Fill in the Action and Goto tables for an LALR parser for the grammar given below, where the start symbol is \mathbf{E}. " \wedge " is the power operator, i.e., $x \wedge y$ means x^{y}. Although the grammar is ambiguous, your parser must not be ambiguous: an ambiguous string must be parsed according to the precedence of operators defined for Python. The power operator is right-associative and binds more tightly than unary operators on its left and less tightly than unary operators on its right. Thus $a \wedge a \wedge a$ means $a \wedge(a \wedge a)$, $-a \wedge a$ means $-(a \wedge a)$, and $a \wedge-a$ means $a \wedge(-a)$. Note: a represents any variable name.

1. $\mathbf{E} \longrightarrow \mathbf{E}+\mathbf{E}$
2. $\mathbf{E} \longrightarrow \mathbf{E} \quad-\quad \mathbf{E}$
3. $\mathbf{E} \longrightarrow \mathbf{E} \quad$ * \mathbf{E}
4. $\mathbf{E} \longrightarrow-\mathbf{E}$
5. $\mathbf{E} \longrightarrow \mathbf{E} \wedge \mathbf{E}$
6. $\mathbf{E} \longrightarrow(\mathbf{E})$
7. $\mathrm{E} \longrightarrow \mathrm{id}$

