Administrative Notes

- Note: New homework instructions starting with HW03
- Homework is due at the beginning of class
- Homework must be organized, legible (messy is not), and stapled to be graded

Some Definitions

- Complement: variable with a bar over it $\overline{A}, \overline{B}, \overline{C}$
- Literal: variable or its complement
 A, A, B, B, C, C
- Implicant: product of literals
 ABC, AC, BC
- Minterm: product that includes all input variables

$AB\overline{C}, A\overline{B}\overline{C}, ABC$

Maxterm: sum that includes all input variables
 (A+B+C), (A+B+C), (A+B+C)

Canonical Sum-of-Products (SOP) Form

- All equations can be written in SOP form
- Each row has a **minterm**
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)

				minterm
A	B	Y	minterm	name
0	0	0	A B	m_0
0	1	1	Ā B	m_1°
1	0	0	AB	m_2
1	1	1	ΑB	m_{3}

Canonical Sum-of-Products (SOP) Form

- All equations can be written in SOP form
- Each row has a **minterm**
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where the output is TRUE

				minterm
A	B	Y	minterm	name
0	0	0	A B	m_0
0	1	1	Ā B	$\tilde{m_1}$
1	0	0	AB	m_2
1	1	1	ΑB	m_3

 $Y = \mathbf{F}(A, B) =$

Canonical Sum-of-Products (SOP) Form

- All equations can be written in SOP form
- Each row has a **minterm**
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where the output is TRUE
- Thus, a sum (OR) of products (AND terms)

				minterm
A	B	Y	minterm	name
0	0	0	A B	m_0
0	1	1	Ā B	m_1
1	0	0	A B	m_2
1	1	1	ΑB	m_3

 $Y = F(A, B) = AB + AB = \Sigma(m_1, m_3)$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <13>

SOP Example

- Steps:
- Find minterms that result in Y=1
- Sum "TRUE" minterms

Α	В	Y
0	0	1
0	1	1
1	0	0
1	1	0

 $Y = \mathbf{F}(A, B) =$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <14>

Aside: Precedence

- AND has precedence over OR
- In other words:
 - AND is performed **before** OR

- Example:
 - $Y = \overline{A} \cdot B + A \cdot B$
 - Equivalent to:
 - $Y = (\overline{A}B) + (AB)$

Canonical Product-of-Sums (POS) Form

- All Boolean equations can be written in POS form
- Each row has a **maxterm**
- A maxterm is a sum (OR) of literals
- Each maxterm is FALSE for that row (and only that row)

				maxterm
Α	B	Y	maxterm	name
0	0	0	A + B	M _o
0	1	1	$A + \overline{B}$	M_1
(1	0	0	<u>A</u> + B	M_2
1	1	1	$\overline{A} + \overline{B}$	M_3

Canonical Product-of-Sums (POS) Form

- All Boolean equations can be written in POS form
- Each row has a **maxterm**
- A maxterm is a sum (OR) of literals
- Each maxterm is FALSE for that row (and only that row)
- Form function by ANDing the maxterms for which the output is FALSE
- Thus, a product (AND) of sums (OR terms)

				maxterm
Α	B	Y	maxterm	name
0	0	0	A + B	M_0
0	1	1	$A + \overline{B}$	M_1
(1	0	0	<u>A</u> + B	M_2
1	1	1	$\overline{A} + \overline{B}$	M_3
<i>Y</i> =	$= M_0$	$\cdot M_2$	= (A + B)	$) \cdot (\overline{A} + B)$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <17>

SOP and POS Comparison

- Sum of Products (SOP)
 - Implement the "ones" of the output
 - Sum all "one" terms \rightarrow OR results in "one"
- Product of Sums (POS)
 - Implement the "zeros" of the output
 - Multiply "zero" terms \rightarrow AND results in "zero"

Boolean Equations Example

- You are going to the cafeteria for lunch
 - You will eat lunch (E=1)
 - If it's open (O=1) and
 - If they're not serving corndogs (C=0)
- Write a truth table for determining if you will eat lunch (E).

Boolean Equations Example

- You are going to the cafeteria for lunch
 - You will eat lunch (E=1)
 - If it's open (O=1) and
 - If they're not serving corndogs (C=0)
- Write a truth table for determining if you will eat lunch (E).

• SOP – sum-of-products

C) C	E	minterm
0	0		$\overline{O} \overline{C}$
0	1		O C
1	0		ΟC
1	1		ΟC

• POS – product-of-sums

0	С	Ε	maxterm
0	0		0 + C
0	1		$O + \overline{C}$
1	0		<u> </u>
1	1		$\overline{O} + \overline{C}$

• SOP – sum-of-products

0	С	Е	minterm
0	0	0	
0	1	0	O C
(1	0	1	\overline{O}
1	1	0	ΟC

• POS – product-of-sums

0	С	Е	maxterm
0	0	0	O + C
0	1	0	$O + \overline{C}$
1	0	1	<u> </u>
1	1	0	$\overline{O} + \overline{C}$

• SOP – sum-of-products

	minterm	Е	С	0
		0	0	0
E = OC	O C	0	1	0
$= \Sigma(m_2)$	$O\overline{C}$	1	0	1
<u>/</u> /	ΟC	0	1	1

• POS – product-of-sums

0	С	Е	maxterm
0	0	0	O + C
0	1	0	$O + \overline{C}$
1	0	1	<u> </u>
(1	1	0	$\overline{O} + \overline{C}$

• SOP – sum-of-products

0	С	Е	minterm	
0	0	0		
0	1	0	O C	E = OC
1	0	1	0 C	$=\Sigma(m_2)$
1	1	0	ΟC	-(2)

POS – product-of-sums

0	С	Е	maxterm
0	0	0	O + C
0	1	0	$O + \overline{C}$
1	0	1	<u> </u>
1	1	0	$\overline{O} + \overline{C}$

 $E = (O + C)(O + \overline{C})(\overline{O} + \overline{C})$ $= \Pi(M0, M1, M3)$

Boolean Algebra

- Axioms and theorems to simplify Boolean equations
- Like regular algebra, but simpler: variables have only two values (1 or 0)
- **Duality** in axioms and theorems:
 - ANDs and ORs, 0's and 1's interchanged

Axiom

A1	$B = 0$ if $B \neq 1$
A2	$\overline{0} = 1$
A3	$0 \bullet 0 = 0$
A4	1 • 1 = 1
A5	$0 \bullet 1 = 1 \bullet 0 = 0$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <26>

Duality

Duality in Boolean axioms and theorems:

- ANDs and ORs, 0's and 1's interchanged

Axiom

A1	$B = 0$ if $B \neq 1$
A2	$\overline{0} = 1$
A3	$0 \bullet 0 = 0$
A4	1 • 1 = 1
A5	$0 \bullet 1 = 1 \bullet 0 = 0$

	Axiom		Dual
A1	$B = 0$ if $B \neq 1$	A1′	$B = 1$ if $B \neq 0$
A2	$\overline{0} = 1$	A2′	$\overline{1} = 0$
A3	$0 \bullet 0 = 0$	A3′	1 + 1 = 1
A4	1 • 1 = 1	A4′	0 + 0 = 0
A5	$0 \bullet 1 = 1 \bullet 0 = 0$	A5′	1 + 0 = 0 + 1 = 1

Dual: Exchange: • and + 0 and 1

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <29>

	Axiom		Dual	Name
A1	$B = 0$ if $B \neq 1$	A1′	$B = 1$ if $B \neq 0$	Binary field
A2	$\overline{0} = 1$	A2′	$\overline{1} = 0$	NOT
A3	$0 \bullet 0 = 0$	A3′	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	A4′	0 + 0 = 0	AND/OR
A5	$0 \bullet 1 = 1 \bullet 0 = 0$	A5′	1 + 0 = 0 + 1 = 1	AND/OR

Dual: Exchange: • and + 0 and 1

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <30>

Basic Boolean Theorems

	Theorem
T1	$B \bullet 1 = B$
T2	$B \bullet 0 = 0$
Τ3	$B \bullet B = B$
T4	$\overline{\overline{B}} = B$
T5	$B \bullet \overline{B} = 0$

Basic Boolean Theorems: Duals

	Theorem		Dual	Name
T1	$B \bullet 1 = B$	T1′	B + 0 = B	Identity
T2	$B \bullet 0 = 0$	T2′	B + 1 = 1	Null Element
T3	$B \bullet B = B$	T3′	B + B = B	Idempotency
T4		$\overline{\overline{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5'	$B + \overline{B} = 1$	Complements

Dual: Exchange: • and + 0 and 1

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <32>

T1: Identity Theorem

- B 1 = B
- $\mathbf{B} + \mathbf{0} = \mathbf{B}$

T1: Identity Theorem

- $B \cdot 1 = B$
- $\mathbf{B} + \mathbf{0} = \mathbf{B}$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <34>

Switching Algebra

- Simplification of digital logic → connecting wires with a on/off switch
- X = 0 (switch open)
- X = 1 (switch closed)

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <35>

Series Switching Network: AND

• Switching circuit in series performs AND

• 1 is connected to 2 iff A AND B are 1

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <36>

Parallel Switching Network: OR

• Switching circuit in parallel performs OR

• 1 is connected to 2 if A **OR** B is 1

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <37>

T1: Identity Theorem

- $B \cdot 1 = B$
- $\mathbf{B} + \mathbf{0} = \mathbf{B}$

T2: Null Element Theorem

- $B \cdot 0 = 0$
- B + 1 = 1

T2: Null Element Theorem

- $B \cdot 0 = 0$
- B + 1 = 1

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <40>

T3: Idempotency Theorem

- $\mathbf{B} \cdot \mathbf{B} = \mathbf{B}$
- B + B = B

T3: Idempotency Theorem

- $\mathbf{B} \cdot \mathbf{B} = \mathbf{B}$
- B + B = B

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <42>

T4: Involution Theorem

• $\overline{B} = B$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <43>

T4: Involution Theorem

• $\overline{B} = B$

T5: Complements Theorem

- $\mathbf{B} \cdot \overline{\mathbf{B}} = \mathbf{0}$
- $B + \overline{B} = 1$

T5: Complements Theorem

- B $\overline{B} = 0$
- $B + \overline{B} = 1$

Recap: Basic Boolean Theorems

	Theorem		Dual	Name
T1	$B \bullet 1 = B$	T1′	B + 0 = B	Identity
Т2	$B \bullet 0 = 0$	T2′	B + 1 = 1	Null Element
Т3	$B \bullet B = B$	T3′	B + B = B	Idempotency
T4		$\overline{\overline{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5'	$B + \overline{B} = 1$	Complements

Boolean Theorems of Several Vars

Number	Theorem	Name
Т6	$B \bullet C = C \bullet B$	Commutativity
Т7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	Associativity
Т8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	Distributivity
Т9	B● (B+C) = B	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	Combining
T11	$B \bullet C + (\overline{B} \bullet D) + (C \bullet D) =$ $B \bullet C + \overline{B} \bullet D$	Consensus

Boolean Theorems of Several Vars

Number	Theorem	Name
Т6	$B \bullet C = C \bullet B$	Commutativity
Т7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	Associativity
Т8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	Distributivity
Т9	B● (B+C) = B	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	Combining
T11	$B \bullet C + (\overline{B} \bullet D) + (C \bullet D) =$ $B \bullet C + \overline{B} \bullet D$	Consensus

How do we prove these are true?

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <49>

How to Prove Boolean Relation

- Method 1: Perfect induction
- Method 2: Use other theorems and axioms to simplify the equation
 - Make one side of the equation look like the other

Proof by Perfect Induction

- Also called: proof by exhaustion
- Check every possible input value
- If two expressions produce the same value for every possible input combination, the expressions are equal

Example: Proof by Perfect Induction

Number	Theorem	Name
Т6	$B \bullet C = C \bullet B$	Commutativity

В	С	ВС	СВ	
0	0			
0	1			
1	0			
1	1			

Example: Proof by Perfect Induction

Number	Theorem	Name
Т6	$B \bullet C = C \bullet B$	Commutativity

В	С	ВС	СВ	
0	0	0	0	
0	1	0	0	
1	0	0	0	
1	1	1	1	

Boolean Theorems of Several Vars

Number	Theorem	Name
Т6	$B \bullet C = C \bullet B$	Commutativity
Т7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	Associativity
Т8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	Distributivity
Т9	B● (B+C) = B	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	Combining
T11	$B \bullet C + (\overline{B} \bullet D) + (C \bullet D) =$ $B \bullet C + \overline{B} \bullet D$	Consensus

T7: Associativity

Number	Theorem	Name
Т7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	Associativity

T8: Distributivity

Number	Theorem	Name
Т8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	Distributivity

Number	Theorem	Name
Т9	B● (B+C) = B	Covering

Prove true by:

- Method 1: Perfect induction
- Method 2: Using other theorems and axioms

Number	Theorem	Name
Т9	B● (B+C) = B	Covering

Method 1: Perfect Induction

В	С	(B+C)	B(B+C)	
0	0			
0	1			
1	0			
1	1			
		l		

Number	Theorem	Name
Т9	B● (B+C) = B	Covering

Method 1: Perfect Induction

 В	С	(B+C)	B(B+C)	
0	0	0	0	
0	1	1	0	
1	0	1	1	
1	1	1	1	

Number	Theorem	Name
Т9	B● (B+C) = B	Covering

Method 2: Prove true using other axioms and theorems.

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <61>

Number	Theorem	Name
Т9	B● (B+C) = B	Covering

Method 2: Prove true using other axioms and theorems.

 $B \bullet (B+C) = B \bullet B + B \bullet C$ T8: Distributivity

 $= \mathbf{B} + \mathbf{B} \cdot \mathbf{C}$

 $= B \cdot (1 + C)$

 $= \mathbf{B} \cdot (\mathbf{1})$

 $\equiv \mathbf{B}$

- T3: Idempotency
- T8: Distributivity
- T2: Null element

T1:	Identity
Chapter	2 <62>

T10: Combining

Number	Theorem	Name
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	Combining

Prove true using other axioms and theorems:

T10: Combining

Number	Theorem	Name
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	Combining

Prove true using other axioms and theorems: $B \cdot C + B \cdot \overline{C} = B \cdot (C + \overline{C})$ T8: Distributivity $= B \cdot (1)$ T5': Complements = B T1: Identity

T11: Consensus

Number	Theorem	Name
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + \overline{B} \bullet D$	Consensus

Prove true using (1) perfect induction or (2) other axioms and theorems.

Recap: Boolean Thms of Several Vars

Number	Theorem	Name
Т6	$B \bullet C = C \bullet B$	Commutativity
Т7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	Associativity
Т8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	Distributivity
Т9	B● (B+C) = B	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	Combining
T11	$B \bullet C + (\overline{B} \bullet D) + (C \bullet D) =$ $B \bullet C + \overline{B} \bullet D$	Consensus

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <66>

Boolean Thms of Several Vars: Duals

#	Theorem	Dual	Name
T6	$B \bullet C = C \bullet B$	B+C = C+B	Commutativity
Т7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	(B + C) + D = B + (C + D)	Associativity
T8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	$B + (C \bullet D) = (B+C) (B+D)$	Distributivity
Т9	B • (B+C) = B	$B + (B \bullet C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	$(B+C) \bullet (B+\overline{C}) = B$	Combining
T11	$(B \bullet C) + (B \bullet \overline{D}) + (C \bullet D) =$ $(B \bullet C) + (B \bullet \overline{D})$	$(B+C) \bullet (B+\overline{D}) \bullet (C+D) =$ $(B+C) \bullet (B+\overline{D})$	Consensus

Dual: Replace: • with + 0 with 1

Boolean Thms of Several Vars: Duals

Theorem	Dual	Name
$B \bullet C = C \bullet B$	B+C = C+B	Commutativity
$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	(B + C) + D = B + (C + D)	Associativity
$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	$B + (C \bullet D) = (B+C) (B+D)$	Distributivity
B • (B+C) = B	$B + (B \bullet C) = B$	Covering
$(B \bullet C) + (B \bullet \overline{C}) = B$	$(B+C) \bullet (B+\overline{C}) = B$	Combining
$(B \bullet C) + (B \bullet \overline{D}) + (C \bullet D) =$ $(B \bullet C) + (B \bullet \overline{D})$	$(B+C) \bullet (B+\overline{D}) \bullet (C+D) =$ $(B+C) \bullet (B+\overline{D})$	Consensus
	Theorem $B \cdot C = C \cdot B$ $(B \cdot C) \cdot D = B \cdot (C \cdot D)$ $B \cdot (C + D) = (B \cdot C) + (B \cdot D)$ $B \cdot (B + C) = B$ $(B \cdot C) + (B \cdot \overline{C}) = B$ $(B \cdot C) + (B \cdot \overline{D}) + (C \cdot D) =$ $(B \cdot C) + (B \cdot \overline{D})$	TheoremDual $B \bullet C = C \bullet B$ $B + C = C + B$ $(B \bullet C) \bullet D = B \bullet (C \bullet D)$ $(B + C) + D = B + (C + D)$ $B \bullet (C + D) = (B \bullet C) + (B \bullet D)$ $B + (C \bullet D) = (B + C) (B + D)$ $B \bullet (B + C) = B$ $B + (B \bullet C) = B$ $(B \bullet C) + (B \bullet \overline{C}) = B$ $(B + C) \bullet (B + \overline{C}) = B$ $(B \bullet C) + (B \bullet \overline{D}) + (C \bullet D) = (B + C) (B + \overline{D}) \bullet (C + D) = (B + C) \bullet (B + \overline{D})$

Dual: Replace: • with + 0 with 1

Warning: T8' differs from traditional algebra: OR (+) distributes over AND (•)

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <68>

Boolean Thms of Several Vars: Duals

#	Theorem	Dual	Name
T6	$B \bullet C = C \bullet B$	B+C = C+B	Commutativity
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	(B + C) + D = B + (C + D)	Associativity
T8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	$B + (C \bullet D) = (B+C) (B+D)$	Distributivity
Т9	B • (B+C) = B	$B + (B \bullet C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	$(B+C) \bullet (B+\overline{C}) = B$	Combining
T11	$(B \bullet C) + (B \bullet \overline{D}) + (C \bullet D) =$ $(B \bullet C) + (B \bullet \overline{D})$	$(B+C) \bullet (B+\overline{D}) \bullet (C+D) =$ $(B+C) \bullet (B+\overline{D})$	Consensus

Axioms and theorems are useful for *simplifying* equations.

