$\mathcal{N C}$ and \mathcal{P}-Completeness

Carry Bit Problem

Given two n-digit binary numerals x and y, when we compute $x+y$, is there be a 'carry' bit in the $i^{\text {th }}$ place? (Places are numbered starting with 0 from right to left.)

For example, if we add 1011000101 and 10111011101, there is a carry bit in places 1,3 , $4,5,7,8,9,10$, and 11 .

Problem 1. Prove that the Carry Bit Problem is in $\mathcal{N C}$. Hint: Use the fact that every regular language is in $\mathcal{N C}$. Reduce the carry bit problem to a regular language.

The Circuit Value Problem, or the Boolean Circuit Problem

An instance of the Circuit Value Problem is a sequence of n Boolean assignments.

1. The left side of the $i^{\text {th }}$ assignment is the Boolean variable x_{i}.
2. The right side of the $i^{\text {th }}$ assignment is one of the following.
(a) 0 (false)
(b) 1 (true)
(c) x_{j} for $j<i$
(d) ! x_{j} for $j<i$ (! means 'not')
(e) $x_{j}+x_{k}$ for $j<i$ and $k<i$ (+ means 'or')
(f) $x_{j} * x_{k}$ for $j<i$ and $k<i(*$ means 'and')
3. The answer to an instance of the CVP is the value of x_{n}.

Trivially, CVP in in \mathcal{P}; simply execute the n statements in order.
It is well-known that CVP is \mathcal{P}-complete, which implies that if it is in Nick's Class, then $\mathcal{N C}=\mathcal{P}$.

Constant Gap CVP

We define the constant gap circuit value problem to be the same as the CVP, except that there is a constant B such that, for each of the conditions listed above, $j>i-B$ and $k>i-B$.

Problem 2. Is the constant gap circuit value problem in $\mathcal{N C}$? Is it \mathcal{P}-complete? (Hint: Try small values of B, starting with 2.)

