Computer Science 456/656 Fall 2018: Assignment 6. Due October 7, 2018

- 1. True or False. T = true, F = false, and O = open, meaning that the answer is not known science at this time.
- 2. _____ The regular expression equivalence problem is decidable.
- 3. _____ The C++ program equivalence problem is decidable.
- 4. _____ Every language generated by an unambiguous context-free grammar is accepted by some DPDA.
- 5. _____ The language $\{a^n b^n c^n d^n \mid n \ge 0\}$ is recursive.
- 6. Let L be the language over $\{a, b, c\}$ consisting of all strings which have more a's than b's and more b's than c's. There is some PDA that accepts L.
- 7. _____ The context-sensitive membership problem is decidable.
- 8. _____ The language $\{a^n b^n \mid n \ge 0\}$ is context-free.
- 9. _____ The language $\{a^n b^n c^n \mid n \ge 0\}$ is context-free.
- 10. _____ The language $\{a^i b^j c^k \mid j = i + k\}$ is context-free.
- 11. _____ The intersection of any three regular languages is context-free.
- 12. _____ Every problem that can be mathematically defined has an algorithmic solution.
- 13. _____ The intersection of any two undecidable languages is undecidable.
- 14. _____ If L is a context-free language over an alphabet with just one symbol, then L is regular.
- 15. _____ The set of strings that your high school algebra teacher would accept as legitimate expressions is a context-free language.
- 16. _____ The language consisting of all strings over $\{a, b\}$ which have more a's than b's is context-free.
- 17. _____ Every language generated by a context-sensitive grammar is recursive.
- 18. _____ Every language generated by a general grammar is recursive.
- 19. _____ Every language accepted by a non-deterministic machine is accepted by some deterministic machine.
- 20. _____ The problem of whether two given context-free grammars generate the same language is decidable.
- 21. _____ The problem of whether a given string is generated by a given context-free grammar is decidable.
- 22. If G is a context-free grammar, the question of whether $L(G) = \emptyset$ is decidable.
- 23. If G is a context-free grammar, with terminal alphabet Σ , the question of whether $L(G) = \Sigma^*$ is decidable.
- 24. _____ The set of all fractions whose values are less than π is decidable.¹

 $^{^{1}}$ A *fraction* is a string, defined to be a non-empty string of decimal digits followed by a slash followed by a non-empty string of decimal digits, such as "3/42"

- 25. _____ For any two languages L_1 and L_2 , if L_1 is undecidable and there is a recursive reduction of L_1 to L_2 , then L_2 must be undecidable.
- 26. _____ For any two languages L_1 and L_2 , if L_2 is undecidable and there is a recursive reduction of L_1 to L_2 , then L_1 must be undecidable.
- 27. _____ Every bounded function from integers to integers is computable.²
- 28. Let \mathcal{RE} be the class of all recursively enumerable languages. If L is in \mathcal{RE} and L is also in co- \mathcal{RE} , then L must be decidable.
- 29. _____ Every language is enumerable.
- 30. _____ If a language L is undecidable, then there can be no machine that enumerates L.
- 31. _____ If a language L is is enumerated in canonical order by some machine, then L is decidable.
- 32. _____ There exists a mathematical proposition that can be neither proved nor disproved.
- 33. _____ There is an uncomputable function which grows faster than any computable function.
- 34. Let U be a universal Turing machine. Then U cannot be finitely described, that is, $\langle U \rangle$ does not exist.

A real number x is said to be *recursive*, or *computable*, if there is there is a program that computes the i^{th} decimal digit of x as a function of i.

- 35. _____ Every algebraic real number is computable. https://en.wikipedia.org/wiki/Algebraic_number
- 36. π is computable.
- 37. _____ Every real number is computable.
- 38. _____ Given any two Turing machine descriptions $\langle M_1 \rangle$ and $\langle M_2 \rangle$, it is possible to decide whether M_1 is equivalent to M_2 ,
- 39. _____ The context-free grammar equivalence problem is in the class $co-\mathcal{RE}$.
- 40. _____ The 0/1 factoring problem³ is decidable.
- 41. _____ Suppose a machine M can compute something within t steps. Then there must be a Turing machine that can compute the same thing within t steps.

²A function f from integers to integers is defined to be *computable* if the corresponding function on numerals is computable. ³An instance of that problem is: Given two integers n and a, does there exist a divisor of n which is greater than 1 and less than a?