Computer Science 456/656 Spring 2013 Practice Examination for Second Examination, April 11, 2013

The entire practice examination is 300 points.

- 1. True or False. [5 points each] T = true, F = false, and O = open, meaning that the answer is not known to science at this time.
 - (a) _____ There exists a machine¹ that runs forever and outputs the string of decimal digits of π (the well-known ratio of the circumference of a circle to its diameter).
 - (b) _____ For every real number x, there exists a machine that runs forever and outputs the string of decimal digits of x.
 - (c) _____ If a language has an unambiguous context-free grammar, then there must be some DPDA that accepts it.
 - (d) _____ The problem of whether two given context-free grammars generate the same language is decidable.
 - (e) _____ The problem of whether a given string is generated by a given context-free grammar is decidable.
 - (f) _____ The language $\{a^n b^n c^n d^n \mid n \ge 0\}$ is recursive.
 - (g) _____ Let L be the language over $\{a, b, c\}$ consisting of all strings which have more a's than b's and more b's than c's. There is some PDA that accepts L.
 - (h) _____ There exists a mathematical proposition that can be neither proved nor disproved.
 - (i) _____ The language $\{a^n b^n c^n \mid n \ge 0\}$ is in the class \mathcal{P} .
 - (j) _____ There exists a polynomial time algorithm which finds the factors of any positive integer, where the input is given as a binary numeral.
 - (k) _____ The problem of whether a given context-free grammar generates all strings is decidable.
 - (1) _____ The language $\{a^n b^n \mid n \ge 0\}$ is context-free.
 - (m) _____ The language $\{a^n b^n c^n \mid n \ge 0\}$ is context-free.
 - (n) _____ The language $\{a^i b^j c^k \mid j = i + k\}$ is context-free.

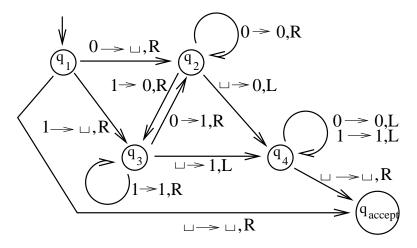
¹As always in automata theory, "machine" means abstract machine, a mathematical object whose memory and running time are **not** constrained by the size and lifetime of the known (or unknown) universe, or any other physical laws. If we want to discuss the kind of machine that exists (or could exist) physically, we call it a "physical machine."

- (o) _____ The intersection of any three regular languages is context-free.
- (p) _____ If a language L is undecidable, then there can be no machine that enumerates L.
- (q) _____ (Warning: this one is hard.) If f is any function on positive integers, there must be a recursive function g such that f(n) = O(g(n)).
- (r) Recall that if \mathcal{L} is a class of languages, co- \mathcal{L} is defined to be the class of all languages that are not in \mathcal{L} .

Let \mathcal{RE} be the class of all recursively enumerable languages. If L is in \mathcal{RE} and also L is in co- \mathcal{RE} , then L must be decidable.

- (s) _____ Every problem that can be mathematically defined has an algorithmic solution.
- (t) _____ If a language has an unambiguous context-free grammar, then there must be some DPDA that accepts it.
- (u) _____ There exists a polynomial time algorithm which finds the factors of any positive integer, where the input is given as a unary numeral.
- (v) _____ Every bounded function is recursive.
- (w) _____ For any two languages L_1 and L_2 , if L_1 is \mathcal{NP} -complete, L_2 is \mathcal{NP} , and there is a polynomial time reduction of L_1 to L_2 , then L_2 must be \mathcal{NP} -complete.
- (x) _____ If P is a mathematical proposition that can be stated using n binary bits, and P has a proof, then P must have a proof whose length is $O(2^{2^n})$.
- Fill the blanks. [5 points each blank]
- (a) An LALR ______ outputs a ______ derivation.
- (b) An ______ of a language L is a machine that outputs all the strings of L and no other strings.
- (c) If a language is accepted by some Turing machine, it is ______ enumerable.
- 2. [10 points] Give a definition of *context-sensitive grammar*.
- 3. [20 points] State the pumping lemma for context-free languages. (Your answer must be correct in its structure, not just the words you use. Even if all the correct words are there, you could get no credit if you get the logic wrong.)
- 4. [30 points] State the Church-Turing thesis, and explain (in about 5 lines or less) why it is important.
- 5. [30 points] Give a sketch of the proof that the independent set problem is \mathcal{NP} -complete, assuming that 3-CNF-SAT is \mathcal{NP} -complete. You may draw pictures and use examples.

- 6. [30 points] Give an implementation-level description of a Turing machine that decides the language $L = \{w \in \{0,1\}^* \mid w \text{ contains twice as many 0s as 1s}\}.$
- 7. [30 points] What is the diagonal language? Give a brief sketch of the proof that it is not accepted by any Turing machine. (If you use more than this page, you are writing too much.)
- 8. [20 points] Describe, in English, what the Turing machine diagrammed below does. Hint: It only takes a few words.



- 9. [30 points] Prove that, if a language L is decidable, then L can be enumerated in canonical order by some machine.
- 10. [30 points] Give a brief explanation of why any language accepted by an NTM is accepted by some TM.