Computer Science 715 Spring 2012

Final Examination, May 12, 2012

1. The degree of a vertex of a graph is the number of neighbors of that vertex. The degree of a graph is the maximum degree of any vertex of the graph. Suppose that G is a connected graph with n vertices, whose degree and diameter are both d. Prove that $d=\Omega\left(\frac{\log n}{\log \log n}\right)$.
2. Solve the recurrence:

$$
F(n)=\frac{n}{\log n} F(\log n)+n
$$

3. Use amortized analysis to prove that the following pseudo-code takes $O(k)$ time to execute. The function Unknown has Boolean type, and returns whatever the adversary decides each time it is called.
```
\(i=0\)
for \(j=1\) to \(k\) do
    while \(i>0\) and Unknown do
        \(i=i-1\)
    end while
    \(i=i+1\)
end for
```

4. Using the result from Problem 3, prove that the REDUCE subroutine of SMAWK takes $O(n+m)$ time to reduce the case of an $n \times m$ strictly monotone matrix, for $m \geq n$, to the case of an $n \times n$ strictly monotone matrix.
5. Give a solution to the range query problem of size n that takes $O\left(n \log ^{*} n\right)$ preprocessing time and $O(1)$ time for each query, and which uses $O\left(n \log ^{*} n\right)$ space.
6. Given a sequence of integers, it is possible to find the longest monotone increasing subsequence in $O(n \log n)$ time, where n is the length of the sequence. Explain how that is done.
Walk through your algorithm for the example sequence:

At each step, illustrate the current state of the data structure.
7. Explain Johnson's algorithm for the all-pairs shortest path problem on a sparse weighted directed graph of n nodes and m edges where there are no negative cycles (although there could be negative edges). Give the asymptotic time complexity in terms of n and m.
8. Prove that the monotone Boolean circuit problem is \mathcal{P}-complete, assuming that the Boolean circuit problem is \mathcal{P}-complete.
9. Prove that the tropical product of two Monge matrices is Monge.
10. Give an $O\left(n^{2}\right)$-time algorithm which computes the tropical product of two $n \times n$ Monge matrices.
11. Consider a $3 \times n$ weighted grid graph, G. Let s be the upper left corner node. Prove that there is a parallel algorithm in the CREW PRAM model that solves the single-source minpath problem in G, where the source node is s, with time complexity $O(\log n)$ using $\frac{n}{\log n}$ processors. You don't have to actually give the algorithm. You only have to convince me that the algorithm exists.
Be careful. The least cost path from s to the opposite corner could be a path of length $3 n+1$ that uses every node.
12. Solve the following recurrences.
(a) $F(n)=F\left(\frac{n}{2}\right)+6 F\left(\frac{n}{3}\right)+3 F\left(\frac{n}{6}\right)+n^{2}$
(b) $F(n)=F\left(\frac{4 n}{9}\right)+F\left(\frac{n}{9}\right)+1$
(c) $F(n)=F\left(\frac{4 n}{9}\right)+F\left(\frac{n}{9}\right)+n$
13. The following $0-1$ problems are all obviously in the class $\mathcal{N P}$.

P1: SAT.
P2: 3-SAT.
P3: 3-in-1 SAT.
P4: Independent Set.
P5: Clique.
P6: Knapsack.
P7: Traveling Salesman.
P8: Dominating Set.
P9: Integer Programming.
One of the following will be on the test:
(a) Assuming that $\mathrm{P} 1, \mathrm{P} 2$, and P 3 are $\mathcal{N} \mathcal{P}$-complete, prove that P 4 is $\mathcal{N} \mathcal{P}$-complete.
(b) Assuming that P1, P2, P3, P4, and P5 are $\mathcal{N} \mathcal{P}$-complete, prove that P 6 is $\mathcal{N} \mathcal{P}$-complete.
(c) Assuming that $\mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3, \mathrm{P} 4, \mathrm{P} 5, \mathrm{P} 6$ and P 7 are $\mathcal{N} \mathcal{P}$-complete, prove that P 8 is $\mathcal{N} \mathcal{P}$-complete.

