Extra Difficulty Assignment: Recursive Real Numbers

For this assignment, I want you to complete the hardest task, namely 10. However, I suggest you work all the other tasks first.

We use the following notation.

 \mathbb{N} = the positive integers. \mathbb{Q} = the rational numbers.

 \mathbb{R} = the real numbers.

 $\mathbb{I} = [0, 1] = \text{the unit interval } \{ x \in \mathbb{R} : 0 \le x \le 1 \}.$

By an abuse of notation, we sometimes identify a numeral with the number it represents.

We define a language $L \subseteq \Sigma^*$, where Σ is an alphabet, to be *recursive*, or *decidable*, if some machine decides L. That machine can be implemented as a program P_L which accepts every $w \in L$, and no other strings over Σ . That is, if the input of P_L is a string $w \in \Sigma^*$, P_L must halt, and its output is 1 if $w \in L$, 0 otherwise.

We define a set of numbers $\mathbb{A} \subseteq \mathbb{N}$ to be *recursive* if the set of numerals (in any base) for members of \mathbb{A} is a recursive language. A set of numbers is defined to be recursive if the set of numerals (in any given base) of members of \mathbb{A} is a recursive language.

We define a real number x to be *recursive*, or *computable*, if there is a recursive function D_L such that $D_L(n)$ is the n^{th} digit of the binary¹ expansion of x.

The Rice Number of a Language

If $\mathbb{A} \subseteq \mathbb{N}$, we define $x_{\mathbb{A}} = \sum_{i \in \mathbb{A}} 2^{-i}$, the Rice number of \mathbb{A} . Similarly, if L is a language over a specified alphabet² Σ , let $w_1, w_2, \ldots, w_n, \ldots$ be the canonical order enumeration of Σ^* . Define $x_L = \sum_{w_i \in L} 2^{-i}$, the Rice number of the language L.

For example, given $\Sigma = \{a, b\}$, the Rice number of $L = \{b, aab\}$ is $2^{-3} + 2^{-9} = 0.001000001$ in binary.

Theorem 1 The Rice number of any set of positive integers, or of any language, is in \mathbb{I} , and every member of \mathbb{I} is the Rice number of some set of positive integers and of some language.

Theorem 2 A language L is recursive if and only if its Rice number is a recursive real number; similarly, a set \mathbb{A} of positive numbers is recursive if and only if its Rice number is a recursive real number.

Fractions

A fraction is a string of the form u/v, where u and v are numerals for integers, and v is not a numeral for zero. If f is a fraction, the value of f is $V(f) \in \mathbb{Q}$. A set $\mathbb{B} \subseteq \mathbb{Q}$ is recursive if the set of fractions whose values belong to \mathbb{B} is a recursive language.

¹or any base larger than 1

²To define the Rice number of a language, an alphabet must be specified.

Theorem 3 Let x be any real number. Then x is recursive if and only if the question of whether a given rational number q is less than x is decidable.

Definition 1 A rational number q is diadic if q = n/m for integers n, m, where m is a power of 2.

Computable Sequences

A sequence of strings $\sigma = s_1, s_2, \ldots$ is *computable* if s_n is a recursive function of n.

Theorem 4 If x is a recursive real number, there is a computable sequence of rational numbers which converges to x.

The converse of Theorem 4 is false. (See Task 10 below.)

Tasks

For this assignment, complete the following tasks.

- 1. Prove Theorem 1.
- 2. Prove Theorem 2.
- 3. Prove Theorem 3.
- 4. Prove Theorem 4.
- 5. Prove that the Rice number of the set of even positive integers is $\frac{1}{3}$.
- 6. What is the Rice number of the set of positive odd inhtegers?
- 7. Prove that, if $\mathbb{A} \subseteq \mathbb{N}$, and \mathbb{A}' is the complement of \mathbb{A} , then $x_{\mathbb{A}} + x_{\mathbb{A}'} = 1$
- 8. Prove that the Rice number of any finite subset of \mathbb{N} , or of any finite language, is a diadic rational number.
- 9. Find languages $L_1 \neq L_2$ which have the same Rice number.
- 10. Prove that there exists a computable sequence of rational numbers which converges to a non-recursive real number.