Computer Science 456/656 Spring 2013

Practice for the First Examination, February 28, 2013

The entire practice examination is 455 points. The real exam will be much shorter.

- 1. True or False. [5 points each]
 - (a) _____ Every subset of a regular language is regular.
 - (b) _____ Let L be the language over $\Sigma = \{a, b\}$ consisting of all strings of the form $a^m b^n$, where $m, n \ge 0$. Then L is a regular language.
 - (c) _____ The complement of every regular language is regular.
 - (d) _____ The Kleene closure of every context-free language is context-free.
 - (e) _____ If a language has an unambiguous context-free grammar, then it is is accepted by some deterministic push-down automaton.
 - (f) _____ If a language has an ambiguous context-free grammar, then it is is not accepted by any deterministic push-down automaton.
 - (g) _____ There is a PDA that accepts all valid C++ programs.
 - (h) _____ The intersection of any two regular languages is regular.
 - (i) _____ The language consisting of all base 7 numerals for positive integers n such that n % 3 = 2 is regular.
 - (j) _____ The intersection of any two context-free languages is context-free.
 - (k) _____ Let L be the language over $\Sigma = \{a, b\}$ consisting of all strings of the form $a^m b^n c^m$, where $m, n \ge 0$. Then L is a context-free language.
 - (1) _____ Let L be the language over $\Sigma = \{a, b\}$ consisting of all strings of the form $a^m b^n$, where $m \ge n$. Then L is a context-free language.
 - (m) _____ The complement of every context-free language is context-free.
 - (n) _____ The union of any two context-free languages is context-free.
 - (o) _____ If a language has an context-free grammar, then it is is accepted by some push-down automaton.
 - (p) _____ Every context-free language has an unambiguous context-free grammar.
 - (q) _____ Every language that has an unambiguous context-free grammar is accepted by some DPDA.
 - (r) _____ The intersection of any two context-free languages is context-free.
 - (s) _____ Every deterministic machine is a non-deterministic machine.
 - (t) _____ The language consisting of all base 2 numerals for integer powers of 2 is regular.
 - (u) $_$ There is a DPDA that accepts the language of all palindromes over the binary alphabet $\{0, 1\}$.

- 2. [25 points] Draw an NFA with five states which accepts the language described by the regular expression $(0+1)^*0(0+1)(0+1)(0+1)$
- 3. [25 points] Write a regular expression for the language accepted by the following NFA. If your answer is unnecessarily long by a wide margin, I might mark it wrong even if it's right.

Find a Regular Expression

- 4. [20 points] Let G be the context-free grammar given below.
 - (a) $S \to a$
 - (b) $S \to wS$
 - (c) $S \rightarrow iS$
 - (d) $S \rightarrow iSeS$

Prove that G is ambiguous by writing two different **leftmost** derivations for the string *iwiaea*. [If you simply show two different parse trees, you are not following instructions.]

- 5. [30 points] Design a PDA that accepts the language $L = \{a^n b c^n : n \ge 0\}$.
- 6. [30 points] Give a context-free grammar for the language of all strings over $\{0,1\}$ of the form $0^m 1^n$ where $n \neq m$.
- 7. [30 points] The following context-free grammar G is ambiguous. Give an equivalent unambiguous grammar.
 - The terminal alphabet of G is $\{a, b, c, (,), +, -, *\}$.
 - G has only one variable, namely the start symbol E.
 - The productions of G are as follows:
 - (a) $E \to E + E$
 - (b) $E \to E E$
 - (c) $E \to E * E$
 - (d) $E \to (E)$
 - (e) $E \to a$
 - (f) $E \to b$
 - (g) $E \to c$

- 8. [30 points] Let L be the language generated by the Chomsky Normal Form (CNF) grammar given below.
 - (a) $S \to a$
 - (b) $E \to a$
 - (c) $S \to LA$
 - (d) $E \to LA$
 - (e) $L \rightarrow ($
 - (f) $A \to ER$
 - (g) $R \rightarrow$)
 - (h) $S \to PE$
 - (i) $E \to PE$
 - (j) $S \to EE$
 - (k) $E \to EE$
 - (1) $P \to EQ$
 - (m) $Q \rightarrow +$

Use the CYK algorithm to prove that the string a(a + a) is a member of L. Use the figure below for your work.

- 9. [15 points] State the pumping lemma for regular languages.
- 10. [15 points] State the pumping lemma for context-free languages.

11. Let L be the language generated by the context-free grammar given in the first box. The second box contains a Chomsky Normal Form (CNF) grammar that also generates L.

- (a) [20 points] Use the CYK algorithm to prove that the string *iwiaea* is a member of L. Use the figure below for your work.
- (b) [20 points] By looking at your work carefully, you can determine that the CNF grammar given above is ambiguous. Write two different parse trees for *iwiaea*, using the CNF grammar.

12. [30 points] Consider the NFA whose transition diagram is drawn below, where the input alphabet is $\{a, b, c\}$. Draw the transition diagram of an equivalent minimal DFA. Show your steps.

Figure 1: Find a minimal DFA equivalent to this NFA

- 13. [30 points] Let $L = \{w \in \{a, b\}^* \mid \#_a(w) = 2\#_b(w)\}$, here $\#_a(w)$ denotes the number of instances of the symbol *a* in the string *w*. For example, *aaababaaabba* $\in L$, because that string has the twice as many *a*'s as *b*'s. Give a context-free grammar for *L*. Your grammar may be ambiguous.
- 14. [30 points]
 - 1. $S \rightarrow \epsilon$

2.
$$S \rightarrow a_2 S_3 b_4 S_5$$

	a	b	eof	S
0				
1			halt	
2				
3				
4				
5				

Complete the ACTION and GOTO tables of an LALR parser for the grammar given above. This grammar unambiguously generates the "balanced parentheses" language, where *a* represents a left parenthesis, and *b* represents a right parenthesis. Example strings include ϵ , *ab*, *aabb*, *abab*, and *aabbab*.