Computer Science 456/656 Fall 2013

Practice for the Third Examination, Thursday November 7, 2013

The entire practice examination is 285 points.

1. True or False. [5 points each] If the question is currently open, write "O" or "Open."
(a) -------- Every subset of a regular language is regular.
(b) ------- The intersection of any two recursive languages is recursive.
(c) _-_-_-_ The intersection of any two recursively enumerable languages is recursively enumerable.
(d) ------- The complement of any recursive language is recursive.
(e) _-_-_--- The complement of any recursively enumerable language is recursively enumerable.
(f) _-_-_-_ Every context-free language is recursive. \qquad
(g) ------- The problem of whether a given context-free grammar generates all binary strings is decidable.
(h) _-_-_-_ For any real number x, Q_{x} is decidable, where Q_{x} be the set of all rational numbers which are less than or equal to x. (For example, $\frac{25}{8} \in Q_{\pi}$, and $\frac{22}{7} \notin Q_{\pi}$.)
(i) ------- If $f(n)$ is any integral function on integers, there is some recursive function $F(n)$ such that $F(n) \geq f(n)$.
(j) -------- The question of whether a given string is generated by a given general grammer is decidable.
(k) _-_-_-_ There is a general grammar which generates the set of all binary numerals for primes.
(l) -_--_-- There is a general grammar which generates HALT, the language equivalent to the halting problem.
(m) _-_-_-_ There exists a Turing machine M and string w such that:
i. M halts with input w.
ii. There does not exist any proof that M halts with input w.
(n) _-_-_-_ If L is a canonically enumerable language, then L must be recursive.
(o) _-_-_-_ Every $\mathcal{N} \mathcal{P}$-TIME language is recursive.
2. [30 points] Prove that every recursive language is canonically enumerable.
3. [30 points] What is the Church-Turing thesis, and why is it important?
4. [30 points] Prove that every Turing acceptable language is recursively enumerable.
5. [30 points] We say that two programs P_{1} and P_{2} are equivalent if they always produce the same output given the same input. The grader's problem is to determine whether two given programs are equivalent. Prove that the grader's problem is undecidable. (You may assume that HALT is undecidable.)
6. [30 points] Give a state diagram for a Turing machine M that computes the canonical incrementation function on binary strings. That is, if w is the input string of M, then the output string will be the successor of w in the canonical order.
7. [30 points] "Sketch" the construction which shows that a multi-tape TM can be emulated by a singletape multi-track TM. A formal proof is not necessary. I only want you to convince me that it's true in an informal way, drawing some figures and putting in a little text.
8. [30 points] What does the TM illustrated here do? The answer can be expressed in at most one line. (At most one such problem will be on the test.)

