
Offline List Batching
Online List Batching

Online and Offline List Batching

Wolfgang Bein

Center for the Advanced Study of Algorithms
School of Computer Science

University of Nevada, Las Vegas

2007

supported by NSF grant CCR-0312093

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

Osaka Kinko’s

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

List Batching

n jobs are given to be processed in batches
Job 1 Job 2 Job 3 Job 4 Job 5

all jobs in a batch finish at the same time
there is a setup time to get a batch started

Job 4Job 3Job 1

5
5

13
13
13

Job5Job 2

the object is to minimize the average completion time
Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

List Batching, continued...

Jobs with processing requirements p1, p2, . . . pn

are given and have to processed in that order.

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

List Batching, continued...

Jobs with processing requirements p1, p2, . . . pn

are given and have to processed in that order.

There is one machine.

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

List Batching, continued...

Jobs with processing requirements p1, p2, . . . pn

are given and have to processed in that order.

There is one machine.

Jobs are given to the machine in batches. Every
batch has a setup time of 1.

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

List Batching, continued...

Jobs with processing requirements p1, p2, . . . pn

are given and have to processed in that order.

There is one machine.

Jobs are given to the machine in batches. Every
batch has a setup time of 1.

The completion time Ci of job i is the
completion time of its batch.

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

List Batching, continued...

Jobs with processing requirements p1, p2, . . . pn

are given and have to processed in that order.

There is one machine.

Jobs are given to the machine in batches. Every
batch has a setup time of 1.

The completion time Ci of job i is the
completion time of its batch.
The object is to batch the jobs in such a way
that

∑

Ci is minimized.

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

Our Example

Job 1 Job 2 Job 3 Job 4 Job 5

4 146 14
14

52

Job 3 Job 4 Job 5Job 1 Job 2

10 14
14

5
5

48

Job 1 Job 2 Job 3 Job 4 Job 5

5 13
135
13

49

Job 2 Job 5Job 3Job 1 Job 4

4 6 11 14 16

51

Job 1 Job 2 Job 3 Job 4 Job 5

12

60

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

Sor far List s-Batching, but here is also List p-Batching

Job 1

Job 2

Job 3

Job 4

Job 5

Job 6

Job 7

Job 1 Job 2 Job 3 Job 5

Job 1

Job 2

Job 3

Job 4

Job 5

Job 6

Job 7

2

2

2

2

8

8

8

32

Job 7

Job 6

Job 4

6

6

6

6

6

6

6

42

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

History

Large body of work on offline batching, i.e.

[Coffman, Yannakakis, Magazine, Santos, 1990]

[Albers, Brucker, 1993]

[Brucker, Gladky, Hoogeveen, Kovalyov, Pots, Tautenhahn,
Velde, 1998]

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

List s-Batching, Offline

The offline list s-batching problem can be reduced to a path
problem1[AB92]:

Job 1 Job 3 Job 4

Job 1 Job 3 Job 4Job2 Job 5

Job2 Job 5

cij

cij = (n − i)(s + Pj − Pi) with Pi =
∑i

ℓ=0 pℓ

1List p-Batching has a similar reduction
Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

A Simple Dynamic Program

ijc

n1 l
k

c12+E[1]

c13+E[1]

c14+E[1]

c23+E[2]

c24+E[2]c34+E[3]

E[1]=0

E [ℓ] = the shortest path from 1 to ℓ

E [ℓ] = min1≤k<ℓ{E [k] + ckℓ}
O(n2)

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

A Simple Dynamic Program

ijc

n1 l
k

c12+E[1]

c13+E[1]

c14+E[1]

c23+E[2]

c24+E[2]c34+E[3]

E[2]

E[1]=0

E [ℓ] = the shortest path from 1 to ℓ

E [ℓ] = min1≤k<ℓ{E [k] + ckℓ}
O(n2)

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

A Simple Dynamic Program

ijc

n1 l
k

c12+E[1]

c13+E[1]

c14+E[1]

c23+E[2]

c24+E[2]c34+E[3]

E[2]

E[3]

E[1]=0

E [ℓ] = the shortest path from 1 to ℓ

E [ℓ] = min1≤k<ℓ{E [k] + ckℓ}
O(n2)

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

A Simple Dynamic Program

ijc

n1 l
k

c12+E[1]

c13+E[1]

c14+E[1]

c23+E[2]

c24+E[2]c34+E[3]

E[2]

E[3]

E[4]

E[1]=0

E [ℓ] = the shortest path from 1 to ℓ

E [ℓ] = min1≤k<ℓ{E [k] + ckℓ}
O(n2)

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

How to do this in O(n log n)

Monge Property

i1

i2

2j1j

ci1j1 + ci2j2 ≤ ci2j1 + ci1 j2

<=

>

Totally Monotone

min

minmin

min

min

min

min

min

min

min

min

min

min

min

min

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

Various Inferences

Entire colums can be eliminated in O(log n) time:

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

negative

positive

a b
mon. increasing
difference is

>
>
>
>

<

<
<

<
<

<

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

a cb< >

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

The Online Protocol of the Dynamic Program

[LS91]

Protocol:
Once the minimum of the

i th row

is known,
the

(i + 1)st

column is available .

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

The Online Protocol of the Dynamic Program

[LS91]

Protocol:
Once the minimum of the

i th row

is known,
the

(i + 1)st

column is available .

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

The Online Protocol of the Dynamic Program

[LS91]

Protocol:
Once the minimum of the

i th row

is known,
the

(i + 1)st

column is available .

x

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

The Online Protocol of the Dynamic Program

[LS91]

Protocol:
Once the minimum of the

i th row

is known,
the

(i + 1)st

column is available .

x

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

The Online Protocol of the Dynamic Program

[LS91]

Protocol:
Once the minimum of the

i th row

is known,
the

(i + 1)st

column is available .

x

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

The Online Protocol of the Dynamic Program

[LS91]

Protocol:
Once the minimum of the

i th row

is known,
the

(i + 1)st

column is available .

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

The Online Protocol of the Dynamic Program

[LS91]

Protocol:
Once the minimum of the

i th row

is known,
the

(i + 1)st

column is available .

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

Algorithm is O(n log n)

The Hire/Fire/Retire Algorithm can be implemented in
O(n log n)

Potential: number of rows + number of columns.

Retire eliminates a column, not-retire eliminates a row, fire
eliminates a column, not-fire eliminates a row.

O(n) Algorithms:

[LARSH 91]

[Albers, Brucker 93]

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

A closed form for pi = s = 1

Theorem ([BELN 04])

optcost[n] = m(m+1)(m+2)(3m+5)
24 + k(n + m − k + 1) + k(k+1)

2
for n = m(m+1)

2 + k

The optimal size of the first batch

=







m if k = 0
m or m + 1 if 0 < k < m + 1
m + 1 if k = m + 1

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

Online List Batching

Jobs J1, J2, . . . arrive one by one over a list.

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

Online List Batching

Jobs J1, J2, . . . arrive one by one over a list.

Job Ji must be scheduled before a new job is seen, and
even before knowing whether current is the last job.

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

Online List Batching

Jobs J1, J2, . . . arrive one by one over a list.

Job Ji must be scheduled before a new job is seen, and
even before knowing whether current is the last job.

For job Ji an online Algorithm must decide whether to
“batch”: to make Ji the first job of a new bach

“not to batch”: to add Ji to the current batch.

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

Competitiveness

A measure of the performance that compares the decision
made online with the optimal offline solution for the same
problem.

For any sequence of jobs ρ = {J1, J2, . . .}
costA(ρ): cost of the schedule produced by A for ρ

costopt(ρ) is the minimum cost of any schedule for
ρ

We say that A is C-competitive if for each sequence ρ we have
costA(ρ) ≤ C · costopt(ρ)

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

Algorithm PSEUDOBATCH(B)

PSEUDOBATCH(B) maintains a variable P which will be the sum
of the processing times of a set of recent jobs.

When J1 is received, P is set to 0. After receiving each
subsequent Ji , PSEUDOBATCH(B) first adds pi to P.

If P > B, PSEUDOBATCH(B) batches and also sets P to zero.

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

Algorithm PSEUDOBATCH(B)

0.2

0.2

P 0

Pseudobatch(1)

PSEUDOBATCH(B) maintains a variable P which will be the sum
of the processing times of a set of recent jobs.

When J1 is received, P is set to 0. After receiving each
subsequent Ji , PSEUDOBATCH(B) first adds pi to P.

If P > B, PSEUDOBATCH(B) batches and also sets P to zero.

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

Algorithm PSEUDOBATCH(B)

0.2

0.2

P

0.6

0.6

Pseudobatch(1)

PSEUDOBATCH(B) maintains a variable P which will be the sum
of the processing times of a set of recent jobs.

When J1 is received, P is set to 0. After receiving each
subsequent Ji , PSEUDOBATCH(B) first adds pi to P.

If P > B, PSEUDOBATCH(B) batches and also sets P to zero.

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

Algorithm PSEUDOBATCH(B)

0.2

0.2

P

0.6

0.6

0.6

Pseudobatch(1)

PSEUDOBATCH(B) maintains a variable P which will be the sum
of the processing times of a set of recent jobs.

When J1 is received, P is set to 0. After receiving each
subsequent Ji , PSEUDOBATCH(B) first adds pi to P.

If P > B, PSEUDOBATCH(B) batches and also sets P to zero.

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

Algorithm PSEUDOBATCH(B)

0.2

0.2

P

0.6

0.6

0.8

0.2

Pseudobatch(1)

PSEUDOBATCH(B) maintains a variable P which will be the sum
of the processing times of a set of recent jobs.

When J1 is received, P is set to 0. After receiving each
subsequent Ji , PSEUDOBATCH(B) first adds pi to P.

If P > B, PSEUDOBATCH(B) batches and also sets P to zero.

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

Algorithm PSEUDOBATCH(B)

0.2

0.2

P

0.6

0.6

0.2

0.8

0.2

Pseudobatch(1)

PSEUDOBATCH(B) maintains a variable P which will be the sum
of the processing times of a set of recent jobs.

When J1 is received, P is set to 0. After receiving each
subsequent Ji , PSEUDOBATCH(B) first adds pi to P.

If P > B, PSEUDOBATCH(B) batches and also sets P to zero.

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

Algorithm PSEUDOBATCH(B)

0.2

0.2

P

0.6

0.6

0.2

0.2 0.3

1.1

Pseudobatch(1)

PSEUDOBATCH(B) maintains a variable P which will be the sum
of the processing times of a set of recent jobs.

When J1 is received, P is set to 0. After receiving each
subsequent Ji , PSEUDOBATCH(B) first adds pi to P.

If P > B, PSEUDOBATCH(B) batches and also sets P to zero.

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

Algorithm PSEUDOBATCH(B)

0.2

0.2

P

0.6

0.6

0.2 0.3

0

0.2 0.3

Pseudobatch(1)

PSEUDOBATCH(B) maintains a variable P which will be the sum
of the processing times of a set of recent jobs.

When J1 is received, P is set to 0. After receiving each
subsequent Ji , PSEUDOBATCH(B) first adds pi to P.

If P > B, PSEUDOBATCH(B) batches and also sets P to zero.

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

Algorithm PSEUDOBATCH(B)

0.2

0.2

P

0.6

0.6

0.2 0.3

0.2 0.3 0.1

0.1

Pseudobatch(1)

PSEUDOBATCH(B) maintains a variable P which will be the sum
of the processing times of a set of recent jobs.

When J1 is received, P is set to 0. After receiving each
subsequent Ji , PSEUDOBATCH(B) first adds pi to P.

If P > B, PSEUDOBATCH(B) batches and also sets P to zero.

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

Algorithm PSEUDOBATCH(B)

0.2

0.2

P

0.6

0.6

0.2 0.3

0.2 0.3 0.1

0.1

0.1

Pseudobatch(1)

PSEUDOBATCH(B) maintains a variable P which will be the sum
of the processing times of a set of recent jobs.

When J1 is received, P is set to 0. After receiving each
subsequent Ji , PSEUDOBATCH(B) first adds pi to P.

If P > B, PSEUDOBATCH(B) batches and also sets P to zero.

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

Algorithm PSEUDOBATCH(B)

0.2

0.2

P

0.6

0.6

0.2 0.3

0.2 0.3 0.1

0.1

1.1

1.2

Pseudobatch(1)

PSEUDOBATCH(B) maintains a variable P which will be the sum
of the processing times of a set of recent jobs.

When J1 is received, P is set to 0. After receiving each
subsequent Ji , PSEUDOBATCH(B) first adds pi to P.

If P > B, PSEUDOBATCH(B) batches and also sets P to zero.

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

Algorithm PSEUDOBATCH(B)

0.2

0.2

P

0.6

0.6

0.2 0.3

0.2 0.3 0.1

0.1

1.1

0

1.1

Pseudobatch(1)

PSEUDOBATCH(B) maintains a variable P which will be the sum
of the processing times of a set of recent jobs.

When J1 is received, P is set to 0. After receiving each
subsequent Ji , PSEUDOBATCH(B) first adds pi to P.

If P > B, PSEUDOBATCH(B) batches and also sets P to zero.

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

Algorithm PSEUDOBATCH(B)

processing > 1 processing > 1

0.2 0.6 0.2 0.3 0.1 1.1

Pseudobatch(1)

PSEUDOBATCH(B) maintains a variable P which will be the sum
of the processing times of a set of recent jobs.

When J1 is received, P is set to 0. After receiving each
subsequent Ji , PSEUDOBATCH(B) first adds pi to P.

If P > B, PSEUDOBATCH(B) batches and also sets P to zero.

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

PSEUDOBATCH(1) is 2-competitive

Theorem ([BELN 04])

The competitiveness of algorithm PSEUDOBATCH(1) is not larger
than 2

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

PSEUDOBATCH(1) is 2-competitive

Theorem ([BELN 04])

The competitiveness of algorithm PSEUDOBATCH(1) is not larger
than 2

Proof.

Let Si =
∑i

j=1 pj .

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

PSEUDOBATCH(1) is 2-competitive

Theorem ([BELN 04])

The competitiveness of algorithm PSEUDOBATCH(1) is not larger
than 2

Proof.

Let Si =
∑i

j=1 pj .

Optimal Completion Times: C∗
i ≥ 1 + Si

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

PSEUDOBATCH(1) is 2-competitive

Theorem ([BELN 04])

The competitiveness of algorithm PSEUDOBATCH(1) is not larger
than 2

Proof.

Let Si =
∑i

j=1 pj .

Optimal Completion Times: C∗
i ≥ 1 + Si

For PSEUDOBATCH(1): Ci ≤ #batches + Si + 1

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

PSEUDOBATCH(1) is 2-competitive

Theorem ([BELN 04])

The competitiveness of algorithm PSEUDOBATCH(1) is not larger
than 2

Proof.

Let Si =
∑i

j=1 pj .

Optimal Completion Times: C∗
i ≥ 1 + Si

For PSEUDOBATCH(1): Ci ≤ #batches + Si + 1

#batches ≤ 1 + Si

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

PSEUDOBATCH(1) is 2-competitive

Theorem ([BELN 04])

The competitiveness of algorithm PSEUDOBATCH(1) is not larger
than 2

Proof.

Let Si =
∑i

j=1 pj .

Optimal Completion Times: C∗
i ≥ 1 + Si

For PSEUDOBATCH(1): Ci ≤ #batches + Si + 1

#batches ≤ 1 + Si

Thus Ci ≤ 2 + 2Si , which implies the result.

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

PSEUDOBATCH(1) is Optimal

Theorem ([BELN 04])

The competitiveness of any deterministic online algorithm for
the list s-batch problem is at least 2.

Construct an adversary such that any deterministic
algorithm will perform “poorly”.

Aversary uses Null Jobs.

Null Jobs are jobs with “arbitrarily” small processing times.

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

Lower Bound Adversary

Null
Jobs

Null
Jobs

1

Unit
Job

ε

Null
Jobs

ε ε

Null
Jobs

n

1

Unit
Job

ε

Null
Jobs

ε ε

1

Unit
Job

ε

Null
Jobs

ε ε

n2

nm

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

Proof Sketch

Proof.

Let m be a large integer; the sequence ends
a: the first time A does not batch,
b: or at m.

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

Proof Sketch

Proof.

Let m be a large integer; the sequence ends
a: the first time A does not batch,
b: or at m.

in case a we have costA = nk (k + k) + low order
1 2 k

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

Proof Sketch

Proof.

Let m be a large integer; the sequence ends
a: the first time A does not batch,
b: or at m.

in case a we have costA = nk (k + k) + low order
1 2 k

opt places all but the last job into one batch,
costA = nk (k) + low order

1 2 k

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

Proof Sketch

Proof.

Let m be a large integer; the sequence ends
a: the first time A does not batch,
b: or at m.

in case a we have costA = nk (k + k) + low order
1 2 k

opt places all but the last job into one batch,
costA = nk (k) + low order

1 2 k

case b similar...

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

Small jobs are needed...

The next result shows that the exact competitiveness of 2
relies on the fact that the jobs may be arbitrarily small.

In fact, if there is a positive lower bound on the size of the
jobs, it is possible to construct an algorithm with
competitiveness less than two.

Theorem ([BELN 04])

If the processing time of every job is at least p, then
A =PSEUDOBATCH(

√

p + 1) is C-competitive, where

C = min
(

1+
√

p+1√
p+1

,
p+1

p

)

.

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

If jobs are at least p...

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

The uniform case of pi = s = 1

Define D to be the online algorithm which batches after jobs: 2, 5, 9,
13, 18, 23, 29, 35, 41, 48, 54, 61, 68, 76, 84, 91, 100, 108, 117, 126,
135, 145, 156, 167, 179, 192, 206, 221, 238, 257, 278, 302, 329,
361, 397, 439, 488, 545, 612, 690, 781, 888, 1013, 1159, 1329,
1528, 1760, and 2000+40i for all i ≥ 0.

Algorithm was found by computer

Theorem ([BELN 04])

D is 619
583 -competitive, and no online algorithm the list batching

problem restricted to unit job sizes has competitiveness smaller
than 619

583 .

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

The case pf pi = s = 1; upper bound

It is easy to show that 619
583 is an uppper bound on the

competitive ratio of the algorithms if there are more than
2000 jobs.

The ratio is only tight when there are fewer than 2000 jobs.

The algorithm was found by computer simulation.

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

The case pf pi = s = 1; Algorithm

Minimum Competitiveness Layered Graph Problem

competitive path

optimal paths

nodes in layer k:
 k jobs requested
 m= #batches
 b= #jobs in current batch

Schedule are combined into classes.

A class has schedules where there are m batches, the last batch
contains b jobs, and k jobs have been requested.

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

The case pf pi = s = 1; Lower Bound Proof

n1
n2

0

Pruned Decision Tree

6 6

12 11 1212

2

18 18

0

2

6

11

18

27 26 27 27 26

Opt

batchdo not batch

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

Competitiveness for p-Batching

THRESHOLD:

batches for the ℓth time whenever the processing
requirement of the next job ≥ (ℓ + 1)2ℓ − 1,

i.e. 3, 11, 31, 79, . . .

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

Competitiveness for p-Batching

Theorem ([BELN 04])

THRESHOLD is 4-competitive. No deterministic online algorithm
for the list p-batch problem can have competitiveness less than
4.

Proof.

Lower bound proof a bit subtle....

Wolfgang Bein Online and Offline List Batching

Offline List Batching
Online List Batching

Open Problems: Weighted Batching

Problem

Given n jobs with

1 processing times p1, . . . pn

2 non-negative weights w1 . . . wn.
3 offline

Find an order and s-batching that minimizes
∑

wiCi .

Problem is NP-hard.

Sort jobs in order of “priorities” wi
pi

then PSEUDOBATCH(1) is
a 2-approximation.

PTAS ?

Wolfgang Bein Online and Offline List Batching

	Offline List Batching
	Online List Batching

