
University of Nevada, Las Vegas Computer Science 456/656 Fall 2018

Decidability, Etc.

Let N be the set of natural numbers= {1, 2, . . .}, or the set of positive integers. In class, I gave a proof

that there is a function f : N → N which is eventually greater than any computable function.

Definition 1 If f, g : N → N are functions, we say that f is eventually greater than g if there is some

integer i such that f(n) > g(n) for all n ≥ i.

Theorem 1 There is a function f : N → N which is eventually greater than any computable function.

Proof: Each computable function can be implemented as a Turing machine (or a C++ program, if you

prefer). There are only countably many Turing machines, hence there are only countably many computable

functions.

Let f1, f2, . . . be an enumeration of all computable functions from N to N . Now define a function f as

follows: for any n ∈ N , let f(n) = 1 +
�

n

i=1
fi(n). We claim that f is eventually greater than any

computable function.

For all i ≥ 1 and n ≥ i, f(n) equals 1 + fi(n) plus possibly additional positive terms. Therefore, f is

eventually greater than fi. Since every computable function is fi for some i, we are done.

P, NP, Etc.

Definition 2 We say that a function f is in the class P-time, or f is polynomial time, if there is a

constant k and a machine M which computes f(w) for any string w of length n in at most nk steps. We

say that a problem P is in the class P-time if there is a constant k and an algorithm A for P which takes

at most nk steps for any input of size n. A language L is in the class P-time if the membership problem

for L is in the class P-time.

Size of an input is defined to be the number of bits needed to express the input. For example, the primality

problem is to decide whether a given numeral represents a prime number. The size of the input is not the

number, but the number of bits in the numeral for the number. If N is an integer and N is the numeral

for N is base b, the size of N is Θ(logN) if b ≥ 2.

A 0/1 problem is a problem such that the answer is either 0 or 1 (false or true) for each instance. For

example, the membership problem for a language L is a 0/1 problem. In fact, every 0/1 problem is the

membership problem for some language.

We say that L is NP-time if there is an NTM (non-deterministic Turing Machine) which accepts L in

polynomial time. (We could simply say non-deterministic machine ... it doesn’t have to be a Turing

Machine.)

P-time and NP-time are usually abbreviated as P and NP, respectively.

Theorem 2 A language L is NP-time if and only if, given any string w ∈ L, it can be proven that w ∈ L

in polynomial time.

That is, there is a constant k such that, for any w ∈ L of length n, there is a proof that w ∈ L whose

length (number of symbols in the proof) is at most nk.

Trivially, every P-time language is also NP-time. The converse is perhaps the most important open prob-

lem in all of computation theory, and perhaps the most important unsolved problem in all of mathematics.

Conjecture 1 If L is an NP-time language, then L is P-time.

All (as far as I know) experts are of the opinion that Conjecture 1 is false. The usual statement of this

conjecture is, “P = NP.”

Definition 3 A language L is co-NP if its complement is NP.

Definition 4 A language L (or equivalently, a 0/1 problem) is said to be NP-complete if, given any

NP-time language L2 there is a polynomial time reduction of L to L2.

Go to the internet and look up the definition of SAT, the Boolean Satisfiability problem, as well as the

special form called 3-SAT.

Briefly, a boolean expression is satisfiable if it is not a contradiction. For example, “x = y and x! = y” is a

contradiction, hence not satisfiable, while “x = y and y = z” is satisfiable. SAT is the language consisting

of all satisfiable Boolean expressions.

We will not give the proof of the following theorem. You can find it on the internet.

Theorem 3 SAT is NP-complete.

Once we prove a problem to be NP-complete, we can use reduction to prove other problems NP-complete.

Lemma 1 If there is a polynomial time reduction of L1 to L2, and if L2 is NP and L1 is NP-complete,

then L2 is NP-complete.

The proof is a trivial, given the rule that there can be no “easy” reduction of a “hard” problem to an

“easy” problem.

Theorem 4 3-SAT is NP-complete.

Proof: It is trivial that 3-SAT is NP. We can define a polynomial time reduction of SAT to 3-SAT.

(We skip that construction: you can find it on the internet, and I might do it in class.) Since SAT is

NP-complete so is 3-SAT by Lemma 1.

Well-Known NP-Complete Problems

In the orginal paper on the subject, a number of well-known problems were proved to be NP-complete.

Now, there are thousands of NP-complete problems known.

1. Partition. Given any set of weighted objects, does there exist a partition of that set into two subsets

of equal weight? For example, can there be a tie in the Electoral College?

2. Knapsack. Given any set of weighted objects, and given a knapsack with capacity K, does there exist

a subset of objects that exactly fills the knapsack? That is, a subset whose total weight is exactly

K?

2

3. Traveling Salesman. Given n cities with various distances between them, and given a distance D,

can a salesman, starting at one city, visit all of the cities, each exactly once, while traveling a total

distance of no more than D?

4. Integer Programming. Linear Programming can be solved in polynomial time, where the variables

have real type. But if the variables are required to have integer type, the problem is NP-complete.

5. Bounded Degree Minimum Spanning Tree. Given a weighted graph G, and given a weight W , can

you find a spanning tree of weight at most W? Kruskal’s algorithm solves this problem in polynomial

time. But if we impose the condition that the spanning tree can have degree at most D, the problem

is NP-complete.

6. Independent Set. A set I of vertices of a graph G is independent if no two vertices of that set are

neighbors. Given a graph G and a number k, does G have an independent set of size k?

Guide Strings

Let M be some non-deterministic machine. Any computation of M requires picking one of finitely many

choices at each step. Without loss of generality, M never has more than two choices at each step, since k

choices at a step can be emulated by a sequence of at most log
2
k steps with 2 choices at each step. We can

deterministically emulate any finite computation of M by providing a binary string, called a guide string,

of sufficient length. At each step, the emulation reads the guide string to determine the next choice. The

emulation halts when the end of the guide string is reached.

Theorem 5 If a language L is accepted by some non-deterministic machine M1, then L is accepted by

some deterministic machine M2.

Proof: Let Σ = {0, 1}, the binary alphabet, and let g1, g2 . . . be a canonical order enumeration of Σ∗. Let

M2 be the following program.

1. Read w.

2. For i = 1 to ∞:

(a) Emulate M1 with input w using gi as a guide string.

(b) If that emulation outputs “1” before the guide string is exhausted, write “1” and break.

If w is accepted by some computation of M1, let g be a binary string which encodes the necessary choices

of that computation. When gi = g in the main loop of the code, M2 halts and accepts w. On the other

hand, M2 will never halt if w is not accepted by any computation of M1.

We define EXP to be the set of all functions f : N → N such that f(n) = O
�

2n
k

�

for some constant

k. We define EXP-time to be the class of all languages which are accepted in exponential time. That

is, L ∈ EXP-time if there is a deterministic machine M and a constant k such that for every w ∈ L, M

accepts w in at
�

2n
k

�

steps where n is the length of w, and M does not accept any string not in L.

Theorem 6 NP-time ⊆ EXP-time.

3

Proof: Suppose L ∈ NP-time. Let M be an NTM that accepts L in polynomial time, i.e., M does not

accept any string not in L, and there is a constant k such that every w ∈ L is accepted by M in at most nk

steps. For each w ∈ L, let gw be the guide string which encodes the choices that M makes while accepting

w. The length of gw does not exceed the number of steps M needs to accept w. During the loop of M2

given in the proof of Theorem 5, we can halt M2, and output “0” once gi > gw in the canonical order.

There are at most 2k guide strings that are less than gw in canonical order, hence the program, which is

deterministic, decides L in exponential time.

Witnesses, Certificates

If we have an instance I of a problem P , we say that a string w is a witness, or certificate for I if it shows

that I is a solution of the problem.

For example, if I = (K,x1, x2, . . . xm) is an instance of the Knapsack problem, a witness for I is any

subsequence of {xi} whose sum is K.

Theorem 7 If L ∈ NP, each member of L has a witness of polynomial length.

More formally, if L ∈ NP, there is a deterministic machine V , called the verifier, and an integer k such

that

1. The input of V is an ordered pair of strings (u, v). With input (u, v), V either accepts or rejects.

2. If u /∈ L and v is any string, V rejects (u, v).

3. If u ∈ L and n = |u|, there is some string v such that

(a) |v| ≤ nk,

(b) V accepts (u, v) in at most nk steps.

Note that V could reject (u, v) even if u ∈ L. The verifier is easy, but finding the correct certificate could

be hard.

Space Complexity

P-space is the class of all lenguages L which are accepted in polynomial space. That is, L ∈ P-space if

there is some integer k and some machine M which has at most nk states which accepts L.

We can also define the non-deterministic version, but we don’t get a new class, since NP-space = P-space.

The proof of the following theorem is pretty easy. Do you see it?

Theorem 8 NP-time ⊆ P-space.

The following conjecture is also considered very important, and experts also believe that it is false.

Conjecture 2 NP-time = P-space.

4

