
 

Abstract—This paper makes a case for using multi-core 
processors to simultaneously achieve transient-fault tolerance 
and performance enhancement. Our approach is extended from a 
recent latency-tolerance proposal, dual-core execution (DCE). In 
DCE, a program is executed twice in two processors, named the 
front and back processors. The front processor pre-processes 
instructions in a very fast yet highly accurate way and the back 
processor re-executes the instruction stream retired from the 
front processor. The front processor runs faster as it has no 
correctness constraints whereas its results, including timely 
prefetching and prompt branch misprediction resolution, help 
the back processor make faster progress. In this paper, we 
propose to entrust the speculative results of the front processor 
and use them to check the un-speculative results of the back 
processor. A discrepancy, either due to a transient fault or a 
mispeculation, is then handled with the existing mispeculation 
recovery mechanism.  In this way, both transient-fault tolerance 
and performance improvement can be delivered simultaneously 
with little hardware overhead. 

I. INTRODUCTION

Advances in semiconductor technology enable the integration 

of billion transistors on a single chip. Such exponentially 

increasing transistor counts makes reliability an important 

design challenge since a processor’s soft error rate grows in 

direct proportion to the number of devices being integrated [7]. 

The huge amount of transistors, on the other hand, leads to the 

popularity of multi-core processor or chip multi-processor 

architectures for improved system throughput. In this paper, we 

make a case for using multi-core processors collaboratively to 

simultaneously achieve performance enhancement and 

transient-fault tolerance for single-threaded applications. To 

our knowledge, this is the first proposal that realizes positive
performance improvements with full transient-fault coverage 

(i.e., redundancy checking for all committed instructions). 

Slipstream processors [13] also improve both performance and 

reliability but only with partial fault coverage.  

Our approach is based on recently proposed dual-core 

execution (DCE) [15]. In DCE, a program is executed twice by 

two processors, named the front and back processors, similar to 

prior work on chip-level redundancy [6],[8],[13]. The front 

processor executes instructions in its normal way except for 

long-latency cache-missing loads, which are turned invalid 

similar to run-ahead execution [5],[9]. The retired instructions 

from the front processor are then re-executed in the back 

processor to provide precise program state. The front processor 

runs faster due to its virtually ideal L2 cache whereas the back 
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processors makes faster progress since the front processor fixes 

most branch mispredictions and initiates timely prefetches.  

In this paper, we exploit the redundant execution in DCE to 

efficiently achieve transient-fault tolerance. In DCE, 

instructions are pre-processed by the front processor and 

re-executed by the back processor. Therefore, besides assisting 

the back processor execution, the pre-processing results can be 

used for redundancy checking. Moreover, since the 

pre-processing are speculative, a discrepancy due to a transient 

soft error at either the front or back processor can be simply 

treated as a mispeculation and corrected by the same 

mispeculation recovery mechanism. Since the front processor 

invalidates instructions such as cache-missing loads to run 

faster, such redundancy checking may not cover the complete 

instruction stream. To achieve the full redundancy coverage, 

we propose to modify the back processor slightly to enable 

redundant execution of those instructions that are invalidated 

by the front processor. Since such instructions are a small 

subset of a complete program and do not incur additional cache 

misses or mispredictions, the impact of such redundant 

execution is limited and full transient-fault coverage and 

significant performance improvement can be achieved.  

The rest of the paper is organized as follows. Section II 

presents the background of DCE and discusses the related 

work. Extending DCE for fault tolerance is detailed in Section 

III. Experimental methodology and results are presented in 

Sections IV and V. Section VI concludes the paper. 

II. BACKGROUND AND RELATED WORK

A. Background: Dual-Core Execution  
Dual-core execution (DCE) is built upon two superscalar 

processors (called the front and back processors) coupled with a 

queue (called the result queue), as shown in Figure 1. 

Figure 1. An overview of dual-core execution. 
The front processor fetches instructions in-order and 

executes them in its normal way except for long-latency cache 

misses (e.g., L2 misses), for which an invalid (INV) value is 

used to substitute the data that are being fetched from memory, 

similar to run-ahead execution [5],[9]. The INV flag can be 

propagated through register data dependency and memory data 

dependency to invalidate the dependent instructions of the 
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long-latency cache-missing loads.  

The front processor retires instructions as usual except store 

instructions and instructions raising exceptions. When a store 

instruction retires, it will not update the data cache and only 

updates a structure called run-ahead cache to communicate the 

store value to subsequent loads in the front processor. 

Exception handling is disabled in the front processor as the 

back processor maintains the precise program state.  

The result queue is a first-in first-out structure, keeping the 

instruction stream retired from the front processor. 

The back processor fetches instructions from the result queue 

and executes them in its normal way except for mispredicted 

branches. When a branch misprediction is detected, all the 

instructions in the back processor, the result queue, and the 

front processor are squashed. The back processor’s current 

architectural state (including the program counter and 

architectural register values) are copied over to the front 

processor. Note that there is no need to synchronize memory 

states at the front processor and all the front processor needs to 

do is to invalidate its run-ahead cache.  

In DCE, a program is pre-processed aggressively by the front 

processor and then re-executed by the back processor. The 

cache misses in the front processor become prefetches for the 

back processor. The branch mispredictions that are dependent 

on short latency operations are resolved promptly by the front 

processor and only those dependent on long-latency-cache 

misses are handled by the back processor. The high amount of 

instructions residing in the result queue are not associated with 

any centralized resource unlike in-flight instructions in a 

conventional superscalar design, which reserve their allocated 

resources such as physical registers, load/store queue entries, 

etc. Therefore, DCE provides a highly scalable, complexity 

-effective way to build a very large instruction window for 

latency tolerance. Overall, DCE requires only little hardware 

changes and achieves remarkable performance improvements 

[15]. In this paper, we focus on exploiting the redundant 

execution in DCE to improve transient-fault tolerance. 

B. Related Work 

In DCE, the front preprocessor pre-processes instructions 

similar to run-ahead execution [5],[9]. One key difference is 

that in run-ahead execution, whenever a 

mode-transition-triggering cache miss is repaired, the 

processor has to return to the normal mode even the 

pre-execution is along right paths and generates accurate 

prefetches. DCE eliminates this fundamental bottleneck and 

delivers much higher performance [15]. Compared to the 

approaches such as two-pass pipelining [2] or out-of-order 

processors with very large instruction windows [12],[4], the 

re-execution in the back processor eliminates the requirement 

of any centralized resources and enables the front processor to 

run further ahead [15]. Moreover, DCE enables efficiently 

ways to achieve fault tolerance as discussed in this paper. 

By exploiting leading-thread results, leader/follower 

architectures achieve fault tolerance with low performance 

overhead. The leading thread/processor in most fault-tolerant 

leader/follower designs, including AR-SMT [11], DIVA [1], 

SRT [8], SRTR [14], and CRT [6], is non-speculative, i.e., 

correct if free from hardware faults. This constraint is a main 

reason for performance degradation since the leader has to wait 

the follower to check the execution results before retiring them 

(e.g., store values and store addresses). The delayed retirement 

increases the pressure on critical resources such as the store 

queue and register file. In DCE, the pre-processing is 

speculative and relieved of the correctness requirement, 

similar to the A-stream in slip-stream processors [13].  

DCE and slipstream processors achieve their performance 

improvements in fundamentally different ways. In slipstream 

processors, the A-stream runs a shorter program based on the 

removal of ineffectual instructions while the R-stream uses the 

A-stream results as predictions to make faster progress. DCE, 

however, relies on the front processor to accurately prefetch 

data into caches. Conceptually, the R-stream in slipstream 

processors acts as a fast follower due to the near oracle 

predictions from the A-stream while the A-stream is a 

relatively slow leader since long-latency cache-misses still 

block its pipeline unless they are detected ineffectual and 

removed from the A-stream. Therefore, it is not necessary for 

the R-stream to take advantage of prefetching from the 

A-stream to make even faster progress. Compared to slipstream 

processors, DCE achieves much higher performance 

improvement with less hardware complexity (i.e., no need for 

IR-detectors, IR-predictors, and value prediction support) [15]. 

Both slipstream processors and DCE can exploit redundant 

execution to improve fault tolerance and the detected faults can 

be corrected with their existing mispeculation recovery 

mechanisms. In this paper, we also extend DCE to achieve 

redundancy checking for the complete instruction stream and 

the same extension is also applicable to slipstream processors. 

III. FAULT TOLERANT DUAL-CORE EXECUTION

A. Extending DCE to improve fault tolerance 

To improve fault tolerance using DCE, we can store the 

pre-processing results (if not invalid) in the result queue. The 

back processor then compares them with its results before 

committing them. If there is a transient fault at either the front 

or back processor resulting in an incorrect result, a discrepancy 

will be detected and the existing branch misprediction recovery 

mechanism in the back processor can transparently provide 

fault tolerance by rewinding both the front and back processors 

to the current architectural state, which is protected with 

information integrity coding schemes such as ECC. We call 

DCE with such a simple extension as DCE_R. To protect from 

the transient faults that could result in a deadlock, a watchdog 

timer similar to what used in DIVA [1] can be added in the 

back processor to restart the execution from the current 

architectural state whenever the timer expires. 

Since the pre-processing in the front processor is 

speculative, some discrepancies detected in DCE_R may be due 

to a mispeculation by the front processor rather than an actual 

transient fault and such discrepancies will incur additional 
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mispeculation recoveries, thereby affecting the overall 

performance. Next, we analyze the sources of such 

mispeculations to show that they are extremely rare cases. 

In DCE, only long-latency cache-missing loads are 

invalidated by the front processor and independent operations 

are not affected. Therefore, those pre-processing results should 

be correct if there are no transient faults. Among dependent
instructions, if the dependency is carried through registers, the 

INV flag propagation will invalidate such dependent 

instructions. If the dependency is carried through memory, the 

INV propagation using store-load forwarding and the 

run-ahead cache will invalidate most of the dependent 

operations as well. Only in the very rare cases such as a store 

with an invalid address followed by a load accessing the same 

location or a store value being replaced from the run-ahead 

cache due to its limited capacity, a stale value could be fetched 

by a load instruction. When this stale value is detected in the 

back processor, the front processor is rewound to a correct 

architectural state and the same problematic load will fetch the 

right value since the previous stores have already been 

committed to the D-caches by the back processor.  

Since the instructions that are invalidated by the front 

processor are executed only in the back processor, their results 

are susceptible to transient faults. In other words, only partial 

redundancy coverage is achieved by DCE_R, similar to 

slipstream processors. Nevertheless, as the front processor only 

invalidates cache-missing loads and their dependents, DCE_R 

effectively achieves high transient-fault coverage and 

remarkable performance improvements (see Section V). 

B. Achieving full redundancy coverage 

To achieve the redundancy coverage for all instructions, we 

propose to extend the back processor in DCE_R so that it 

dual-executes the instructions that are invalidated by the front 

processor and such a scheme is named DCE_FR.  

In DCE_FR, the result queue appends a flag (F_INV) to each 

instruction to show whether it is validated by the front 

processor. When the back processor fetches an instruction with 

a true F_INV, the same instruction will be fetched twice, one 

for normal execution and the other for redundancy checking. 

To support such redundant execution, an additional renaming 

table (called A_Table) is introduced in the back processor and 

the renaming logic is modified as follows assuming the back 

processor is a MIPS R10000 style superscalar processor. The 

instructions, which are invalidated by the front processor, will 

access and update the original renaming table (called R_table) 

and their redundant copies will only access and update the 

A_table. For the instructions that do not need redundant 

execution, i.e., not invalidated by the front processor, their 

source operands will access the R_table but their destination 

operands will update both the R_table and A_table. The 

process can be illustrated using the example in Figure 2. 

In Figure 2, instructions A and B are invalidated by the front 

processor, so they are replicated in the back processor when 

fetched from the result queue. Instruction C is not invalidated 

by the front processor and carries a valid result in the result 

queue for redundancy checking. Instructions A and B access 

and update the R_table while their redundant copies A’ and B’
access and update the A_Table. Instruction C, however, 

accesses the R_table for its source operands and updates both 

the R_table and A_table for its destination operand. Doing so, 

however, it needs to store two previous mappings from the two 

tables and release both of them at the retire stage if they are 

different. The invalidated instructions and their redundant 

copies, however, only need to release a single previous 

mapping. 

Figure 2. A code example to illustrate the renaming process in the 
back processor for redundant execution. 

The redundant execution in the back processor is similar to 

the previous work on dual-use of data path for fault tolerance 

[10]. The difference is that in our approach, only a small subset 

of instructions needs to be executed twice. In addition, those 

instructions are replicated as early as the fetch stage, extending 

the pipeline replication sphere in [10].  

The back processor commits instructions only after they are 

checked with the results either from the front processor or from 

their redundant copy. Any discrepancy will initiate a recovery 

process same as a branch misprediction resolution in DCE.  

The power/energy overhead in DCE_R and DCE_FR mainly 

comes from those invalidated instructions in the front 

processor as they do not provide useful execution results. 

Fortunately, those instructions account for only a small subset 

of overall instructions and invalidating them consumes much 

less power/energy than actually executing the operations.   

IV. SIMULATION METHODOLOGY

To evaluate the proposed schemes, we built our simulation 

environment using the SimpleScalar toolset [3]. The cache 

modules in our simulator model both data and tag stores and 

wrong path events are also faithfully simulated. The front and 

back processors have the same configurations (private L1 

caches with a shared L2 cache), shown in Table 1. The default 

result queue has 1024 entries and the default run-ahead cache 

is 4kB, 4-way associative with a block size of 8 bytes. The delay 

of the result queue is assumed as 16 cycles to account for 

inter-processor communication. A latency of 64 cycles is 

assumed for copying the architectural register values from the 

back processor to the front processor. Therefore, a branch 

A:   Load r1, #8(r10) 

A’:  Load r1, #8(r10) 

B:  Add r2, r1, #10 

B’: Add r2, r1, #10 

C:  Load  r1, #0(r3) 

Fetched instructions 

A:   Load p41, #8(p50) 

A’:  Load p42, #8(p50) 

B:  Add p43, p41, #10 

B’: Add p44, p42, #10 

C:  Load  p46, #0(p11) 
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misprediction resolved in the back processor has a minimum 

penalty of 10(front pipeline) + 16(queue) + 9(back pipeline) + 

64(recovery penalty) cycles. Each processor also has a 

stride-based stream buffer hardware prefetcher and SPEC 2000 

benchmarks are selected with the same criterion as in [15].  

Table 1. Configuration of the front and back processors. 
Pipeline 3-cycle fetch stage, 3-cycle dispatch stage, 1-cycle issue stage, 

1-cycle register access stage, 1-cycle retire stage. Minimum 

branch misprediction penalty = 9 cycles  

Instruction Cache Size=32 kB; Assoc.=2-way; Replacement = LRU; Line size=16 

instructions; Miss penalty=10 cycles. 

Data Cache Size=32 kB; Assoc.=2-way; Replacement=LRU; Line size = 64 

bytes; Miss penalty=10 cycles. 

Unified L2 Cache 

(shared) 

Size=1024kB; Assoc.=8-way; Replacement = LRU; Line 

size=128 bytes; Miss penalty=220 cycles. 

Br Predictor 64k-entry G-share; 32k-entry BTB 

Superscalar Core Reorder buffer: 128 entries; Dispatch/issue/retire bandwidth: 

4-way superscalar; 4 fully-symmetric function units; Data cache 

ports: 4. Issue queue: 64 entries. LSQ: 64 entries. Rename map 

table checkpoints: 32 

Execution 

Latencies 

Address generation: 1 cycle; Memory access: 2 cycles (hit in 

data cache); Integer ALU ops = 1 cycle; Complex ops = MIPS 

R10000 latencies 

Mem. Disambig. Perfect memory disambiguation 

V. EXPERIMENTAL RESULTS

The performance impact of both DCE_R and DCE_FR is 

examined in Figure 3, which shows the normalized execution 

time of a single baseline processor, DCE, DCE_R, and 

DCE_FR. Each cycle is categorized as a pipeline stall with an 

empty reorder buffer (ROB), a stall with a full ROB due to 

cache-misses, a stall with a full ROB due to other factors such 

as long-latency floating-point operations, or a cycle in 

un-stalled execution. In DCE-based schemes, such cycle time 

distribution is collected from the back processor.  
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Figure 3. Normalized execution time of a single baseline 
processor, DCE, DCE_R, and DCE_FR. 

From Figure 3, it can be seen that both DCE_R and DCE_FR 

achieve significant performance improvement, 35.7% and 

22.5% on average respectively, over the single baseline 

processor. Slight performance degradation observed in parser,

twolf, and vpr is due to their relatively high number of branch 

mispredictions dependent on cache-missing loads. Compared 

to DCE, DCE_R has negligible performance impact and the 

reason is that the number of additional recoveries due to 

redundancy checking is very small, 0.02 recoveries per 1000 

retired instructions on average. On the other hand, an average 

of 81% of all the retired instructions is ensured with 

redundancy checking in DCE_R, as show in Figure 4. With 

redundant execution of the instructions that are invalidated by 

the front processor, DCE_FR ensures all retired instructions 

with redundancy checking. Such redundant execution in the 

back processor has different performance impact for different 

benchmarks. As shown in Figure 3, for gap, mcf, ammp, art,
and swim, DCE_FR results in many more non-stall execution 

cycles than DCE_R. The reason is that many instructions are 

invalidated by the front processor for those benchmarks, as 

reported in Figure 4 (lower coverage means more instructions 

invalidated by the front processor). For other benchmarks, the 

performance impact is relatively limited. Overall, DCE_FR 

achieves a 22.5% performance improvement with redundancy 

checking for all retired instructions, a remarkable 

improvement over the prior work on chip-level redundancy. 
Redundancy Checking Coverage
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Figure 4. The percentage of retired instructions with redundancy 
check for each benchmark. 

VI. CONCLUSIONS

This paper makes a case for simultaneously achieving both 

performance improvement and transient-fault tolerance using 

multi-core processors. The key innovation is fast, speculative, 

yet highly accurate pre-processing in one core followed by 

re-execution in another core. Fast pre-processing accelerates 

re-execution and enables efficient redundancy checking. 

Re-execution relieves the correctness requirement from 

pre-processing and eliminates the requirement of any 

centralized resources.   
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