Computer Science 456/656 Fall 2018 Practice Examination November 14, 2018

The entire examination is 615 points.

1. True or False. [5 points each] $\mathrm{T}=$ true, $\mathrm{F}=$ false, and $\mathrm{O}=$ open, meaning that the answer is not known to science at this time.
i -------- Every subset of a regular language is regular.
ii -------- Let L be the language over $\Sigma=\{a, b\}$ consisting of all strings of the form $a^{m} b^{n}$, where $m, n \geq 0$. Then L is a regular language.
iii \qquad The complement of every regular language is regular.
iv \qquad The Kleene closure of every context-free language is context-free.
v \qquad If a language has an unambiguous context-free grammar, then it is is accepted by some deterministic push-down automaton.
vi \qquad If a language has an ambiguous context-free grammar, then it is is not accepted by any deterministic push-down automaton.
vii --------- There is a PDA that accepts all valid C++ programs.
viii \qquad The intersection of any two regular languages is regular.
ix \qquad The language consisting of all base 7 numerals for positive integers n such that $n \% 3=2$ is regular.
x _------- The intersection of any two context-free languages is context-free.
xi --------- Let L be the language over $\Sigma=\{a, b\}$ consisting of all strings of the form $a^{m} b^{n} c^{m}$, where $m, n \geq 0$. Then L is a context-free language.
xii $-\ldots----$ Let L be the language over $\Sigma=\{a, b\}$ consisting of all strings of the form $a^{m} b^{n}$, where $m \geq n$. Then L is a context-free language.
xiii --------- The complement of every context-free language is context-free.
xiv -------- The union of any two context-free languages is context-free.
xv -------- If a language has an context-free grammar, then it is is accepted by some push-down automaton.
xvi _------- Every context-free language has an unambiguous context-free grammar.
xvii --------- Every language that has an unambiguous context-free grammar is accepted by some DPDA.
xviii _-------- Every deterministic machine is a non-deterministic machine.
xix _------- The language consisting of all base 2 numerals for integer powers of 2 is regular.
xx _------- There is a DPDA that accepts the language of all palindromes over the binary alphabet $\{0,1\}$.
xxi ___ If a language has an unambiguous context-free grammar, then there must be some DPDA that accepts it.
xxii \qquad The language $\left\{a^{n} b^{n} c^{n} d^{n} \mid n \geq 0\right\}$ is recursive.
xxiii _._The problem of whether a given context-free grammar generates all strings is decidable.
xxiv The language $\left\{a^{i} b^{j} c^{k} \mid j \geq i+k\right\}$ is context-free.
xxv __ If a language L is undecidable, there is no machine that enumerates L in canonical order.
xxvi Recall that if \mathcal{L} is a class of languages, co- \mathcal{L} is defined to be the class of all languages that are not in \mathcal{L}.
Let $\mathcal{R E}$ be the class of all recursively enumerable languages. If L is in $\mathcal{R E}$ and also L is in co- $\mathcal{R E}$, then L must be decidable.
xxvii __ Every bounded function is recursive.
xxviii ___ If P is a mathematical proposition that can be stated using n binary bits, and P has a proof, then P must have a proof whose length is $O\left(2^{2^{n}}\right)$.
xxix _-_-_-_ The intersection of any context-free language with any context-free language is context-free.
xxx -------- The complement of every recursive language is recursive.
xxxi _------- The complement of every recursively enumerable language is recursively enumerable.
xxxii _-_-_-_ Every language which is generated by an general grammar is recursively enumerable.
xxxiii _-_-_-_The question of whether two context-free grammars generate the same language is undecidable.
xxxiv _-_-_--- Given any context-free grammar G and any string $w \in L(G)$, there is always a unique leftmost derivation of w using G.
xxxv _-_-_-_ For any deterministic finite automaton, there is always a unique minimal non-deterministic finite automaton equivalent to it.
xxxvi _-_--_- Using multi-processors and other advanced technology, it is possible to design a machine which decides the halting problem.
xxxvii _------- The question of whether two regular expressions are equivalent is decidable.
xxxviii __-_-_- The intersection of any context-free language with any regular language is context-free.
xxxix _-_----- The halting problem is recursively enumerable.
xl _------- The complement of every context-free language is context-free.
xli __-_-_-_ No language which has an ambiguous context-free grammar can be accepted by a DPDA.
xlii _-_-_-_ The union of any two context-free languages is context-free.
xliii \qquad The question of whether a given Turing Machine halts with empty input is decidable.
xliv \qquad The class of languages accepted by non-deterministic Turing Machines is the same as the class of languages accepted by Turing Machines.
xlv _------ Let $F(0)=1$, and let $F(n)=2^{F(n-1)}$ for $n>0$. Then F is recursive.
xlvi \qquad Every language which is accepted by some non-deterministic machine is accepted by some deterministic machine.
xlvii _-_-_-_The language of all regular expressions over the binary alphabet is a regular language.
xlviii \qquad There cannot exist any computer program that can decide whether any two C++ programs are equivalent.
xlix \qquad Every function that can be mathematically defined is recursive.

1 \qquad The language of all binary strings which are the binary numerals for multiples of 23 is regular.
li \qquad The language of all binary strings which are the binary numerals for prime numbers is context-free.
lii _--_-_-_ Every bounded function from integers to integers is Turing-computable. (We say that f is bounded if there is some B such that $|f(n)| \leq B$ for all n.)
liii _-_-_--_ The language of all palindromes over $\{0,1\}$ is inherently ambiguous.
liv _------- Every context-free grammar can be parsed by some deterministic top-down parser.
lv _-_-_-_ Every context-free grammar can be parsed by some non-deterministic top-down parser.
lvi \qquad Commercially available parsers cannot use the LALR technique, since most modern programming languages are not context-free.
lvii \qquad The diagonal language is $\mathcal{R E}$.
lviii \qquad The diagonal language is co- $\mathcal{R E}$.
2. Fill in the blanks.
(a) [10 points] If there is an easy reduction from L_{1} to L_{2}, then \qquad is at least as hard as \qquad --.
(b) If a language is accepted by some Turing machine, it is \qquad enumerable.
3. [30 points] State the Church-Turing thesis, and explain (in about 5 lines or less) why it is important.
4. [10 points] Consider the context-free grammar with start symbol S and productions as follows:
$1 S \rightarrow s$
$2 S \rightarrow b L n$
$3 S \rightarrow w S$
$4 L \rightarrow \epsilon$
$5 L \rightarrow S L$

Write a leftmost derivation of the string bswsbwsnn
5. [5 points] What class of machines accepts the class of context free languages?
6. [5 points] What class of machines accepts the class of recursively enumerable languages?
7. [10 points] What is the canonical order of a language?
8. [10 points] What does it mean to say that machines M_{1} and M_{2} are equivalent?
9. [20 points] What does it mean to say that a language L is decidable?
10. [15 points] Let $\Sigma=\{0,1\}$, the binary alphabet. We say a string w over Σ is mostly positive if w has more 1 's than 0 's. Let L be the set of mostly positive strings over Σ.
Give a context-free grammar for L. Very hard.
11. [10 points] Give a Chomsky Normal Form grammar for the Dyck language.
12. [10 points] Consider the context-free grammar G, with start symbol S and productions as follows:
$1 S \rightarrow s$
$2 S \rightarrow b L n$
$3 S \rightarrow i S$
$4 S \rightarrow i S e S$
$5 L \rightarrow \epsilon$
$6 L \rightarrow L S$
Prove that G is ambiguous by giving two different leftmost derivations for some string.
13. [30 points] Prove that every decidable language can be enumerated in canonical order by some machine.
14. [20 points] Let G be the context-free grammar given below.
$1 S \rightarrow a$
$2 S \rightarrow w S$
$3 S \rightarrow i S$
$4 S \rightarrow i S e S$
Prove that G is ambiguous by writing two different leftmost derivations for the string iwiaea. [If you simply show two different parse trees, you are not following instructions.]
15. [20 points] Let L be the language generated by the following context-free grammar.
$1 S \rightarrow a$
$2 S \rightarrow w S$
$3 S \rightarrow i S$
$4 S \rightarrow i S e S$
Write a Chomsky normal form grammar for L.
16. [30 points] Let $L=\left\{w \in\{a, b\}^{*} \mid \#_{a}(w)=2 \#_{b}(w)\right\}$, here $\#_{a}(w)$ denotes the number of instances of the symbol a in the string w. For example, aaababaaabba $\in L$, because that string has the twice as many a 's as b 's. Give a context-free grammar for L. Your grammar may be ambiguous.
17. [10 points] what is a reduction of a language L_{1} to a language L_{2} ?
18. [50 points] Consider the language L of all strings which would be acceptable as algebraic expressions involving variables and constants, where:

- Every variable name is either x, y, or z.
- Every constant is a natural number between 0 and 9
- The only operators are addition, subtraction, and multiplication.
- The symbol '-' is used only for subtraction. There is no negation.
- There is no multiplication symbol. Multiplication is indicated by concatenating strings.
- In multiplication of a constant by anything else, the constant must come first, and there can be at most one constant factor in any term.
- Parentheses can be used.

Here are some strings in the language $x(y+2 z), x-1-z, 4(z x-2 y)(x+z(x-1))$.
Give an unambiguous context-free grammar for L which is consistent with the usual semantics (as you learned in school) of such expressions.
19. (a) [10 points] State the pumping lemma for context-free languages accurately. If you have all the right words but in the wrong order, that means you truly do not understand the lemma, and you might get no partial credit at all.
(b) [20 points] Let L be the language consisting of all palindromes over the binary alphabet. What is the minimum pumping length of L ?

