Computer Science 456/656 Fall 2013

Practice for the Second Examination, Thursday October 10, 2013

The entire practice examination is 245 points.

1. True or False. [5 points each]
(a) --_--_ Every subset of a regular language is regular.
(b) _-_---- The intersection of context-free languages is always a context-free language.
(c) _-_-_-_ If the Kleene closure of a language L is context-free, hen L must be a context-free language. -------- If a language L is generated by an unambiguous context-free grammar, then L must be accepted by some DPDA. \qquad
(d) _ The problem of whether a given string is generated by a given context-free grammar is decidable.
(e) L__ Let L be the language over $\{a, b, c\}$ consisting of all strings which have more a 's than b 's and more b 's than c 's. There is some PDA that accepts L.
(f) _ The language $\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is context-free.
(g) _ The language $\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is context-free.
(h) ___ The language $\left\{a^{i} b^{j} c^{k} \mid j=i+k\right\}$ is context-free.
(i) The intersection of any three regular languages is context-free.
(j) ------- There is a DPDA that accepts the language of all palindromes over the binary alphabet $\{0,1\}$.
(k) ------- There is a PDA that accepts the language of all palindromes over the binary alphabet $\{0,1\}$.
(l) _-_-_-_ If a language has an unambiguous context-free grammar, then it is is accepted by some deterministic push-down automaton.
2. [20 points] Let G be the context-free grammar given below.
(a) $S \rightarrow a$
(b) $S \rightarrow w S$
(c) $S \rightarrow i S$
(d) $S \rightarrow i S e S$

Prove that G is ambiguous by writing two different leftmost derivations for the string iwiaea. [If you simply show two different parse trees, you are not following instructions.]
3. [30 points] Give a context-free grammar for the language of all strings over $\{0,1\}$ of the form $0^{m} 1^{n}$ where $n \neq m$.
4. [30 points] The following context-free grammar G is ambiguous. Give an equivalent unambiguous grammar.

- The terminal alphabet of G is $\{a, b, c,(),,+,-, *\}$.
- G has only one variable, namely the start symbol E.
- The productions of G are as follows:
(a) $E \rightarrow E+E$
(b) $E \rightarrow E-E$
(c) $E \rightarrow E * E$
(d) $E \rightarrow(E)$
(e) $E \rightarrow a$
(f) $E \rightarrow b$
(g) $E \rightarrow c$

5. [30 points] Let L be the language generated by the Chomsky Normal Form (CNF) grammar given below.
(a) $S \rightarrow a$
(b) $E \rightarrow a$
(c) $S \rightarrow L A$
(d) $E \rightarrow L A$
(e) $L \rightarrow$ (
(f) $A \rightarrow E R$
(g) $R \rightarrow$)
(h) $S \rightarrow P E$
(i) $E \rightarrow P E$ tem $S \rightarrow E E$
(j) $E \rightarrow E E$
(k) $P \rightarrow E Q$
(l) $Q \rightarrow+$

Use the CYK algorithm to prove that the string $a(a+a)$ is a member of L.
6. [15 points] State the pumping lemma for context-free languages.
7. [30 points] Let $L=\left\{w \in\{a, b\}^{*} \mid \#_{a}(w)=2 \#_{b}(w)\right\}$, here $\#_{a}(w)$ denotes the number of instances of the symbol a in the string w. For example, aaababaaabba $\in L$, because that string has the twice as many a 's as b 's. Give a context-free grammar for L. Your grammar may be ambiguous.
8. [30 points]

1. $S \rightarrow \epsilon$
2. $S \rightarrow a_{2} S_{3} b_{4} S_{5}$

	a	b	eof	S
0				
1			halt	
2				
3				
4				
5				

Complete the ACTION and GOTO tables of an LALR parser for the grammar given above. This grammar unambiguously generates the "balanced parentheses" language, where a represents a left parenthesis, and b represents a right parenthesis. Example strings include $\epsilon, a b, a a b b$, $a b a b$, and aabbab.

