Extra Difficulty Assignment: "All Languages are Decidable"

We give a (supposed) proof that all languages are decidable. We know that the proof must be incorrect, since there are undecidable languages. Your task is to find a flaw in the proof.

Theorem 1 Every language is decidable.
Proof: Let Σ be any alphabet and L any language over Σ. For any integer n, Let Σ^{n} be the set of all strings of length n over Σ, a finite set of cardinality $|\Sigma|^{n}$. Let $L_{n}=L \cap \Sigma^{n}$, the set of all strings in L of length n. Then L_{n} is finite, since it cannot be bigger than Σ^{n}.

Every finite language is decidable. Let P_{n} be a program which decides L_{n}. Then the following program decides L.
$\operatorname{Read} w \in \Sigma^{*}$
Let $n=|w|$.
$\operatorname{If}\left(P_{n}\right.$ accepts $\left.w\right)$
Write 1
Else
Write 0
Thus, L is decidable. Since L is an arbitrary language, every language is decidable.

Ideas that do not Work

During the exam, many students tried to find the flaw in the proof, but none did. (Although one person had a glimmer of the correct idea.) Here are some of the answers students wrote.

1. " L_{n} is not finite." Yes, it is, since it is a subset of the finite set Σ^{n}.
2. " L_{n} is not decidable." Yes, it is. You can find a proof that every finite language is decidable in many places on the internet.
3. " P_{n} does not exist." Yes, it does, since by definition, if a language is decidable, it is decided by some program.
4. "The program gets stuck at the if condition." No it doesn't, because a program that decides a language halts with any input.

Good Luck!

