Computer Science 456/656 Fall 2018: Assignment 6. Due October 7, 2018

1. True or False. $\mathrm{T}=$ true, $\mathrm{F}=$ false, and $\mathrm{O}=$ open, meaning that the answer is not known science at this time.
2. \qquad The regular expression equivalence problem is decidable.
3. \qquad The $\mathrm{C}++$ program equivalence problem is decidable.
4. \qquad Every language generated by an unambiguous context-free grammar is accepted by some DPDA.
5. \qquad The language $\left\{a^{n} b^{n} c^{n} d^{n} \mid n \geq 0\right\}$ is recursive.
6. \qquad Let L be the language over $\{a, b, c\}$ consisting of all strings which have more a 's than b 's and more b 's than c 's. There is some PDA that accepts L.
7. \qquad The context-sensitive membership problem is decidable.
8. __ The language $\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is context-free.
9. \qquad The language $\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is context-free.
10. The language $\left\{a^{i} b^{j} c^{k} \mid j=i+k\right\}$ is context-free.
11.
12. \qquad Every problem that can be mathematically defined has an algorithmic solution.
13.
14.
15. \qquad The set of strings that your high school algebra teacher would accept as legitimate expressions is a context-free language.
16. _- The language consisting of all strings over $\{a, b\}$ which have more a 's than b 's is context-free.
17. \qquad Every language generated by a context-sensitive grammar is recursive.
18. _ Every language generated by a general grammar is recursive.
19. \qquad Every language accepted by a non-deterministic machine is accepted by some deterministic machine.
20. ___ The problem of whether two given context-free grammars generate the same language is decidable.
21. \qquad The problem of whether a given string is generated by a given context-free grammar is decidable.
22. \qquad If G is a context-free grammar, the question of whether $L(G)=\emptyset$ is decidable.
23. \qquad If G is a context-free grammar, with terminal alphabet Σ, the question of whether $L(G)=\Sigma^{*}$ is decidable.
24. \qquad The set of all fractions whose values are less than π is decidable. ${ }^{1}$

[^0]25. \qquad For any two languages L_{1} and L_{2}, if L_{1} is undecidable and there is a recursive reduction of L_{1} to L_{2}, then L_{2} must be undecidable.
26. \qquad For any two languages L_{1} and L_{2}, if L_{2} is undecidable and there is a recursive reduction of L_{1} to L_{2}, then L_{1} must be undecidable.
27. \qquad Every bounded function from integers to integers is computable. ${ }^{2}$
28. \qquad Let $\mathcal{R E}$ be the class of all recursively enumerable languages. If L is in $\mathcal{R E}$ and L is also in co- $\mathcal{R E}$, then L must be decidable.
29. Every language is enumerable.
30. \qquad If a language L is undecidable, then there can be no machine that enumerates L.
31. ___ If a language L is is enumerated in canonical order by some machine, then L is decidable.
32. \qquad There exists a mathematical proposition that can be neither proved nor disproved.
33. \qquad There is an uncomputable function which grows faster than any computable function.
34. \qquad Let U be a universal Turing machine. Then U cannot be finitely described, that is, $\langle U\rangle$ does not exist.

A real number x is said to be recursive, or computatble, if there is there is a program that computes the $i^{\text {th }}$ decimal digit of x as a function of i.
35. \qquad Every algebraic real number is computable. https://en.wikipedia.org/wiki/Algebraic_number
36. \qquad π is computable.
37. Every real number is computable.
38. \qquad Given any two Turing machine descriptions $\left\langle M_{1}\right\rangle$ and $\left\langle M_{2}\right\rangle$, it is possible to decide whether M_{1} is equivalent to M_{2},
39. The context-free grammar equivalence problem is in the class co- $\mathcal{R E}$.
40. _ The $0 / 1$ factoring problem ${ }^{3}$ is decidable.
41. \qquad Suppose a machine M can compute something within t steps. Then there must be a Turing machine that can compute the same thing within t steps.

[^1]
[^0]: ${ }^{1}$ A fraction is a string, defined to be a non-empty string of decimal digits followed by a slash followed by a non-empty string of decimal digits, such as " $3 / 42$ "

[^1]: ${ }^{2}$ A function f from integers to integers is defined to be computable if the corresponding function on numerals is computable.
 ${ }^{3}$ An instance of that problem is: Given two integers n and a, does there exist a divisor of n which is greater than 1 and less than a ?

