

Abstract—This paper makes a case for using multi-core
processors to simultaneously achieve transient-fault tolerance
and performance enhancement. Our approach is extended from a
recent latency-tolerance proposal, dual-core execution (DCE). In
DCE, a program is executed twice in two processors, named the
front and back processors. The front processor pre-processes
instructions in a very fast yet highly accurate way and the back
processor re-executes the instruction stream retired from the
front processor. The front processor runs faster as it has no
correctness constraints whereas its results, including timely
prefetching and prompt branch misprediction resolution, help
the back processor make faster progress. In this paper, we
propose to entrust the speculative results of the front processor
and use them to check the un-speculative results of the back
processor. A discrepancy, either due to a transient fault or a
mispeculation, is then handled with the existing mispeculation
recovery mechanism. In this way, both transient-fault tolerance
and performance improvement can be delivered simultaneously
with little hardware overhead.

I. INTRODUCTION

Advances in semiconductor technology enable the integration

of billion transistors on a single chip. Such exponentially

increasing transistor counts makes reliability an important

design challenge since a processor’s soft error rate grows in

direct proportion to the number of devices being integrated [7].

The huge amount of transistors, on the other hand, leads to the

popularity of multi-core processor or chip multi-processor

architectures for improved system throughput. In this paper, we

make a case for using multi-core processors collaboratively to

simultaneously achieve performance enhancement and

transient-fault tolerance for single-threaded applications. To

our knowledge, this is the first proposal that realizes positive
performance improvements with full transient-fault coverage

(i.e., redundancy checking for all committed instructions).

Slipstream processors [13] also improve both performance and

reliability but only with partial fault coverage.

Our approach is based on recently proposed dual-core

execution (DCE) [15]. In DCE, a program is executed twice by

two processors, named the front and back processors, similar to

prior work on chip-level redundancy [6],[8],[13]. The front

processor executes instructions in its normal way except for

long-latency cache-missing loads, which are turned invalid

similar to run-ahead execution [5],[9]. The retired instructions

from the front processor are then re-executed in the back

processor to provide precise program state. The front processor

runs faster due to its virtually ideal L2 cache whereas the back

Manuscript submitted: 8 Aug. 2005. Manuscript accepted: 2 Sept. 2005. Final

manuscript received: 6 Sept. 2005.

processors makes faster progress since the front processor fixes

most branch mispredictions and initiates timely prefetches.

In this paper, we exploit the redundant execution in DCE to

efficiently achieve transient-fault tolerance. In DCE,

instructions are pre-processed by the front processor and

re-executed by the back processor. Therefore, besides assisting

the back processor execution, the pre-processing results can be

used for redundancy checking. Moreover, since the

pre-processing are speculative, a discrepancy due to a transient

soft error at either the front or back processor can be simply

treated as a mispeculation and corrected by the same

mispeculation recovery mechanism. Since the front processor

invalidates instructions such as cache-missing loads to run

faster, such redundancy checking may not cover the complete

instruction stream. To achieve the full redundancy coverage,

we propose to modify the back processor slightly to enable

redundant execution of those instructions that are invalidated

by the front processor. Since such instructions are a small

subset of a complete program and do not incur additional cache

misses or mispredictions, the impact of such redundant

execution is limited and full transient-fault coverage and

significant performance improvement can be achieved.

The rest of the paper is organized as follows. Section II

presents the background of DCE and discusses the related

work. Extending DCE for fault tolerance is detailed in Section

III. Experimental methodology and results are presented in

Sections IV and V. Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Background: Dual-Core Execution
Dual-core execution (DCE) is built upon two superscalar

processors (called the front and back processors) coupled with a

queue (called the result queue), as shown in Figure 1.

Figure 1. An overview of dual-core execution.
The front processor fetches instructions in-order and

executes them in its normal way except for long-latency cache

misses (e.g., L2 misses), for which an invalid (INV) value is

used to substitute the data that are being fetched from memory,

similar to run-ahead execution [5],[9]. The INV flag can be

propagated through register data dependency and memory data

dependency to invalidate the dependent instructions of the

A Case for Fault Tolerance and Performance Enhancement

using Chip Multi-Processors

Huiyang Zhou

School of Computer Science, University of Central Florida

zhou@cs.ucf.edu

superscalar

core

superscalar

core

In-order
retire

In-order
fetch

front processor

back processor

result queue

Out-of-order processing

IEEE Computer Architecture Letters Vol. 5, 2006

Posted to IEEE & CSDL on 1/30/2006
DOI 10.1109/L-CA.2006.1 1556-6056/05/$20.00 © 2005 Published by the IEEE Computer Society

Mei Yang
Highlight

long-latency cache-missing loads.

The front processor retires instructions as usual except store

instructions and instructions raising exceptions. When a store

instruction retires, it will not update the data cache and only

updates a structure called run-ahead cache to communicate the

store value to subsequent loads in the front processor.

Exception handling is disabled in the front processor as the

back processor maintains the precise program state.

The result queue is a first-in first-out structure, keeping the

instruction stream retired from the front processor.

The back processor fetches instructions from the result queue

and executes them in its normal way except for mispredicted

branches. When a branch misprediction is detected, all the

instructions in the back processor, the result queue, and the

front processor are squashed. The back processor’s current

architectural state (including the program counter and

architectural register values) are copied over to the front

processor. Note that there is no need to synchronize memory

states at the front processor and all the front processor needs to

do is to invalidate its run-ahead cache.

In DCE, a program is pre-processed aggressively by the front

processor and then re-executed by the back processor. The

cache misses in the front processor become prefetches for the

back processor. The branch mispredictions that are dependent

on short latency operations are resolved promptly by the front

processor and only those dependent on long-latency-cache

misses are handled by the back processor. The high amount of

instructions residing in the result queue are not associated with

any centralized resource unlike in-flight instructions in a

conventional superscalar design, which reserve their allocated

resources such as physical registers, load/store queue entries,

etc. Therefore, DCE provides a highly scalable, complexity

-effective way to build a very large instruction window for

latency tolerance. Overall, DCE requires only little hardware

changes and achieves remarkable performance improvements

[15]. In this paper, we focus on exploiting the redundant

execution in DCE to improve transient-fault tolerance.

B. Related Work

In DCE, the front preprocessor pre-processes instructions

similar to run-ahead execution [5],[9]. One key difference is

that in run-ahead execution, whenever a

mode-transition-triggering cache miss is repaired, the

processor has to return to the normal mode even the

pre-execution is along right paths and generates accurate

prefetches. DCE eliminates this fundamental bottleneck and

delivers much higher performance [15]. Compared to the

approaches such as two-pass pipelining [2] or out-of-order

processors with very large instruction windows [12],[4], the

re-execution in the back processor eliminates the requirement

of any centralized resources and enables the front processor to

run further ahead [15]. Moreover, DCE enables efficiently

ways to achieve fault tolerance as discussed in this paper.

By exploiting leading-thread results, leader/follower

architectures achieve fault tolerance with low performance

overhead. The leading thread/processor in most fault-tolerant

leader/follower designs, including AR-SMT [11], DIVA [1],

SRT [8], SRTR [14], and CRT [6], is non-speculative, i.e.,

correct if free from hardware faults. This constraint is a main

reason for performance degradation since the leader has to wait

the follower to check the execution results before retiring them

(e.g., store values and store addresses). The delayed retirement

increases the pressure on critical resources such as the store

queue and register file. In DCE, the pre-processing is

speculative and relieved of the correctness requirement,

similar to the A-stream in slip-stream processors [13].

DCE and slipstream processors achieve their performance

improvements in fundamentally different ways. In slipstream

processors, the A-stream runs a shorter program based on the

removal of ineffectual instructions while the R-stream uses the

A-stream results as predictions to make faster progress. DCE,

however, relies on the front processor to accurately prefetch

data into caches. Conceptually, the R-stream in slipstream

processors acts as a fast follower due to the near oracle

predictions from the A-stream while the A-stream is a

relatively slow leader since long-latency cache-misses still

block its pipeline unless they are detected ineffectual and

removed from the A-stream. Therefore, it is not necessary for

the R-stream to take advantage of prefetching from the

A-stream to make even faster progress. Compared to slipstream

processors, DCE achieves much higher performance

improvement with less hardware complexity (i.e., no need for

IR-detectors, IR-predictors, and value prediction support) [15].

Both slipstream processors and DCE can exploit redundant

execution to improve fault tolerance and the detected faults can

be corrected with their existing mispeculation recovery

mechanisms. In this paper, we also extend DCE to achieve

redundancy checking for the complete instruction stream and

the same extension is also applicable to slipstream processors.

III. FAULT TOLERANT DUAL-CORE EXECUTION

A. Extending DCE to improve fault tolerance

To improve fault tolerance using DCE, we can store the

pre-processing results (if not invalid) in the result queue. The

back processor then compares them with its results before

committing them. If there is a transient fault at either the front

or back processor resulting in an incorrect result, a discrepancy

will be detected and the existing branch misprediction recovery

mechanism in the back processor can transparently provide

fault tolerance by rewinding both the front and back processors

to the current architectural state, which is protected with

information integrity coding schemes such as ECC. We call

DCE with such a simple extension as DCE_R. To protect from

the transient faults that could result in a deadlock, a watchdog

timer similar to what used in DIVA [1] can be added in the

back processor to restart the execution from the current

architectural state whenever the timer expires.

Since the pre-processing in the front processor is

speculative, some discrepancies detected in DCE_R may be due

to a mispeculation by the front processor rather than an actual

transient fault and such discrepancies will incur additional

IEEE Computer Architecture Letters Vol. 5, 2006

mispeculation recoveries, thereby affecting the overall

performance. Next, we analyze the sources of such

mispeculations to show that they are extremely rare cases.

In DCE, only long-latency cache-missing loads are

invalidated by the front processor and independent operations

are not affected. Therefore, those pre-processing results should

be correct if there are no transient faults. Among dependent
instructions, if the dependency is carried through registers, the

INV flag propagation will invalidate such dependent

instructions. If the dependency is carried through memory, the

INV propagation using store-load forwarding and the

run-ahead cache will invalidate most of the dependent

operations as well. Only in the very rare cases such as a store

with an invalid address followed by a load accessing the same

location or a store value being replaced from the run-ahead

cache due to its limited capacity, a stale value could be fetched

by a load instruction. When this stale value is detected in the

back processor, the front processor is rewound to a correct

architectural state and the same problematic load will fetch the

right value since the previous stores have already been

committed to the D-caches by the back processor.

Since the instructions that are invalidated by the front

processor are executed only in the back processor, their results

are susceptible to transient faults. In other words, only partial

redundancy coverage is achieved by DCE_R, similar to

slipstream processors. Nevertheless, as the front processor only

invalidates cache-missing loads and their dependents, DCE_R

effectively achieves high transient-fault coverage and

remarkable performance improvements (see Section V).

B. Achieving full redundancy coverage

To achieve the redundancy coverage for all instructions, we

propose to extend the back processor in DCE_R so that it

dual-executes the instructions that are invalidated by the front

processor and such a scheme is named DCE_FR.

In DCE_FR, the result queue appends a flag (F_INV) to each

instruction to show whether it is validated by the front

processor. When the back processor fetches an instruction with

a true F_INV, the same instruction will be fetched twice, one

for normal execution and the other for redundancy checking.

To support such redundant execution, an additional renaming

table (called A_Table) is introduced in the back processor and

the renaming logic is modified as follows assuming the back

processor is a MIPS R10000 style superscalar processor. The

instructions, which are invalidated by the front processor, will

access and update the original renaming table (called R_table)

and their redundant copies will only access and update the

A_table. For the instructions that do not need redundant

execution, i.e., not invalidated by the front processor, their

source operands will access the R_table but their destination

operands will update both the R_table and A_table. The

process can be illustrated using the example in Figure 2.

In Figure 2, instructions A and B are invalidated by the front

processor, so they are replicated in the back processor when

fetched from the result queue. Instruction C is not invalidated

by the front processor and carries a valid result in the result

queue for redundancy checking. Instructions A and B access

and update the R_table while their redundant copies A’ and B’
access and update the A_Table. Instruction C, however,

accesses the R_table for its source operands and updates both

the R_table and A_table for its destination operand. Doing so,

however, it needs to store two previous mappings from the two

tables and release both of them at the retire stage if they are

different. The invalidated instructions and their redundant

copies, however, only need to release a single previous

mapping.

Figure 2. A code example to illustrate the renaming process in the
back processor for redundant execution.

The redundant execution in the back processor is similar to

the previous work on dual-use of data path for fault tolerance

[10]. The difference is that in our approach, only a small subset

of instructions needs to be executed twice. In addition, those

instructions are replicated as early as the fetch stage, extending

the pipeline replication sphere in [10].

The back processor commits instructions only after they are

checked with the results either from the front processor or from

their redundant copy. Any discrepancy will initiate a recovery

process same as a branch misprediction resolution in DCE.

The power/energy overhead in DCE_R and DCE_FR mainly

comes from those invalidated instructions in the front

processor as they do not provide useful execution results.

Fortunately, those instructions account for only a small subset

of overall instructions and invalidating them consumes much

less power/energy than actually executing the operations.

IV. SIMULATION METHODOLOGY

To evaluate the proposed schemes, we built our simulation

environment using the SimpleScalar toolset [3]. The cache

modules in our simulator model both data and tag stores and

wrong path events are also faithfully simulated. The front and

back processors have the same configurations (private L1

caches with a shared L2 cache), shown in Table 1. The default

result queue has 1024 entries and the default run-ahead cache

is 4kB, 4-way associative with a block size of 8 bytes. The delay

of the result queue is assumed as 16 cycles to account for

inter-processor communication. A latency of 64 cycles is

assumed for copying the architectural register values from the

back processor to the front processor. Therefore, a branch

A: Load r1, #8(r10)

A’: Load r1, #8(r10)

B: Add r2, r1, #10

B’: Add r2, r1, #10

C: Load r1, #0(r3)

Fetched instructions

A: Load p41, #8(p50)

A’: Load p42, #8(p50)

B: Add p43, p41, #10

B’: Add p44, p42, #10

C: Load p46, #0(p11)

Renamed instructions

r1
r2

x

r10

x

50

r3 11

R_Table

r1
r2

x

r10

x

50

r3 11

A_Table

r1
r2

46

r10

43

50

r3 11

R_Table

r1
r2

46

r10

44

50

r3 11

A_Table

(p41) (p42)

Renaming

IEEE Computer Architecture Letters Vol. 5, 2006

misprediction resolved in the back processor has a minimum

penalty of 10(front pipeline) + 16(queue) + 9(back pipeline) +

64(recovery penalty) cycles. Each processor also has a

stride-based stream buffer hardware prefetcher and SPEC 2000

benchmarks are selected with the same criterion as in [15].

Table 1. Configuration of the front and back processors.
Pipeline 3-cycle fetch stage, 3-cycle dispatch stage, 1-cycle issue stage,

1-cycle register access stage, 1-cycle retire stage. Minimum

branch misprediction penalty = 9 cycles

Instruction Cache Size=32 kB; Assoc.=2-way; Replacement = LRU; Line size=16

instructions; Miss penalty=10 cycles.

Data Cache Size=32 kB; Assoc.=2-way; Replacement=LRU; Line size = 64

bytes; Miss penalty=10 cycles.

Unified L2 Cache

(shared)

Size=1024kB; Assoc.=8-way; Replacement = LRU; Line

size=128 bytes; Miss penalty=220 cycles.

Br Predictor 64k-entry G-share; 32k-entry BTB

Superscalar Core Reorder buffer: 128 entries; Dispatch/issue/retire bandwidth:

4-way superscalar; 4 fully-symmetric function units; Data cache

ports: 4. Issue queue: 64 entries. LSQ: 64 entries. Rename map

table checkpoints: 32

Execution

Latencies

Address generation: 1 cycle; Memory access: 2 cycles (hit in

data cache); Integer ALU ops = 1 cycle; Complex ops = MIPS

R10000 latencies

Mem. Disambig. Perfect memory disambiguation

V. EXPERIMENTAL RESULTS

The performance impact of both DCE_R and DCE_FR is

examined in Figure 3, which shows the normalized execution

time of a single baseline processor, DCE, DCE_R, and

DCE_FR. Each cycle is categorized as a pipeline stall with an

empty reorder buffer (ROB), a stall with a full ROB due to

cache-misses, a stall with a full ROB due to other factors such

as long-latency floating-point operations, or a cycle in

un-stalled execution. In DCE-based schemes, such cycle time

distribution is collected from the back processor.
Normalized execution time

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

ba
s

e
D

C
E

D
C

E
_R

D
C

E
_F

R
ba

s
e

D
C

E
D

C
E

_R
D

C
E

_F
R

ba
s

e
D

C
E

D
C

E
_R

D
C

E
_F

R
ba

s
e

D
C

E
D

C
E

_R
D

C
E

_F
R

ba
s

e
D

C
E

D
C

E
_R

D
C

E
_F

R
ba

s
e

D
C

E
D

C
E

_R
D

C
E

_F
R

ba
s

e
D

C
E

D
C

E
_R

D
C

E
_F

R
ba

s
e

D
C

E
D

C
E

_R
D

C
E

_F
R

ba
s

e
D

C
E

D
C

E
_R

D
C

E
_F

R
ba

s
e

D
C

E
D

C
E

_R
D

C
E

_F
R

ba
s

e
D

C
E

D
C

E
_R

D
C

E
_F

R
ba

s
e

D
C

E
D

C
E

_R
D

C
E

_F
R

bzip2 gap gcc mcf parser tw olf vpr ammp art equake sw im average

unstalled execution stall w ith full ROB (other) stall w ith full ROB (due to misses) empty ROB

Figure 3. Normalized execution time of a single baseline
processor, DCE, DCE_R, and DCE_FR.

From Figure 3, it can be seen that both DCE_R and DCE_FR

achieve significant performance improvement, 35.7% and

22.5% on average respectively, over the single baseline

processor. Slight performance degradation observed in parser,

twolf, and vpr is due to their relatively high number of branch

mispredictions dependent on cache-missing loads. Compared

to DCE, DCE_R has negligible performance impact and the

reason is that the number of additional recoveries due to

redundancy checking is very small, 0.02 recoveries per 1000

retired instructions on average. On the other hand, an average

of 81% of all the retired instructions is ensured with

redundancy checking in DCE_R, as show in Figure 4. With

redundant execution of the instructions that are invalidated by

the front processor, DCE_FR ensures all retired instructions

with redundancy checking. Such redundant execution in the

back processor has different performance impact for different

benchmarks. As shown in Figure 3, for gap, mcf, ammp, art,
and swim, DCE_FR results in many more non-stall execution

cycles than DCE_R. The reason is that many instructions are

invalidated by the front processor for those benchmarks, as

reported in Figure 4 (lower coverage means more instructions

invalidated by the front processor). For other benchmarks, the

performance impact is relatively limited. Overall, DCE_FR

achieves a 22.5% performance improvement with redundancy

checking for all retired instructions, a remarkable

improvement over the prior work on chip-level redundancy.
Redundancy Checking Coverage

40%

50%

60%

70%

80%

90%

100%

bzip2 gap gcc mcf parser tw olf vpr ammp art equake sw im average

Figure 4. The percentage of retired instructions with redundancy
check for each benchmark.

VI. CONCLUSIONS

This paper makes a case for simultaneously achieving both

performance improvement and transient-fault tolerance using

multi-core processors. The key innovation is fast, speculative,

yet highly accurate pre-processing in one core followed by

re-execution in another core. Fast pre-processing accelerates

re-execution and enables efficient redundancy checking.

Re-execution relieves the correctness requirement from

pre-processing and eliminates the requirement of any

centralized resources.

REFERENCES

[1] T. Austin, “DIVA: a reliable substrate for deep submicron microarchitecture

design”, MICRO-32, 1999.

[2] R. Barnes et. al., , “Beating in-order stalls with flea-flicker two pass

pipelining”, MICRO-36, 2003.

[3] D. Burger and T. Austin, “The SimpleScalar tool set, v2.0”, Computer
Architecture News, vol. 25, June 1997.

[4] A. Cristal et al., “Out-of-order commit processors”, HPCA-10, 2004.

[5] J. Dundas and T. Mudge, “Improving data cache performance by

pre-executing instructions under a cache miss”, ICS-97, 1997.

[6] M. Gomma et. al., “Transient-fault recovery for chip multiprocessors”,

ISCA-30, 2003.

[7] S. Mukherjee, J. Emer, and S. Reinhardt, “The soft error problem, an

architectural perspective”, HPCA-11, 2005.

[8] S. Mukherjee, M. Kontz, and S. Reinhardt, “Detailed design and evaluation

of redundant multithreading alternatives”, ISCA-29, 2002.

[9] O. Mutlu et. al., “Runahead execution: an alternative to very large

instruction windows for out-of-order processors”, HPCA-9, 2003.

[10] T. Ray, J. Hoe, and B. Falsafi, “Dual use of superscalar datapath for

transient-fault detection and recovery”, MICRO-34, 2001

[11] E. Rotenberg, “AR-SMT: a microarchitectural approach to fault tolerance in

microprocessors”, FTCS-29, 1999.

[12] S. T. Srinivasan et. al., “Continual flow pipelines”, ASPLOS-11, 2004.

[13] K. Sundaramoorthy et. al., “Slipstream processors: improving both

performance and fault tolerance”, ASPLOS-9, 2000.

[14] T. Vijaykumar et. al. “Transient-fault recovery using simultaneous

multithreading”, ISCA-29, 2002.

[15] H. Zhou, “Dual-core execution: building a highly scalable single-thread

instruction window”, PACT'05, 2005.

IEEE Computer Architecture Letters Vol. 5, 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

