Online and Offline List Batching

Wolfgang Bein

Center for the Advanced Study of Algorithms School of Computer Science University of Nevada, Las Vegas

2007

supported by NSF grant CCR-0312093

< □ >

P

Osaka Kinko's

∃ →

< o > < 🗗

List Batching

n jobs are given to be processed in batches

all jobs in a batch finish at the same time there is a setup time to get a batch started

List Batching, continued...

Jobs with processing requirements $p_1, p_2, \dots p_n$ are given and have to processed in that order.

List Batching, continued...

Jobs with processing requirements $p_1, p_2, ..., p_n$ are given and have to processed in that order. There is one machine.

List Batching, continued...

Jobs with processing requirements $p_1, p_2, \dots p_n$ are given and have to processed in that order. There is one machine.

Jobs are given to the machine in batches. Every batch has a setup time of 1.

List Batching, continued...

Jobs with processing requirements $p_1, p_2, ..., p_n$ are given and have to processed in that order. There is one machine.

Jobs are given to the machine in batches. Every batch has a setup time of 1.

• The completion time *C_i* of job *i* is the completion time of its batch.

List Batching, continued...

Jobs with processing requirements $p_1, p_2, ..., p_n$ are given and have to processed in that order. There is one machine.

Jobs are given to the machine in batches. Every batch has a setup time of 1.

- The completion time *C_i* of job *i* is the completion time of its batch.
- The object is to batch the jobs in such a way that ∑ C_i is minimized.

Offline List Batching

Online List Batching

Our Example

Wolfgang Bein

-

Large body of work on offline batching, i.e.

- [Coffman, Yannakakis, Magazine, Santos, 1990]
- [Albers, Brucker, 1993]
- [Brucker, Gladky, Hoogeveen, Kovalyov, Pots, Tautenhahn, Velde, 1998]

List s-Batching, Offline

The offline list s-batching problem can be reduced to a path problem¹[AB92]:

¹List p-Batching has a similar reduction

A Simple Dynamic Program

c12+E[1	3			
c13+E[1]c23+E[2	2]		
c14+E[1	c24+E[2	p34+E[3]	

 $O(n^2)$

< o > < 🗗

CASA

5990

$$\begin{split} E[\ell] &= \text{the shortest path from 1 to } \ell \\ E[\ell] &= \min_{1 \leq k < \ell} \{ E[k] + c_{k\ell} \} \end{split}$$

Wolfgang Bein Online and Offline List Batching

E[1]=0

A Simple Dynamic Program

c12+E[1]		
c13+E[1]c23+E[2	2)	
c14+E[1	c24+E[2	p34+E[3]

 $O(n^2)$

< o > < 🗗

CASA

5990

 $E[\ell] = \text{the shortest path from 1 to } \ell$ $E[\ell] = \min_{1 \le k < \ell} \{ E[k] + c_{k\ell} \}$

Wolfgang Bein Online and Offline List Batching

E[1]=0

A Simple Dynamic Program

-	 · •
- E.I	
_	

 $O(n^2)$

< o > < 🗗

CASA

5990

 $E[\ell] = \text{the shortest path from 1 to } \ell$ $E[\ell] = \min_{1 \le k < \ell} \{ E[k] + c_{k\ell} \}$

Wolfgang Bein Online and Offline List Batching

A Simple Dynamic Program

 $O(n^2)$

< o > < 🗗

CASA

5990

 $E[\ell] = \text{the shortest path from 1 to } \ell$ $E[\ell] = \min_{1 \le k < \ell} \{ E[k] + c_{k\ell} \}$ E[1]=0

How to do this in $O(n \log n)$

Monge Property

$$c_{i_1j_1} + c_{i_2j_2} \le c_{i_2j_1} + c_{i_1j_2}$$

Totally Monotone

< 口 > < 🗗

(E)

Various Inferences

Entire colums can be eliminated in $O(\log n)$ time:

The Online Protocol of the Dynamic Program

[LS91] Protocol: Once the minimum of the

ith row

is known, the

(*i* + 1)st

The Online Protocol of the Dynamic Program

[LS91] Protocol: Once the minimum of the

ith row

is known, the

(*i* + 1)st

The Online Protocol of the Dynamic Program

[LS91]

Protocol: Once the minimum of the

ith row

is known, the

(*i* + 1)st

The Online Protocol of the Dynamic Program

[LS91]

Protocol: Once the minimum of the

ith row

is known, the

(*i* + 1)st

The Online Protocol of the Dynamic Program

[LS91]

Protocol: Once the minimum of the

ith row

is known, the

(*i* + 1)st

The Online Protocol of the Dynamic Program

[LS91]

Protocol: Once the minimum of the

ith row

is known, the

(*i* + 1)st

The Online Protocol of the Dynamic Program

[LS91]

Protocol: Once the minimum of the

ith row

is known, the

(*i* + 1)st

Algorithm is $O(n \log n)$

The Hire/Fire/Retire Algorithm can be implemented in $O(n \log n)$

- Potential: number of rows + number of columns.
- Retire eliminates a column, not-retire eliminates a row, fire eliminates a column, not-fire eliminates a row.

O(n) Algorithms:

- [LARSH 91]
- [Albers, Brucker 93]

A closed form for $p_i = s = 1$

Theorem ([BELN 04])

$$optcost[n] = \frac{m(m+1)(m+2)(3m+5)}{24} + k(n+m-k+1) + \frac{k(k+1)}{2}$$
for $n = \frac{m(m+1)}{2} + k$

The optimal size of the first batch

$$= \begin{cases} m \text{ if } k = 0 \\ m \text{ or } m + 1 \text{ if } 0 < k < m + 2 \\ m + 1 \text{ if } k = m + 1 \end{cases}$$

< o > < 🗗

CASA

Online List Batching

• Jobs J_1, J_2, \ldots arrive one by one over a list.

Wolfgang Bein Online and Offline List Batching

< P

< □ ▶

> < E >

Online List Batching

- Jobs J_1, J_2, \ldots arrive one by one over a list.
- Job *J_i* must be scheduled before a new job is seen, and even before knowing whether current is the last job.

Online List Batching

- Jobs J_1, J_2, \ldots arrive one by one over a list.
- Job *J_i* must be scheduled before a new job is seen, and even before knowing whether current is the last job.
- For job J_i an online Algorithm must decide whether to "batch": to make J_i the first job of a new bach "not to batch": to add J_i to the current batch.

Competitiveness

 A measure of the performance that compares the decision made online with the optimal offline solution for the same problem.

For any sequence of jobs $\rho = \{J_1, J_2, \ldots\}$

 $cost_{\mathcal{A}}(\rho)$: cost of the schedule produced by \mathcal{A} for ρ $cost_{opt}(\rho)$ is the minimum cost of any schedule for ρ

We say that A is *C*-competitive if for each sequence ρ we have $cost_A(\rho) \leq C \cdot cost_{opt}(\rho)$

- PSEUDOBATCH(B) maintains a variable P which will be the sum of the processing times of a set of recent jobs.
- When J₁ is received, P is set to 0. After receiving each subsequent J_i, PSEUDOBATCH(B) first adds p_i to P.
- If P > B, PSEUDOBATCH(B) batches and also sets P to zero.

Pseudobatch(1)

- PSEUDOBATCH(*B*) maintains a variable *P* which will be the sum of the processing times of a set of recent jobs.
- When J₁ is received, P is set to 0. After receiving each subsequent J_i, PSEUDOBATCH(B) first adds p_i to P.
- If P > B, PSEUDOBATCH(B) batches and also sets P to zero.

Algorithm Pseudobatch(B)

Pseudobatch(1)

- PSEUDOBATCH(*B*) maintains a variable *P* which will be the sum of the processing times of a set of recent jobs.
- When J₁ is received, P is set to 0. After receiving each subsequent J_i, PSEUDOBATCH(B) first adds p_i to P.
- If P > B, PSEUDOBATCH(B) batches and also sets P to zero.

P

Algorithm Pseudobatch(B)

Pseudobatch(1)

- PSEUDOBATCH(*B*) maintains a variable *P* which will be the sum of the processing times of a set of recent jobs.
- When J₁ is received, P is set to 0. After receiving each subsequent J_i, PSEUDOBATCH(B) first adds p_i to P.
- If P > B, PSEUDOBATCH(B) batches and also sets P to zero.

< P

Algorithm Pseudobatch(B)

Pseudobatch(1)

- PSEUDOBATCH(*B*) maintains a variable *P* which will be the sum of the processing times of a set of recent jobs.
- When J₁ is received, P is set to 0. After receiving each subsequent J_i, PSEUDOBATCH(B) first adds p_i to P.
- If P > B, PSEUDOBATCH(B) batches and also sets P to zero.

Algorithm Pseudobatch(B)

Pseudobatch(1)

- PSEUDOBATCH(*B*) maintains a variable *P* which will be the sum of the processing times of a set of recent jobs.
- When J₁ is received, P is set to 0. After receiving each subsequent J_i, PSEUDOBATCH(B) first adds p_i to P.
- If P > B, PSEUDOBATCH(B) batches and also sets P to zero.

< P

0.2	0.6 0.2 0.3
	0.2 0.6 0.2
Р	1.1

Pseudobatch(1)

- PSEUDOBATCH(*B*) maintains a variable *P* which will be the sum of the processing times of a set of recent jobs.
- When J₁ is received, P is set to 0. After receiving each subsequent J_i, PSEUDOBATCH(B) first adds p_i to P.
- If P > B, PSEUDOBATCH(B) batches and also sets P to zero.

Algorithm Pseudobatch(B)

Pseudobatch(1)

- PSEUDOBATCH(*B*) maintains a variable *P* which will be the sum of the processing times of a set of recent jobs.
- When J₁ is received, P is set to 0. After receiving each subsequent J_i, PSEUDOBATCH(B) first adds p_i to P.
- If P > B, PSEUDOBATCH(B) batches and also sets P to zero.

Pseudobatch(1)

- PSEUDOBATCH(*B*) maintains a variable *P* which will be the sum of the processing times of a set of recent jobs.
- When J₁ is received, P is set to 0. After receiving each subsequent J_i, PSEUDOBATCH(B) first adds p_i to P.
- If P > B, PSEUDOBATCH(B) batches and also sets P to zero.

P

Pseudobatch(1)

- PSEUDOBATCH(*B*) maintains a variable *P* which will be the sum of the processing times of a set of recent jobs.
- When J₁ is received, P is set to 0. After receiving each subsequent J_i, PSEUDOBATCH(B) first adds p_i to P.
- If P > B, PSEUDOBATCH(B) batches and also sets P to zero.

P

Pseudobatch(1)

- PSEUDOBATCH(*B*) maintains a variable *P* which will be the sum of the processing times of a set of recent jobs.
- When J₁ is received, P is set to 0. After receiving each subsequent J_i, PSEUDOBATCH(B) first adds p_i to P.
- If P > B, PSEUDOBATCH(B) batches and also sets P to zero.

0.2 0.6 0.2 0.3 0.1 1.1	
P 0	

Pseudobatch(1)

- PSEUDOBATCH(*B*) maintains a variable *P* which will be the sum of the processing times of a set of recent jobs.
- When J₁ is received, P is set to 0. After receiving each subsequent J_i, PSEUDOBATCH(B) first adds p_i to P.
- If P > B, PSEUDOBATCH(B) batches and also sets P to zero.

Pseudobatch(1)

- PSEUDOBATCH(*B*) maintains a variable *P* which will be the sum of the processing times of a set of recent jobs.
- When J₁ is received, P is set to 0. After receiving each subsequent J_i, PSEUDOBATCH(B) first adds p_i to P.
- If P > B, PSEUDOBATCH(B) batches and also sets P to zero.

PSEUDOBATCH(1) is 2-competitive

Theorem ([BELN 04])

The competitiveness of algorithm PSEUDOBATCH(1) is not larger than 2

< □ >

P

PSEUDOBATCH(1) is 2-competitive

Theorem ([BELN 04])

The competitiveness of algorithm PSEUDOBATCH(1) is not larger than 2

Proof.

Let
$$S_i = \sum_{j=1}^i p_j$$

< □ >

P

₹7 ISA

Theorem ([BELN 04])

The competitiveness of algorithm PSEUDOBATCH(1) is not larger than 2

Proof.

Let
$$S_i = \sum_{j=1}^i p_j$$
.

• Optimal Completion Times: $C_i^* \ge 1 + S_i$

< <p>Image: Image: Imag

Theorem ([BELN 04])

The competitiveness of algorithm PSEUDOBATCH(1) is not larger than 2

Proof.

Let
$$S_i = \sum_{j=1}^i p_j$$
.

- Optimal Completion Times: $C_i^* \ge 1 + S_i$
- For PSEUDOBATCH(1): $C_i \leq \#$ batches + S_i + 1

< 🗆 🕨

Theorem ([BELN 04])

The competitiveness of algorithm PSEUDOBATCH(1) is not larger than 2

Proof.

Let
$$S_i = \sum_{j=1}^i p_j$$
.

- Optimal Completion Times: $C_i^* \ge 1 + S_i$
- For PSEUDOBATCH(1): $C_i \leq \#$ batches + S_i + 1
- #batches $\leq 1 + S_i$

Theorem ([BELN 04])

The competitiveness of algorithm PSEUDOBATCH(1) is not larger than 2

Proof.

Let
$$S_i = \sum_{j=1}^i p_j$$
.

- Optimal Completion Times: $C_i^* \ge 1 + S_i$
- For PSEUDOBATCH(1): $C_i \leq \# \text{batches} + S_i + 1$
- #batches $\leq 1 + S_i$
- Thus $C_i \leq 2 + 2S_i$, which implies the result.

nan

PSEUDOBATCH(1) is Optimal

Theorem ([BELN 04])

The competitiveness of any deterministic online algorithm for the list s-batch problem is at least 2.

- Construct an adversary such that any deterministic algorithm will perform "poorly".
- Aversary uses Null Jobs.
- Null Jobs are jobs with "arbitrarily" small processing times.

Lower Bound Adversary

Proof.

- Let *m* be a large integer; the sequence ends
 a: the first time A does not batch,
 - b: or at *m*.

< 🗗 🕨 🔸 📢

=

= ▶ ∢

₹

Proof.

- Let *m* be a large integer; the sequence ends
 a: the first time A does not batch,
 b: or at *m*.
- in case a we have $cost_{\mathcal{A}} = n^k(k+k) + low order$

1	2	k

 = >

£] S∆

DQC

Proof.

- Let *m* be a large integer; the sequence ends
 a: the first time A does not batch,
 - b: or at *m*.

• in case a we have $cost_{\mathcal{A}} = n^k(k+k) + low order$

• opt places all but the last job into one batch, $cost_{\mathcal{A}} = n^{k}(k) + low order$

 Sac

Proof. Let *m* be a large integer; the sequence ends a; the first time A does not batch.

- a: the first time A does not batch,b: or at m.
- in case a we have $cost_{\mathcal{A}} = n^k(k+k) + low order$

• opt places all but the last job into one batch, $cost_{\mathcal{A}} = n^{k}(k) + low order$

• case b similar...

Small jobs are needed...

- The next result shows that the exact competitiveness of 2 relies on the fact that the jobs may be arbitrarily small.
- In fact, if there is a positive lower bound on the size of the jobs, it is possible to construct an algorithm with competitiveness less than two.

Theorem ([BELN 04])

If the processing time of every job is at least p, then $\mathcal{A} = \mathsf{PSEUDOBATCH}(\sqrt{p+1})$ is C-competitive, where $C = \min\left(\frac{1+\sqrt{p+1}}{\sqrt{p+1}}, \frac{p+1}{p}\right).$

If jobs are at least p...

The uniform case of $p_i = s = 1$

Define \mathcal{D} to be the online algorithm which batches after jobs: 2, 5, 9, 13, 18, 23, 29, 35, 41, 48, 54, 61, 68, 76, 84, 91, 100, 108, 117, 126, 135, 145, 156, 167, 179, 192, 206, 221, 238, 257, 278, 302, 329, 361, 397, 439, 488, 545, 612, 690, 781, 888, 1013, 1159, 1329, 1528, 1760, and 2000+40*i* for all $i \ge 0$.

Algorithm was found by computer

Theorem ([BELN 04])

 \mathcal{D} is $\frac{619}{583}$ -competitive, and no online algorithm the list batching problem restricted to unit job sizes has competitiveness smaller than $\frac{619}{583}$.

 $\overline{\mathbb{A}}$

The case pf $p_i = s = 1$; upper bound

- It is easy to show that ⁶¹⁹/₅₈₃ is an uppper bound on the competitive ratio of the algorithms if there are more than 2000 jobs.
- The ratio is only tight when there are fewer than 2000 jobs.
- The algorithm was found by computer simulation.

The case pf $p_i = s = 1$; Algorithm

Minimum Competitiveness Layered Graph Problem

- Schedule are combined into classes.
- A class has schedules where there are *m* batches, the last batchCASA contains *b* jobs, and *k* jobs have been requested.

The case pf $p_i = s = 1$; Lower Bound Proof

Competitiveness for p-Batching

THRESHOLD:

batches for the ℓ^{th} time whenever the processing requirement of the next job $\geq (\ell + 1)2^{\ell} - 1$, i.e. 3, 11, 31, 79, ...

< D >

Competitiveness for p-Batching

Theorem ([BELN 04])

THRESHOLD is 4-competitive. No deterministic online algorithm for the list p-batch problem can have competitiveness less than *4*.

Proof.

Lower bound proof a bit subtle....

Open Problems: Weighted Batching

Problem

Given n jobs with

- processing times $p_1, \ldots p_n$
- Inon-negative weights w₁... w_n.
- offline

Find an order and s-batching that minimizes $\sum w_i C_i$.

- Problem is NP-hard.
- Sort jobs in order of "priorities" ^{w_i}/_{ρ_i} then PSEUDOBATCH(1) is a 2-approximation.

PTAS?