Computer Science 456/656 Fall 2013

Practice for the Third Examination, Thursday November 7, 2013

The entire practice examination is 285 points.

- 1. True or False. [5 points each] If the question is currently open, write "O" or "Open."
 - (a) _____ Every subset of a regular language is regular.
 - (b) _____ The intersection of any two recursive languages is recursive.
 - (c) _____ The intersection of any two recursively enumerable languages is recursively enumerable.
 - (d) _____ The complement of any recursive language is recursive.
 - (e) _____ The complement of any recursively enumerable language is recursively enumerable.
 - (f) _____ Every context-free language is recursive. _____
 - (g) _____ The problem of whether a given context-free grammar generates all binary strings is decidable.
 - (h) _____ For any real number x, Q_x is decidable, where Q_x be the set of all rational numbers which are less than or equal to x. (For example, $\frac{25}{8} \in Q_{\pi}$, and $\frac{22}{7} \notin Q_{\pi}$.)
 - (i) _____ If f(n) is any integral function on integers, there is some recursive function F(n) such that $F(n) \ge f(n)$.
 - (j) _____ The question of whether a given string is generated by a given general grammer is decidable.
 - (k) _____ There is a general grammar which generates the set of all binary numerals for primes.
 - (1) _____ There is a general grammar which generates HALT, the language equivalent to the halting problem.
 - (m) $_$ There exists a Turing machine M and string w such that:
 - i. M halts with input w.
 - ii. There does not exist any proof that M halts with input w.
 - (n) $____$ If L is a canonically enumerable language, then L must be recursive.
 - (o) _____ Every \mathcal{NP} -TIME language is recursive.
- 2. [30 points] Prove that every recursive language is canonically enumerable.
- 3. [30 points] What is the Church-Turing thesis, and why is it important?
- 4. [30 points] Prove that every Turing acceptable language is recursively enumerable.

- 5. [30 points] We say that two programs P_1 and P_2 are *equivalent* if they always produce the same output given the same input. The *grader's problem* is to determine whether two given programs are equivalent. Prove that the grader's problem is undecidable. (You may assume that HALT is undecidable.)
- 6. [30 points] Give a state diagram for a Turing machine M that computes the canonical incrementation function on binary strings. That is, if w is the input string of M, then the output string will be the successor of w in the canonical order.
- 7. [30 points] "Sketch" the construction which shows that a multi-tape TM can be emulated by a singletape multi-track TM. A formal proof is not necessary. I only want you to convince me that it's true in an informal way, drawing some figures and putting in a little text.
- 8. [30 points] What does the TM illustrated here do? The answer can be expressed in at most one line. (At most one such problem will be on the test.)

