Chapter 2

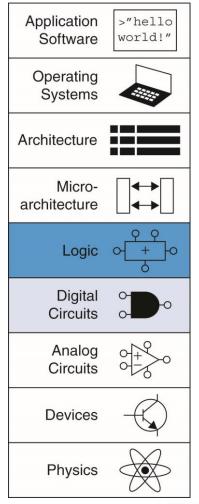
Professor Brendan Morris, SEB 3216, <u>brendan.morris@unlv.edu</u> http://www.ee.unlv.edu/~b1morris/cpe100/

CPE100: Digital Logic Design I

Section 1004: Dr. Morris Combinational Logic Design

Chapter 2 :: Topics

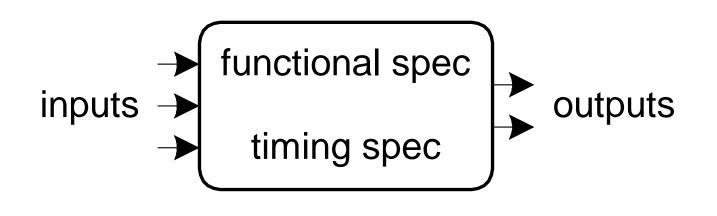
- Introduction
- Boolean Equations
- Boolean Algebra
- From Logic to Gates
- Multilevel Combinational Logic
- X's and Z's, Oh My
- Karnaugh Maps
- Combinational Building Blocks
- Timing



Introduction

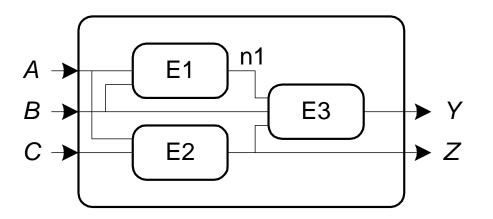
A logic circuit is composed of:

- Inputs
- Outputs
- Functional specification
- Timing specification



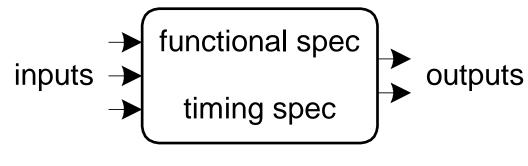
Circuits

- Nodes
 - Inputs: *A, B, C*
 - Outputs: Y, Z
 - Internal: n1
- Circuit elements
 - E1, E2, E3
 - Each a circuit



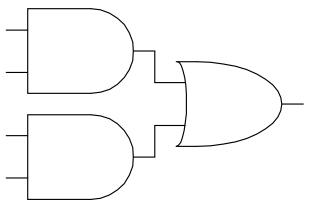
Types of Logic Circuits

- Combinational Logic (Ch 2)
 - Memoryless
 - Outputs determined by current values of inputs
- Sequential Logic (Ch 3)
 - Has memory
 - Outputs determined by previous and current values of inputs



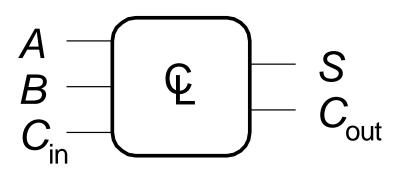
Rules of Combinational Composition

- Every element is combinational
- Every node is either an input or connects to *exactly one* output
- The circuit contains no cyclic paths
 - E.g. no connection from output to internal node
- Example:

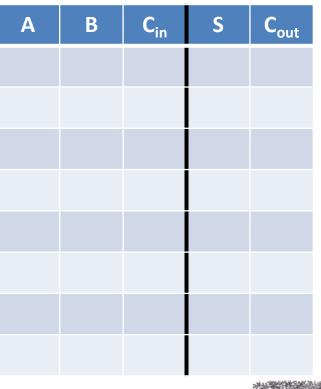


Boolean Equations

- Functional specification of outputs in terms of inputs
- Example: $S = F(A, B, C_{in})$ $C_{out} = F(A, B, C_{in})$



$$S = A \oplus B \oplus C_{in}$$
$$C_{out} = AB + AC_{in} + BC_{in}$$



Functional specification

Goals:

- Systematically express logical functions using Boolean equations
- To simplify Boolean equations

Some Definitions

- Complement: variable with a bar over it
 A, B, C
- Literal: variable or its complement
 A, A, B, B, C, €
- Implicant: product (AND) of literals
 ABC, AC, BC
- Minterm: product that includes all input variables

ABC, ABC, ABC

Maxterm: sum (OR) that includes all input variables

(A+B+C), (A+B+€), (A+B+C)

Canonical Sum-of-Products (SOP) Form

- All equations can be written in SOP form
- Each row has a **minterm**
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)

					minterm
_	Α	B	Y	minterm	name
	0	0	0	A B	m_0
	0	1	1	Ā B	m_1°
	1	0	0	AB	m_2
	1	1	1	ΑB	m_{3}

Canonical Sum-of-Products (SOP) Form

- All equations can be written in SOP form
- Each row has a **minterm**
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where the output is TRUE

Α	B	Y	minterm	minterm name
		•		manne
0	0	0	A B	m_0
0	1	1	Ā B	$\tilde{m_1}$
1	0	0	A B	m_2
1	1	1	ΑB	m_3

 $Y = \mathbf{F}(A, B) =$

Canonical Sum-of-Products (SOP) Form

- All equations can be written in SOP form
- Each row has a **minterm**
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where the output is TRUE
- Thus, a sum (OR) of products (AND terms)

					minterm
	Α	B	Y	minterm	name
	0	0	0	A B	m_0
$\left(\right)$	0	1	1	ĀB	$\widetilde{m_1}$
	1	0	0	AB	m_2
$\left(\right)$	1	1	1	ΑB	m_{3}

 $Y = F(A, B) = AB + AB = \Sigma(m_1, m_3)$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <12>

SOP Example

- Steps:
- Find minterms that result in Y=1
- Sum "TRUE" minterms

Α	В	Y
0	0	1
0	1	1
1	0	0
1	1	0

 $Y = \mathbf{F}(A, B) =$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <13>

Aside: Precedence

- AND has precedence over OR
- In other words:
 - AND is performed **before** OR

- Example:
 - $Y = \overline{A} \cdot B + A \cdot B$
 - Equivalent to:
 - $Y = (\overline{A}B) + (AB)$

Canonical Product-of-Sums (POS) Form

- All Boolean equations can be written in POS form
- Each row has a **maxterm**
- A maxterm is a sum (OR) of literals
- Each maxterm is FALSE for that row (and only that row)

				maxterm
A	B	Y	maxterm	name
0	0	0	A + B	M_0
0	1	1	$A + \overline{B}$	M_1
(1	0	0	<u>A</u> + B	M_2
1	1	1	$\overline{A} + \overline{B}$	M_3

Canonical Product-of-Sums (POS) Form

- All Boolean equations can be written in POS form
- Each row has a **maxterm**
- A maxterm is a sum (OR) of literals
- Each maxterm is FALSE for that row (and only that row)
- Form function by ANDing the maxterms for which the output is FALSE
- Thus, a product (AND) of sums (OR terms)

				maxterm
Α	B	Y	maxterm	name
0	0	0	A + B	M _o
0	1	1	$A + \overline{B}$	M_1
(1	0	0	<u>A</u> + B	M_2
1	1	1	$\overline{A} + \overline{B}$	M_3
<i>Y</i> =	$= M_0$	$\cdot M_2$	= (A + B)	$) \cdot (\overline{A} + B)$

Chapter 2 <16>

SOP and POS Comparison

- Sum of Products (SOP)
 - Implement the "ones" of the output
 - Sum all "one" terms → OR results in "one"
- Product of Sums (POS)
 - Implement the "zeros" of the output
 - Multiply "zero" terms \rightarrow AND results in "zero"

Boolean Equations Example

- You are going to the cafeteria for lunch
 - You will eat lunch (E=1)
 - If it's open (O=1) and
 - If they're not serving corndogs (C=0)
- Write a truth table for determining if you will eat lunch (E).

Boolean Equations Example

- You are going to the cafeteria for lunch
 - You will eat lunch (E=1)
 - If it's open (O=1) and
 - If they're not serving corndogs (C=0)
- Write a truth table for determining if you will eat lunch (E).

• SOP – sum-of-products

	0	С	Е	minterm
-	0	0		$\overline{O} \overline{C}$
	0	1		Ō C
	1	0		$O\overline{C}$
	1	1		ΟC

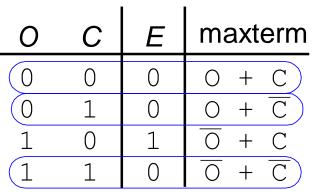
• POS – product-of-sums

0	С	Е	maxterm
0	0		0 + C
0	1		$O + \overline{C}$
1	0		<u> </u>
1	1		$\overline{O} + \overline{C}$

• SOP – sum-of-products

	0	С	Ε	minterm	
	0	0	0	\overline{O} \overline{C}	
	0	1	0	O C	E = OC
(1	0	1	\overline{O}	$=\Sigma(m_2)$
	1	1	0	ΟC	- (<u>/</u> /

POS – product-of-sums



 $E = (O + C)(O + \overline{C})(\overline{O} + \overline{C})$ $= \Pi(M0, M1, M3)$

• SOP – sum-of-products

	0	С	Ε	minterm	
	0	0	0	\overline{O} \overline{C}	
	0	1	0	O C	E = OC
(1	0	1	0 C	$=\Sigma(m_2)$
	1	1	0	ΟC	ζ Ζ/

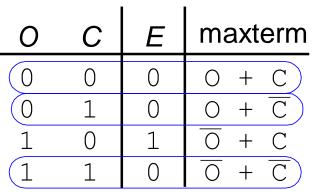
• POS – product-of-sums

0	С	Е	maxterm
0	0	0	O + C
0	1	0	$O + \overline{C}$
1	0	1	<u> </u>
1	1	0	$\overline{O} + \overline{C}$

• SOP – sum-of-products

	0	С	Ε	minterm	
	0	0	0	\overline{O} \overline{C}	
	0	1	0	O C	E = OC
(1	0	1	\overline{O}	$=\Sigma(m_2)$
	1	1	0	ΟC	- (<u>/</u> /

POS – product-of-sums



 $E = (O + C)(O + \overline{C})(\overline{O} + \overline{C})$ $= \Pi(M0, M1, M3)$

Boolean Algebra

- Axioms and theorems to simplify Boolean equations
- Like regular algebra, but simpler: variables have only two values (1 or 0)
- **Duality** in axioms and theorems:
 - ANDs and ORs, 0's and 1's interchanged

Axiom

A1	$B = 0$ if $B \neq 1$
A2	$\overline{0} = 1$
A3	$0 \bullet 0 = 0$
A4	1 • 1 = 1
A5	$0 \bullet 1 = 1 \bullet 0 = 0$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <25>

Duality

Duality in Boolean axioms and theorems:

- ANDs and ORs, 0's and 1's interchanged

Axiom

A1	$B = 0$ if $B \neq 1$
A2	$\overline{0} = 1$
A3	$0 \bullet 0 = 0$
A4	1 • 1 = 1
A5	$0 \bullet 1 = 1 \bullet 0 = 0$

	Axiom		Dual
A1	$B = 0$ if $B \neq 1$	A1′	$B = 1$ if $B \neq 0$
A2	$\overline{0} = 1$	A2′	$\bar{1} = 0$
A3	$0 \bullet 0 = 0$	A3′	1 + 1 = 1
A4	1 • 1 = 1	A4′	0 + 0 = 0
A5	$0 \bullet 1 = 1 \bullet 0 = 0$	A5′	1 + 0 = 0 + 1 = 1

Dual: Exchange: • and + 0 and 1

	Axiom		Dual	Name
A1	$B = 0$ if $B \neq 1$	A1′	$B = 1$ if $B \neq 0$	Binary field
A2	$\overline{0} = 1$	A2′	$\overline{1} = 0$	NOT
A3	$0 \bullet 0 = 0$	A3′	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	A4′	0 + 0 = 0	AND/OR
A5	$0 \bullet 1 = 1 \bullet 0 = 0$	A5′	1 + 0 = 0 + 1 = 1	AND/OR

Dual: Exchange: • and + 0 and 1

Basic Boolean Theorems

Theorem		
T1	$B \bullet 1 = B$	
T2	$B \bullet 0 = 0$	
T3	$B \bullet B = B$	
T4	$\overline{\overline{B}} = B$	
T5	$B \bullet \overline{B} = 0$	

Basic Boolean Theorems: Duals

	Theorem		Dual	Name
T1	$B \bullet 1 = B$	T1′	B + 0 = B	Identity
T2	$B \bullet 0 = 0$	T2′	B + 1 = 1	Null Element
T3	$B \bullet B = B$	T3′	B + B = B	Idempotency
T4		$\overline{\overline{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5′	$B + \overline{B} = 1$	Complements

Dual: Exchange: • and + 0 and 1

© *Digital Design and Computer Architecture*, 2nd Edition, 2012

Chapter 2 <31>