\mathcal{NC} and \mathcal{P} -Completeness

Many of the problems that you are familiar with are in the class \mathcal{NC} . For example, the 0/1 version of the shortest path problem is in \mathcal{NC} , and every context-free language is in the class \mathcal{NC} .

Whether $\mathcal{NC} = \mathcal{P}$ is an open question of enormous importance.

The Circuit Value Problem, or the Boolean Circuit Problem

We now give a \mathcal{P} -complete problem, namely the circuit value problem.

An instance of the Circuit Value Problem is a sequence of n Boolean assignments.

- 1. The left side of the i^{th} assignment is the Boolean variable x_i .
- 2. The right side of the i^{th} assignment is one of the following.
 - (a) 0 (false)
 - (b) 1 (true)
 - (c) x_i for j < i
 - (d) $!x_i$ for j < i (! means 'not')
 - (e) $x_i + x_k$ for j < i and k < i (+ means 'or')
 - (f) $x_j * x_k$ for j < i and k < i (* means 'and')

3. The answer to an instance of the CVP is the value of x_n .

Trivially, CVP is in \mathcal{P} . Simply execute the *n* statements in order.

It is known that CVP is \mathcal{P} -complete, which implies that if it is in Nick's Class, then $\mathcal{NC} = \mathcal{P}$.

Problems

- 1. Given an alphabet Σ , an instance of the symbol find problem over Σ consists of a string w over Σ together with a single symbol $x \in \Sigma$. The instance is true if and only if some symbol of the string w is equal to x. Prove that the symbol find problem over Σ is in Nick's Class.
- 2. Prove that every regular language is in Nick's Class.
- 3. Using the fact that CVP is \mathcal{P} -complete, prove that the programming language C++ is \mathcal{P} -complete.