Computer Science 456/656 Fall 2013

Practice for the Second Examination, Thursday October 10, 2013

The entire practice examination is 245 points.

- 1. True or False. [5 points each]
 - (a) _____ Every subset of a regular language is regular.
 - (b) _____ The intersection of context-free languages is always a context-free language.
 - (c) $____$ If the Kleene closure of a language L is context-free, hen L must be a context-free language. $_____$ If a language L is generated by an unambiguous context-free grammar, then L must be accepted by some DPDA. $______$
 - (d) _____ The problem of whether a given string is generated by a given context-free grammar is decidable.
 - (e) _____ Let L be the language over $\{a, b, c\}$ consisting of all strings which have more a's than b's and more b's than c's. There is some PDA that accepts L.
 - (f) _____ The language $\{a^n b^n \mid n \ge 0\}$ is context-free.
 - (g) _____ The language $\{a^n b^n c^n \mid n \ge 0\}$ is context-free.
 - (h) _____ The language $\{a^i b^j c^k \mid j = i + k\}$ is context-free.
 - (i) _____ The intersection of any three regular languages is context-free.
 - (j) _____ There is a DPDA that accepts the language of all palindromes over the binary alphabet $\{0,1\}$.
 - (k) _____ There is a PDA that accepts the language of all palindromes over the binary alphabet $\{0, 1\}$.
 - (1) _____ If a language has an unambiguous context-free grammar, then it is is accepted by some deterministic push-down automaton.
- 2. [20 points] Let G be the context-free grammar given below.
 - (a) $S \to a$
 - (b) $S \to wS$
 - (c) $S \rightarrow iS$
 - (d) $S \rightarrow iSeS$

Prove that G is ambiguous by writing two different **leftmost** derivations for the string *iwiaea*. [If you simply show two different parse trees, you are not following instructions.]

- 3. [30 points] Give a context-free grammar for the language of all strings over $\{0,1\}$ of the form $0^m 1^n$ where $n \neq m$.
- 4. [30 points] The following context-free grammar G is ambiguous. Give an equivalent unambiguous grammar.
 - The terminal alphabet of G is $\{a, b, c, (,), +, -, *\}$.
 - G has only one variable, namely the start symbol E.
 - The productions of G are as follows:
 - (a) $E \to E + E$
 - (b) $E \to E E$
 - (c) $E \to E * E$
 - (d) $E \to (E)$
 - (e) $E \to a$
 - (f) $E \to b$
 - (g) $E \to c$
- 5. [30 points] Let L be the language generated by the Chomsky Normal Form (CNF) grammar given below.
 - (a) $S \to a$
 - (b) $E \to a$
 - (c) $S \to LA$
 - (d) $E \to LA$
 - (e) $L \rightarrow ($
 - (f) $A \to ER$
 - (g) $R \rightarrow)$
 - (h) $S \to PE$
 - (i) $E \to PE$ tem $S \to EE$
 - (j) $E \to EE$
 - (k) $P \rightarrow EQ$
 - (l) $Q \rightarrow +$

Use the CYK algorithm to prove that the string a(a + a) is a member of L.

6. [15 points] State the pumping lemma for context-free languages.

7. [30 points] Let $L = \{w \in \{a, b\}^* \mid \#_a(w) = 2\#_b(w)\}$, here $\#_a(w)$ denotes the number of instances of the symbol *a* in the string *w*. For example, *aaababaaabba* $\in L$, because that string has the twice as many *a*'s as *b*'s. Give a context-free grammar for *L*. Your grammar may be ambiguous.

8. [30 points]

1. $S \to \epsilon$

2. $S \rightarrow a_2 S_3 b_4 S_5$

	a	b	eof	S
0				
1			halt	
2				
3				
4				
5				

Complete the ACTION and GOTO tables of an LALR parser for the grammar given above. This grammar unambiguously generates the "balanced parentheses" language, where *a* represents a left parenthesis, and *b* represents a right parenthesis. Example strings include ϵ , *ab*, *aabb*, *abab*, and *aabbab*.