Rotate Left

- Rotate the contents of register Rsrcl left
by the distance indicated by Src2 and put
the result in register Rdest

Rotate Right

- Rotate the contents of register Rsrcl left
(right) by the distance indicated by Src2
and put the result in register Rdest

Shift Left Logical

- Shift the contents of register Rsrcl left
by the distance indicated by Src2 and put
the result in register Rdest

Shift Right Arithmetic

- Shift the contents of register Rsrcl right
by the distance indicated by Src2 and put
the result in register Rdest

Shift Right Logical

- Shift the contents of register Rsrcl right
by the distance indicated by Src2 and put
the result in register Rdest

Xor

xXori

14.6

Rdest, Rsrcl, Src2

Rdest, Rsrcl, Imm

Store Instructions

Appendix C — MIPS Instruction Set

XOR
- Put the logical XOR of the integers from
register Rsrcl and Src2 into register Rdest

XOR Immediate
- Put the logical XOR of the integers from
register Rsrcl and Imm into register Rdest

Below are a summary of the basic store instructions.

sb

sd

sh

sSw

SwWCz

swl

Rsrc,

Rsrc,

Rsrc,

Rsrc,

Rsrc,

Rsrc,

address

address

address

address

address

address

Store Byte
- Store the low byte from register Rsrc at
address

Store Double-Word
- Store the 64-bit quantity in registers Rsrc
and Rsrc + 1 at address

Store Halfword
- Store the low halfword from register
Rsrc at address

Store Word
- Store the word from register Rsrc at
address

Store Word Co-processor z
- Store the word from register Rsrc of co-
processor z at address

Store Word Left

- Store the left bytes from register Rsrc at
the possibly-unaligned address

Page 145

Appendix C — MIPS Instruction Set

swr Rsrc, address Store Word Right
- Store the right bytes from register Rsrc
at the possibly-unaligned address

ush Rsrc, address Unaligned Store Halfword
- Store the low halfword from register
Rsre at the possibly-unaligned address

usw Rsrc, address Unaligned Store Word
- Store the word from register Rsrc at the
possibly-unaligned address

14.7 Data Movement Instructions

Below are a summary of the basic data movement instructions. The data movement
implies data movement between registers.

move Rdest, Rsrc Move the contents of Rsrc to Rdest.
- The multiply and divide unit produces its
result in two additional registers, $hi and
$lo. These instructions move values to and
from these registers. The multiply, divide,
and remainder instructions described
above are pseudo-instructions that make it
appear as if this unit operates on the
general registers and detect error
conditions such as divide by zero or
overflow.

mfhi Rdest Move from $hi
- Move the contents of the hi register to
register Rdest

mflo Rdest Move from $lo

- Move the contents of the lo register to
register Rdest

Page 146

Appendix C — MIPS Instruction Set

mthi Rdest Move to $hi
- Move the contents register Rdest to the
hi register.
- Note, Co-processors have their own
register sets. This instruction move values
between these registers and the CPU's
registers.

mtlo Rdest Move to Slo
- Move the contents register Rdest to the
lo register.
- Note, Co-processors have their own
register sets. This instruction move values
between these registers and the CPU's
registers.

mfcl Rdest, FRsrc Move From Co-processor 1
- Move the contents of co-processor 1 float
register FRsrc to CPU integer register
Rdest

mfcl.d Rdest, FRsrcl Move Double From Co-processor 1
- Move the contents of floating-point
registers FRsrcl and FRsrc1+1 to CPU
integer registers Rdest and Rdest + 1

mtcl Rsrc, FRdest Move To Co-processor 1
- Move the contents of CPU integer
register Rsrc to co-processor 1 float
register FRdest

mtcl.d Rsrc, FRdest Move To Co-processor 1
- Move the contents of CPU integer
registers Rsrc and Rsrc+1 to co-processor
1 float registers Frdest and FRdest+1.

Page 147

Appendix C — MIPS Instruction Set

14.8 Floating-Point Instructions

The MIPS has a floating-point co-processor (numbered 1) that operates on single
precision (32-bit) and double precision (64-bit) floating-point numbers. This co-
processor has its own registers, which are numbered $0 - $f31. Because these registers
are only 32-bits wide, two of them are required to hold doubles. To simplify matters,
floating-point operations only use even-numbered registers - including instructions that
operate on single floats. Values are moved in or out of these registers a word (32-bits)
at a time by Iwel, swel, mtel, and mfel instructions described above or by the Ls, L.d,
s.s, and s.d pseudo-instructions described below. The flag set by floating-point
comparison operations is read by the CPU with its belt and belf instructions. In all
instructions below, FRdest, FRsrcl, FRsrc2, and FRsrc are floating-point registers.

abs.d FRdest, FRsrc Floating-point Absolute Value, Double
- Compute the absolute value of the
floating-point double in register FRsrc and
put it in register FRdest

abs.s FRdest, FRsrc Floating-point Absolute Value, Single
- Compute the absolute value of the
floating-point single in register FRsrc and
put it in register FRdest

add.d FRdest, FRsrcl, Floating-point Addition, Double
FRsrc2 - Compute the sum of the floating-point
doubles in registers FRsrc1 and FRsrc2
and put it in register FRdest

add.s FRdest, FRsrcl, Floating-point Addition, Single
FRsrc2 . Compute the sum of the floating-point
singles in registers FRsrcl and FRsrc2 and
put it in register FRdest

c.eq.d FRsrcl, FRsrc2 Compare Equa]j Double
- Compare the floating-point double in
register FRsrcl against the one in FRsrc2
and set the floating-point condition flag
true if they are equal

Page 148

Appendix C — MIPS Instruction Set

c.eq.s FRsrcl, FRsrc2 Compare Equal, Single
- Compare the floating-point single in
register FRsrc1 against the one in FRsrc2
and set the floating-point condition flag
true if they are equal

c.le.d FRsrcl, FRsrc2 Compare Less Than or Equal, Double
- Compare the floating-point double in
register FRsrc1 against the one in FRsrc2
and set the floating-point condition flag
true if the first is less than or equal to the
second

c.le.s FRsrcl, FRsrc2 Compare Less Than or Equal, Single
- Compare the floating-point single
precision in register FRsrcl against the
one in FRsrc2 and set the floating-point
condition flag true if the first is less than
or equal to the second

c.lt.d FRsrcl, FRsrc2 Compare Less Than, Double
- Compare the floating-point double in
register FRsrcl against the one in FRsrc2
and set the condition flag true if the first is
less than the second

c.lt.s FRsrcl, FRsrc2 Compare Less Than, Single
- Compare the floating-point single in
register FRsrc1 against the one in FRsrc2
and set the condition flag true if the first is
less than the second

cvt.d.s FRdest, FRsrc Convert Single to Double
- Convert the single precision floating-
point number in register FRsrc to a double
precision number and put it in register
FRdest

Page 149

Appendix C — MIPS Instruction Set

cvt.d.w FRdest, FRsrc

cvt.s.d

cvt.s.w

cvt.w.d

cvt.w.s

div.d

div.s

Page 150

FRdest,

FRdest,

FRdest,

FRdest,

FRdest,

FRdest,

FRsrc

FRsrc

FRsrc

FRsrc

FRsrcl,
FRsrc2

FRsrcl,
FRsrc2

Convert Integer to Double

- Convert the integer in register FRsrc to a
double precision number and put it in
register FRdest

Convert Double to Single

- Convert the double precision floating-
point number in register FRsrc to a single
precision number and put it in register
FRdest

Convert Integer to Single

- Convert the integer in register FRsrc to a
single precision number and put it in
register FRdest

Convert Double to Integer

- Convert the double precision floating-
point number in register FRsrc to an
integer and put it in register FRdest

Convert Single to Integer

- Convert the single precision floating-
point number in register FRsrc to an
integer and put it in register FRdest

Floating-point Divide, Double

- Compute the quotient of the floating-
point doubles in registers FRsrcl and
FRsrc2 and put it in register FRdest.

Floating-point Divide, Single

- Compute the quotient of the floating-
point singles in registers FRsrc1 and
FRsrc2 and put it in register FRdest.

Appendix C — MIPS Instruction Set

1.4 FRdest, address Load Floating-point, Double
- Load the floating-point double at address
into register FRdest

l.s FRdest, address Load Floating-point, Single
- Load the floating-point single at address
into register FRdest

mov.d FRdest, FRsrc Move Floating-point, Double
- Move the floating-point double from
register FRsrc to register FRdest

mov.s FRdest, FRsrc Move Floating-point, Single
- Move the floating-point single from
register FRsrc to register FRdest

mul.d FRdest, FRsrcl, Floating-point Multiply, Double
FRsrc2 _ Compute the product of the floating-
point doubles in registers FRsrc1 and
FRsrc2 and put it in register FRdest

mul.s FRdest, FRsrcl, Floating-point Multiply, Single
FRsrc2 _ Compute the product of the floating-
point singles in registers FRsrc1 and
FRsrc2 and put it in register FRdest

neg.d FRdest, FRsrc Negate, Double

- Store the floating-point double in register
FRdest at address

neg.s FRdest, FRsrc Negate, Single

Store the floating-point single in register
FRdest at address

s.d FRdest, address Store Floating-point Double

- Store the floating-point double in register
FRdest at address

Page 151

Appendix C — MIPS Instruction Set

s.s FRdest, address Store Floating-point, Single
- Store the floating-point single in register
FRdest at address
sub.d FRdest, FRsrcl, Floating-point Subtract, Double
FRsrc2

- Compute the difference of the floating-
point doubles in registers FRsrcl and
FRsrc2 and put it in register FRdest

sub.s FRdest, FRsrcl, Floating-point Subtract, Single
FRsrc2 - Compute the difference of the floating-
point singles in registers FRsrcl and
FRsrc2 and put it in register FRdest

14.9 Exception and Trap Handling Instructions

Below are a summary of the exception and trap instructions.

rfe Return From Exception
- Restore the Status register

syscall System Call
- Transfer control to system routine.
Register $v0 contains the number of the
system call

break n Break

- Cause exception 7.
- Note, Exception 1 is reserved for the
debugger

nop No operation
- Do nothing

Page 152

15.0 Appendix D — ASCII Table

This appendix provides a copy of the ASCII Table for reference.

Char | Dec | Hex Char | Dec | Hex Char | Dec | Hex Char | Dec | Hex
NUL| 0 | 0x00 spc 32 | 0x20 @ 64 | 0x40 : 96 | 0x60
SOH| 1 0x01 ! 33 | 0x21 A 65 | 0x41 a 97 | 0x61
STX | 2 | 0x02 " 34 | 0x22 B 66 | 0x42 b 98 | 0x62
ETX | 3 | 0x03 # 35 | 0x23 C 67 | 0x43 c 99 | 0x63
EOT | 4 | 0x04 $ 36 | 0x24 D 68 | O0x44 d 100 | 0x64
ENQ| 5 | 0x05 % 37 | 0x25 E 69 | 0x45 e 101 | 0x65
ACK| 6 | 0x06 & 38 | 0x26 F 70 | 0x46 f 102 | 0x66
BEL 7 | 0x07 ! 39 | 0x27 G 71 | 0x47 g 103 | 0x67

BS 8 | 0x08 (40 | 0x28 H 72 | 0x48 h 104 | 0x68
TAB| 9 | 0x09) 41 | 0x29 I 73 | 0x49 i 105 | 0x69

LF 10 | 0x0A * 42 | 0x2A J 74 | 0x4A j 106 | 0x6A

VT 11 | 0x0B + 43 | 0x2B K 75 | 0x4B k 107 | 0x6B

FF 12 | 0x0C , 44 | 0x2C L 76 | 0x4C 1 108 | 0x6C

CR | 13 | 0x0D - 45 | 0x2D M 77 | 0x4D m 109 | 0x6D

SO 14 | 0x0E . 46 | 0x2E N 78 | 0x4E n 110 | Ox6E

SI 15 | 0xOF / 47 | 0x2F (0] 79 | 0x4F 0 111 | 0x6F
DLE | 16 | 0x10 0 48 | 0x30 P 80 | 0x50 p 112 | 0x70
DC1 | 17 | 0x11 1 49 | 0x31 Q 81 | 0x51 q 113 | 0x71
DC2 | 18 | 0x12 2 50 | 0x32 R 82 | 0x52 r 114 | 0x72
DC3 | 19 | 0x13 3 51 | 0x33 S 83 | 0x53 s 115 | 0x73
DC4 | 20 | O0x14 4 52 | 0x34 T 84 | 0x54 t 116 | 0x74
NAK | 21 | Ox15 5 53 | 0x35 U 85 | 0x55 u 117 | 0x75
SYN | 22 | 0x16 6 54 | 0x36 v 86 | 0x56 v 118 | 0x76
ETB | 23 | 0x17 7 55 | 0x37 w 87 | 0x57 w 119 | 0x77
CAN | 24 | 0x18 8 56 | 0x38 X 88 | 0x58 X 120 | 0x78

Page 153

Appendix D — ASCII Table

EM | 25 | 0x19
SUB | 26 |0x1A
ESC | 27 | 0x1B
FS 28 | 0x1C
GS 29 | 0x1D
RS 30 | Ox1E
UsS 31 | Ox1F

57 | 0x39 Y | 89 | 0x59 y | 121 | 0x79
58 | 0x3A Z | 90 |0x5A z | 122 |0x7A
59 | 0x3B [91 | 0x5B { | 123 | 0x7B
60 | 0x3C \ 92 | 0x5C | | 124 | 0x7C
61 | 0x3D] 93 | 0x5D y | 125 | 0x7D
62 | 0x3E A | 94 |0x5E ~ | 126 | 0X7E
63 | 0X3F 95 | O0x5F DEL | 127 | 0x7F

For additional information and a more complete listing of the ASCII codes (including

the extended ASCII characters), refer to http://www.asciitable.com/

Page 154

http://www.asciitable.com/

16.0 Alphabetical Index

L0 GO PRSPPI 26
ADS. e 30
activation record.........cceeeeeeerveeenneeeenne 71
AAd. e 29
Addressing Modes...........ccecereeuieeennnennn. 53
AU .ot 29
Allocate Memory........cccceeeeveeeeveeeeennnnne 84
ANttt 33
Architecture Overview.......c..cccceeeuveennnee. 3
Argument Transmission...........ccccuveveeeee. 68
Argument Transmission Conventions....68
Assembler Directives.........c.ccceeveereennnennn 19
Assembly Process.........ccceeveeevvveeeeeennnnen. 19
assembly source file.........cccccveereniennnee. 19
Bare-Instructions.......cc.coeeeeeuemeereeeeeeeeeen. 25
DEQ ittt 40
D 40
DEOU...ceviiiieeieeeeciecee e 40
DGl 40
DEtU. et 40
biased exponent.........cccccueeeeeeeivieeeeeeenns 15
DlEiiieteee e 40
BleU.. i 40
DIt 40
BItUL e 40
DNE...eiiieeeeceeee e 40
DY et 4
byte addressable..........c.coecveeviierieniieniienns 4
Call Frame.........ccoceevieniiiennieeeiieeeee, 71
Call-by-Reference...........cccceeevercreenueennne. 68
Call-by-Value........cceoeuveevirieeeieeiiieeeen. 68
Caller Conventions..........ccceeevveeervreeennne 66

Column-Major.......cceeeeveeecrieeeeeeenreeenn. 95
COMMENS....cocoveieiieirieiieeeieeeieeeeeene 19
Conditional Control Instructions............ 39
COnStantS.......eeereeeeririeiieiieeee e 22
Control Instructions.........cc.cceevcveeeerueeenne 39
CPU 1egiSter.....ccevevurreeeeiiiiirrrreeeeeeeeeeeenns 6
Data Declarations............ccceeveeeecuveennnee. 20
Data Movement..........ccceeeeveeeeeeencnnneenn. 26
Data representation........ccccceeeeeeeeeeeeneennnn. 11
data tYPeS..cceeeeeieeieeeieeieeere et 4
Destination operand............cccccvveeeuvvnennn. 25
Direct addressing mode............cccecuveeenee 53
displacement addressing...........cccccueeenee 54
iVttt 29f
QIVU. et 30
double.....coiiriiieiiee 4
double-precision..........cceeevveeeeieeineeenennn. 43
end directive........ccoceeveeveeeneeenieeenneeenne. 66
entry point directive.........cccceeeeveeecueeennn. 66
exception Cause register......c.oooveeereruvennnee 8
File CloSe.....ccceeiiinieiieeieeeeeeeeeee 84
File Open......cceoveecieeieeieeeeieeeeree e 84
file open access flags........cccoceevveeeeennnee. 84
File Read.......ccccoceeveevieniininieniciceeee 84
File WIite.....oooiiiiiiiiieeeeteeeeeeee 84
£10AL et 4
Floating-Point Arithmetic Operations....47
Floating-Point Data Declarations........... 22
Floating-Point Data Movement.............. 43
Floating-Point Instructions..................... 42
Floating-Point Register Usage................ 42
floating-point registers..........cccceeruverveennen. 6

Page 155

Alphabetical Index

Floating-point Representation................ 14
FPU CO-ProCessOr......cccoeeuuvevveveeeeeeeeeeennnns 9
FRAESt ..ottt 26
FRSIC...eeiiiiiiiieeeieececececceecee 26
Function Results..........ccceceeriieiinniennnnee. 69
global declaration directive.................... 66
halfword.........coceevervienieieieeeeeeeee 4
REAP....ieiieieeeeee s 6
IEEE 32-bit Representation.................... 14
IEEE 64-bit Representation.................... 17
IEEE 754 32-bit floating-point standard 14
IF statement.........cccceeeveeremneeeerinnnneccennne 39
Immediate addressing mode................... 53
Immediate value.........cccceeveeerveenneeennne 26
indirect memory access..........cceecueeeennnen. 54
INdirection......c..cccceeveereenienseeneenereneene 54
Integer / Floating-Point Conversion
INStructions.......coccceeeveveereieeeeeeiiiieeeennne 45
Integer / Floating-Point Register Data
MOVEMEeNL.....cccveieiieiniieiieeeieeeieeeeeene 44
Integer Data Declarations.........ccc.c.ce..... 20
integer NUMDETS........ccceeeveeerireeerereeennns 11
INteger re@iStersS.....cccvvvvvvmmrrveeeeeeeeeeeeennnnn. 6
j<label>......coovievviieiiiiiiieeeeeee e 39
jal <procName>.........cccoceeveveeecvreeeeeennnns 67
JE BTttt 67
L<EYPE> et 27
L@ 27
Labels......ooiiieiiiieieeee e 23
D 27
Leaf procedures.........cccoeeveeeecrveeeeinveeennns 65
Least Significant Byte.........ccccceevuveeeuneenn. 4
Thee 27
L 27
Linkage.....ccoceevienieenieeieieeeeeeeeeeeee 67
little-endian.........coceeveeeveeneenennieneeneene 4f.
Load and Store.........ccceeveeevueeniernieeneeenns 26
logical AND operation............cccccuveennnn. 34

Page 156

logical NOR operation............ccccveeneeee. 34
logical NOT operation..........cccecveeennen. 34
logical OR operation............ccccveeeevveennne 34
logical XOR operation............c.ceeveruneen. 34
IW e 27
main function/procedure...........cccoc....... 23
MEIMIOTY...ceiteeiiiieeiirieeeeeeeeeeereeereaaaeees 4
MeMOTY layOoUL.......cccveeeveerierrieenienreeennnne 6
MFCT. i 44
MECL.dueiniiiieiei e 44
MFhi.cc 28
MFL0. i 28
MIPS Calling Conventions..................... 65
miscellaneous registers..........cocceeeevveernnnen. 8
Most Significant Byte........ccccoeceevvervennnnen. 4
INOVE....utiiiiieeiieeenieeseteeeeeirneeeeessmnneeeens 28
MOVE.....oiiiiiiiieeeeeeteeeeeeeeeeee e 28
INECL..eiiiiiiiieceeece e 44
MECL.dueeiiiieiieeeeeeeee e 45
MhiL e 28
11110 (0 SO TUSRR USSP 28
INUL ettt 29
MU0 et 29
INULOU. ettt 29
UL e 29
Multi-dimension Array Implementation.93
Multiple push's/pop’s......cccccueeeeeercuvvennnnn. 61
UL e 29
TIEE...eeeeeiueeerenetererteeeireeeeesnraeeeeeeennraeeeeas 30
Non-leaf procedures.........ccccceeeeeuveennnee. 65
1110) SRR PP PPIROPPPPRRRRRRIRE 34
normalized scientific notation................ 15
110] PP O P PPPPRRRRRIRE 34
Notational Conventions............cccecvveeennne 25
Operand Notation...........cccveeeeeeeeveeeeenn. 25
OPETANAS....cuvveereeererieenieeieesreesaeeneeeenns 25
(0701211 110] 1 FO U 25
OF.eitteeireeeiteeette e reeeereeesereesenreesemrneeeeeas 34

POD.ciiiiie 61
POP OPETatiON.....ccereuuveeeeerereeeeaneaaieneeenee 59
Primary Storage........ccccceveeeeeievrieniiiinnnnnnn. 3
Print Character..........coceevveeneencieenneeennns 84
Print Double........cccccoeviiniiiniiniieiee. 83
Print Float......cccoecveevieenienieeeieeeeieeee 83
Print Integer.........ccovvveervveeniieeiiiiieeeenn. 83
Print String.....cccceeeeeeveeeeneiieeeieeieeeeeees 83
Procedure/Function Format.................... 66
Procedures/Functions............ccceevveeenneen. 65
Program Code.........ccecueevierieenieeeniieens 23
ProOgram COUNLET......cceuureerrrrurreerennreeeennnnnne 8
Program Template........c.cccceeevveeeniueeennne 24
Pseudo-Instructions..........ccceeveeeevveeennee. 25
PUSh...eiiiiie 60
push operation.........ccceeeeveeeerieeenineeennne 59
QtSpim Program Formats..........c.cccceeeee. 19
QtSpim System Services.......cccccceeeennee.. 83
RAM. ..ottt 3
Random Access Memory...........cccceuveeen. 3
Read Character..........cceecveeeevieeinieeennnee. 84
Read Double.........cccocueviivennieiiinienne 84
Read Float......ccccovieiiienieeiiieeceeeeene 83
Read Integer........ccocveeeveeeeeeniienieeieeennennn 83
Read String........cccoeveevieiieiniiieiieeeee 84
Recursion.........ccoeeveeevieeniienniienceeeeen. 99
recursive relation..........cccceeeeveeeeeneenenne 99
TEGISTOT...eeeeieerreeeeereeeeeieeeeeeeeeeeeeeeeees 6
regiSter NAMES....ceeeeeurerreeeeereereienaaaaaaaennns 7
TEGISIET USAZL....eveeeeeurreeeeereeeeaesrraaeneneeee 7
Registers Preservation Conventions....... 69
TOIML..cetuereeenreeeireeereeeereeeereeeereeeesesnnnees 30
TEIMIUL . .eeeeennreerneeennreeenteeeneeeeneeeeennnneeeens 30
reserved registers.......ccovvveeeeercveeenureennnnens 7
TOL ettt 34
TOT.c.uutieiireennreenneeeerteeeesennreeeeseennneeeeenns 34
ROW-MajOr......uuvtiieeiiiiiiiieiiiieiieeneieniieaenns 94
SLYPE eeeeeeeeeeeeriree e e e eeeeeeeeens 27

Alphabetical Index

] o JO PSSR 27
Secondary Storage........ccoceeeeveeeeveeeeinneeennns 3
] 1 PO SRR 27
SIENE...ciiieeiieeieeeeeie et 11
single-precision........ccccceeveervieenieeenieeneenn. 43
SIL e 34
Source operand..........ccceeevveeeenrreeeeennnnen. 25
ST@.eeiuuereeeeerurreeeenurreeseeesaasnnnnnrrereaeeeeeeens 34
] PO SPRRPRP 34
StACK. .veiieeieeeeeee e 59
Stack Dynamic Local Variables............. 71
Stack Implementation............cccceeuveeennnee. 60
stack pointer register........ccceevveeerveeerunennn. 6
SLALUS TOZISIET...ceeeeueeeeeeireeeeeirrrreeeeeeeeennn 8
String Data Declarations.........c...ccceeu.... 21
SUD...eiieiecteeee e 29
SUDUL..eevieiiiee et 29
SW attteeeenrteeeennreeeesaireeesesrreeesssnreeeessnnnnnee 27
Terminate.......cceeeereureeeeniveeeeniiereeesssnnnns 84
two's complement............ccecveeeureennnnen. 12 f.
Unconditional Control Instructions........ 39
uninitialized data.........c.ccceevreveeenineennnnen. 6
UNSIGNEd.....ccoovieeieeeieeereeere e 11
void function........cceeeveeeieeceeniecceenieenns 65
A 7/0) (¢ IO USSR 4
XOT.eteeeeuureeeeanreeeesnnnreeeennsreesssnsseeessssnnnnnes 34
ASCHiuurreeririireeerrireeeessineeeeserreeeessaaneees 20
ASCLIZu eueeeeeeeeiieeeeerieeeeeeeee e e 20
)4 (PRSPPIt 20
Qe 43
4 1 7= PRSP 20
double......cueoeiieiieieee e 20
end <functionName>.........c.cccceeeeerreeenns 66
(2311 S PP U PP URRRURURRPPPPI 23
£10ALtc.ee et 20
BLODL...ceie, 23
half....ooiiee e 20
S et eeurtee e e trte e e et e e e e rrte e e e artee e e nteeeesnnane 43

Page 157

Alphabetical Index

SPACE <M .eiiiiiiireeeseiireeeesiireeeessrneeesesenns 20
(2D« U 23
A770) (« IO RPNt 20
BCAUSE. ...ttt 8
SRt 8

Page 158

	1.0 Introduction
	1.1 Additional References

	2.0 MIPS Architecture Overview
	2.1 Architecture Overview
	2.2 Data Types/Sizes
	2.3 Memory
	2.4 Memory Layout
	2.5 CPU Registers
	2.5.1 Reserved Registers
	2.5.2 Miscellaneous Registers

	2.6 CPU / FPU Core Configuration

	3.0 Data Representation
	3.1 Integer Representation
	3.1.1 Two's Complement
	3.1.2 Byte Example
	3.1.3 Halfword Example

	3.2 Unsigned and Signed Addition
	3.3 Floating-point Representation
	3.3.1 IEEE 32-bit Representation
	3.3.1.1 IEEE 32-bit Representation Examples
	3.3.1.1.1 Example → -7.7510
	3.3.1.1.2 Example → -0.12510
	3.3.1.1.3 Example → 4144000016

	3.3.2 IEEE 64-bit Representation

	4.0 QtSpim Program Formats
	4.1 Assembly Process
	4.2 Comments
	4.3 Assembler Directives
	4.4 Data Declarations
	4.4.1 Integer Data Declarations
	4.4.2 String Data Declarations
	4.4.3 Floating-Point Data Declarations

	4.5 Constants
	4.6 Program Code
	4.7 Labels
	4.8 Program Template

	5.0 Instruction Set Overview
	5.1 Pseudo-Instructions vs Bare-Instructions
	5.2 Notational Conventions
	5.3 Data Movement
	5.3.1 Load and Store
	5.3.2 Move

	5.4 Integer Arithmetic Operations
	5.4.1 Example Program, Integer Arithmetic

	5.5 Logical Operations
	5.5.1 Shift Operations
	5.5.1.1 Logical Shift
	5.5.1.2 Arithmetic Shift
	5.5.1.3 Shift Operations, Examples

	5.6 Control Instructions
	5.6.1 Unconditional Control Instructions
	5.6.2 Conditional Control Instructions
	5.6.3 Example Program, Sum of Squares

	5.7 Floating-Point Instructions
	5.7.1 Floating-Point Register Usage
	5.7.2 Floating-Point Data Movement
	5.7.3 Integer / Floating-Point Register Data Movement
	5.7.4 Integer / Floating-Point Conversion Instructions
	5.7.5 Floating-Point Arithmetic Operations
	5.7.6 Example Programs
	5.7.6.1 Example Program, Floating-Point Arithmetic
	5.7.6.2 Example Program, Integer / Floating-Point Conversion

	6.0 Addressing Modes
	6.1 Direct Mode
	6.2 Immediate Mode
	6.3 Indirection
	6.3.1 Bounds Checking

	6.4 Examples
	6.4.1 Example Program, Sum and Average
	6.4.2 Example Program, Median

	7.0 Stack
	7.1 Stack Example
	7.2 Stack Implementation
	7.3 Push
	7.4 Pop
	7.5 Multiple push's/pop's
	7.6 Example Program, Stack Usage

	8.0 Procedures/Functions
	8.1 MIPS Calling Conventions
	8.2 Procedure/Function Format
	8.3 Caller Conventions
	8.4 Linkage
	8.5 Argument Transmission
	8.5.1 Call-by-Value
	8.5.2 Call-by-Reference
	8.5.3 Argument Transmission Conventions

	8.6 Function Results
	8.7 Registers Preservation Conventions
	8.8 Miscellaneous Register Usage
	8.9 Summary, Callee Conventions
	8.10 Call Frame
	8.10.1.1 Stack Dynamic Local Variables

	8.11 Procedure Examples
	8.11.1 Example Program, Power Function
	8.11.2 Example program, Summation Function
	8.11.3 Example Program, Pythagorean Theorem Procedure

	9.0 QtSpim System Service Calls
	9.1 Supported QtSpim System Services
	9.2 QtSpim System Services Examples
	9.2.1 Example Program, Display String and Integer
	9.2.2 Example Program, Display Array
	9.2.3 Example Program, Read Integer
	9.2.4 Example Program, Read String

	10.0 Multi-dimension Array Implementation
	10.1 High-Level Language View
	10.2 Row-Major
	10.3 Column-Major
	10.4 Example Program, Matrix Diagonal Summation

	11.0 Recursion
	11.1 Recursion Example, Factorial
	11.1.1 Example Program, Recursive Factorial Function
	11.1.2 Recursive Factorial Function Call Tree

	11.2 Recursion Example, Fibonacci
	11.2.1 Example Program, Recursive Fibonacci Function
	11.2.2 Recursive Fibonacci Function Call Tree

	12.0 Appendix A – Example Program
	13.0 Appendix B – QtSpim Tutorial
	13.1 Downloading and Installing QtSpim
	13.1.1 QtSpim Download URLs
	13.1.2 Installing QtSpim

	13.2 Working Directory
	13.3 Sample Program
	13.4 QtSpim – Loading and Executing Programs
	13.4.1 Starting QtSpim
	13.4.2 Main Screen
	13.4.3 Load Program
	13.4.4 Data Window
	13.4.5 Program Execution
	13.4.6 Log File
	13.4.7 Making Updates

	13.5 Debugging

	14.0 Appendix C – MIPS Instruction Set
	14.1 Arithmetic Instructions
	14.2 Comparison Instructions
	14.3 Branch and Jump Instructions
	14.4 Load Instructions
	14.5 Logical Instructions
	14.6 Store Instructions
	14.7 Data Movement Instructions
	14.8 Floating-Point Instructions
	14.9 Exception and Trap Handling Instructions

	15.0 Appendix D – ASCII Table
	16.0 Alphabetical Index

