Computer Science 456/656 Spring 2013

Practice for the First Examination, February 28, 2013

The entire practice examination is 455 points. The real exam will be much shorter.

1. True or False. [5 points each]
(a) ------- Every subset of a regular language is regular.
(b) _------ Let L be the language over $\Sigma=\{a, b\}$ consisting of all strings of the form $a^{m} b^{n}$, where $m, n \geq 0$. Then L is a regular language.
(c) -------- The complement of every regular language is regular.
(d) _-_-_-- The Kleene closure of every context-free language is context-free.
(e) _-_-_-_ If a language has an unambiguous context-free grammar, then it is is accepted by some deterministic push-down automaton.
(f) _------ If a language has an ambiguous context-free grammar, then it is is not accepted by any deterministic push-down automaton.
(g) _------- There is a PDA that accepts all valid $\mathrm{C}++$ programs.
(h) -------- The intersection of any two regular languages is regular.
(i) _-_-_-_ The language consisting of all base 7 numerals for positive integers n such that $n \% 3=2$ is regular.
(j) -------- The intersection of any two context-free languages is context-free.
(k) ----_-- Let L be the language over $\Sigma=\{a, b\}$ consisting of all strings of the form $a^{m} b^{n} c^{m}$, where $m, n \geq 0$. Then L is a context-free language.
(l) --_-_-- Let L be the language over $\Sigma=\{a, b\}$ consisting of all strings of the form $a^{m} b^{n}$, where $m \geq n$. Then L is a context-free language.
(m) _------- The complement of every context-free language is context-free.
(n) _------- The union of any two context-free languages is context-free.
(o) _-_-_-_ If a language has an context-free grammar, then it is is accepted by some push-down automaton.
(p) _-_-_-_ Every context-free language has an unambiguous context-free grammar.
(q) ------- Every language that has an unambiguous context-free grammar is accepted by some DPDA.
(r) -_-_--_ The intersection of any two context-free languages is context-free.
(s) _-_-_-_ Every deterministic machine is a non-deterministic machine.
(t) _-_-_-_ The language consisting of all base 2 numerals for integer powers of 2 is regular.
(u) _-_---- There is a DPDA that accepts the language of all palindromes over the binary alphabet $\{0,1\}$.
2. [25 points] Draw an NFA with five states which accepts the language described by the regular expression $(0+1)^{*} 0(0+1)(0+1)(0+1)$
3. [25 points] Write a regular expression for the language accepted by the following NFA. If your answer is unnecessarily long by a wide margin, I might mark it wrong even if it's right.

Find a Regular Expression
4. [20 points] Let G be the context-free grammar given below.
(a) $S \rightarrow a$
(b) $S \rightarrow w S$
(c) $S \rightarrow i S$
(d) $S \rightarrow i S e S$

Prove that G is ambiguous by writing two different leftmost derivations for the string iwiaea. [If you simply show two different parse trees, you are not following instructions.]
5. [30 points] Design a PDA that accepts the language $L=\left\{a^{n} b c^{n}: n \geq 0\right\}$.
6. [30 points] Give a context-free grammar for the language of all strings over $\{0,1\}$ of the form $0^{m} 1^{n}$ where $n \neq m$.
7. [30 points] The following context-free grammar G is ambiguous. Give an equivalent unambiguous grammar.

- The terminal alphabet of G is $\{a, b, c,(),,+,-, *\}$.
- G has only one variable, namely the start symbol E.
- The productions of G are as follows:
(a) $E \rightarrow E+E$
(b) $E \rightarrow E-E$
(c) $E \rightarrow E * E$
(d) $E \rightarrow(E)$
(e) $E \rightarrow a$
(f) $E \rightarrow b$
(g) $E \rightarrow c$

8. [30 points] Let L be the language generated by the Chomsky Normal Form (CNF) grammar given below.
(a) $S \rightarrow a$
(b) $E \rightarrow a$
(c) $S \rightarrow L A$
(d) $E \rightarrow L A$
(e) $L \rightarrow($
(f) $A \rightarrow E R$
(g) $R \rightarrow$)
(h) $S \rightarrow P E$
(i) $E \rightarrow P E$
(j) $S \rightarrow E E$
(k) $E \rightarrow E E$
(l) $P \rightarrow E Q$
(m) $Q \rightarrow+$

Use the CYK algorithm to prove that the string $a(a+a)$ is a member of L. Use the figure below for your work.

9. [15 points] State the pumping lemma for regular languages.
10. [15 points] State the pumping lemma for context-free languages.
11. Let L be the language generated by the context-free grammar given in the first box. The second box contains a Chomsky Normal Form (CNF) grammar that also generates L.

(a) $S \rightarrow a$ (b) $S \rightarrow w S$ (c) $S \rightarrow i S$ (d) $S \rightarrow i S e S$ (a) $S \rightarrow W S$ (b) $S \rightarrow I S$ (c) $S \rightarrow A B$ (d) $A \rightarrow I S$ (e) $B \rightarrow E S$ (f) $S \rightarrow a$ (g) $I \rightarrow i$ (h) $W \rightarrow w$ (i) $E \rightarrow e$

(a) [20 points] Use the CYK algorithm to prove that the string iwiaea is a member of L. Use the figure below for your work.
(b) [20 points] By looking at your work carefully, you can determine that the CNF grammar given above is ambiguous. Write two different parse trees for iwiaea, using the CNF grammar.

12. [30 points] Consider the NFA whose transition diagram is drawn below, where the input alphabet is $\{a, b, c\}$. Draw the transition diagram of an equivalent minimal DFA. Show your steps.

Figure 1: Find a minimal DFA equivalent to this NFA
13. [30 points] Let $L=\left\{w \in\{a, b\}^{*} \mid \#_{a}(w)=2 \#_{b}(w)\right\}$, here $\#_{a}(w)$ denotes the number of instances of the symbol a in the string w. For example, aaababaaabba $\in L$, because that string has the twice as many a 's as b 's. Give a context-free grammar for L. Your grammar may be ambiguous.
14. [30 points]

1. $S \rightarrow \epsilon$
2. $S \rightarrow a_{2} S_{3} b_{4} S_{5}$

	a	b	eof	S
0				
1			halt	
2				
3				
4				
5				

Complete the ACTION and GOTO tables of an LALR parser for the grammar given above. This grammar unambiguously generates the "balanced parentheses" language, where a represents a left parenthesis, and b represents a right parenthesis. Example strings include $\epsilon, a b, a a b b, a b a b$, and aabbab.

