Number	Theorem	Name
Т9	B● (B+C) = B	Covering

Prove true by:

- Method 1: Perfect induction
- Method 2: Using other theorems and axioms

Number	Theorem	Name
Т9	B● (B+C) = B	Covering

Method 1: Perfect Induction

В	С	(B+C)	B(B+C)	
0	0			
0	1			
1	0			
1	1			
		l		

Number	Theorem	Name
Т9	B● (B+C) = B	Covering

Method 1: Perfect Induction

 В	С	(B+C)	B(B+C)	
0	0	0	0	
0	1	1	0	
1	0	1	1	
1	1	1	1	

Number	Theorem	Name
Т9	B● (B+C) = B	Covering

Method 2: Prove true using other axioms and theorems.

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <61>

Number	Theorem	Name
Т9	B● (B+C) = B	Covering

Method 2: Prove true using other axioms and theorems.

 $B \bullet (B+C) = B \bullet B + B \bullet C$ T8: Distributivity

 $= \mathbf{B} + \mathbf{B} \cdot \mathbf{C}$

 $= B \cdot (1 + C)$

 $= \mathbf{B} \cdot (\mathbf{1})$

 $\equiv \mathbf{B}$

- T3: Idempotency
- T8: Distributivity
- T2: Null element

T1:	Identity
Chapter	2 <62>

T10: Combining

Number	Theorem	Name
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	Combining

Prove true using other axioms and theorems:

T10: Combining

Number	Theorem	Name
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	Combining

Prove true using other axioms and theorems: $B \cdot C + B \cdot \overline{C} = B \cdot (C + \overline{C})$ T8: Distributivity $= B \cdot (1)$ T5': Complements = B T1: Identity

T11: Consensus

Number	Theorem	Name
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + \overline{B} \bullet D$	Consensus

Prove true using (1) perfect induction or (2) other axioms and theorems.

Recap: Boolean Thms of Several Vars

Number	Theorem	Name
Т6	$B \bullet C = C \bullet B$	Commutativity
Т7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	Associativity
Т8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	Distributivity
Т9	B● (B+C) = B	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	Combining
T11	$B \bullet C + (\overline{B} \bullet D) + (C \bullet D) =$ $B \bullet C + \overline{B} \bullet D$	Consensus

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <66>

#	Theorem	Dual	Name
T6	$B \bullet C = C \bullet B$	B+C = C+B	Commutativity
Т7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	(B + C) + D = B + (C + D)	Associativity
T8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	$B + (C \bullet D) = (B+C) (B+D)$	Distributivity
Т9	B • (B+C) = B	$B + (B \bullet C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	$(B+C) \bullet (B+\overline{C}) = B$	Combining
T11	$(B \bullet C) + (B \bullet \overline{D}) + (C \bullet D) =$ $(B \bullet C) + (B \bullet \overline{D})$	$(B+C) \bullet (B+\overline{D}) \bullet (C+D) =$ $(B+C) \bullet (B+\overline{D})$	Consensus

Dual: Replace: • with + 0 with 1

Theorem	Dual	Name
$B \bullet C = C \bullet B$	B+C = C+B	Commutativity
$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	(B + C) + D = B + (C + D)	Associativity
$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	$B + (C \bullet D) = (B+C) (B+D)$	Distributivity
B • (B+C) = B	$B + (B \bullet C) = B$	Covering
$(B \bullet C) + (B \bullet \overline{C}) = B$	$(B+C) \bullet (B+\overline{C}) = B$	Combining
$(B \bullet C) + (B \bullet \overline{D}) + (C \bullet D) =$ $(B \bullet C) + (B \bullet \overline{D})$	$(B+C) \bullet (B+\overline{D}) \bullet (C+D) =$ $(B+C) \bullet (B+\overline{D})$	Consensus
	Theorem $B \cdot C = C \cdot B$ $(B \cdot C) \cdot D = B \cdot (C \cdot D)$ $B \cdot (C + D) = (B \cdot C) + (B \cdot D)$ $B \cdot (B + C) = B$ $(B \cdot C) + (B \cdot \overline{C}) = B$ $(B \cdot C) + (B \cdot \overline{D}) + (C \cdot D) =$ $(B \cdot C) + (B \cdot \overline{D})$	TheoremDual $B \bullet C = C \bullet B$ $B + C = C + B$ $(B \bullet C) \bullet D = B \bullet (C \bullet D)$ $(B + C) + D = B + (C + D)$ $B \bullet (C + D) = (B \bullet C) + (B \bullet D)$ $B + (C \bullet D) = (B + C) (B + D)$ $B \bullet (B + C) = B$ $B + (B \bullet C) = B$ $(B \bullet C) + (B \bullet \overline{C}) = B$ $(B + C) \bullet (B + \overline{C}) = B$ $(B \bullet C) + (B \bullet \overline{D}) + (C \bullet D) = (B + C) (B + \overline{D}) \bullet (C + D) = (B + C) \bullet (B + \overline{D})$

Dual: Replace: • with + 0 with 1

Warning: T8' differs from traditional algebra: OR (+) distributes over AND (•)

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <68>

#	Theorem	Dual	Name
T6	$B \bullet C = C \bullet B$	B+C = C+B	Commutativity
Т7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	(B + C) + D = B + (C + D)	Associativity
T8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	$B + (C \bullet D) = (B+C) (B+D)$	Distributivity
Т9	B • (B+C) = B	$B + (B \bullet C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	$(B+C) \bullet (B+\overline{C}) = B$	Combining
T11	$(B \bullet C) + (B \bullet \overline{D}) + (C \bullet D) =$ $(B \bullet C) + (B \bullet \overline{D})$	$(B+C) \bullet (B+\overline{D}) \bullet (C+D) =$ $(B+C) \bullet (B+\overline{D})$	Consensus

Axioms and theorems are useful for *simplifying* equations.

Simplifying an Equation

• Reducing an equation to the fewest number of implicants, where each implicant has the fewest literals

Simplifying an Equation

• Reducing an equation to the fewest number of implicants, where each implicant has the fewest literals

Recall:

- Implicant: product of literals ABC, AC, BC
- Literal: variable or its complement A, A, B, B, C, C

Simplifying an Equation

• Reducing an equation to the fewest number of implicants, where each implicant has the fewest literals

Recall:

- Implicant: product of literals
 ABC, AC, BC
- Literal: variable or its complement A, A, B, B, C, C
- Also called: **minimizing** the equation

- Distributivity (T8, T8')
 - B(C+D) = BC + BD
 - $\mathbf{B} + \mathbf{C}\mathbf{D} = (\mathbf{B} + \mathbf{C})(\mathbf{B} + \mathbf{D})$
- Covering (T9')
 - A + AP = A
- **Combining (T10)** $PA + P\overline{A} = P$

- Distributivity (T8, T8')
 - B(C+D) = BC + BD
 - $\mathbf{B} + \mathbf{C}\mathbf{D} = (\mathbf{B} + \mathbf{C})(\mathbf{B} + \mathbf{D})$
- Covering (T9')
 - A + AP = A
- **Combining (T10)** $PA + P\overline{A} = P$
- **Expansion**
 - $\mathbf{P} = \mathbf{P}\mathbf{A} + \mathbf{P}\mathbf{A}$
 - A = A + AP
- Duplication
 - $\mathbf{A} = \mathbf{A} + \mathbf{A}$

- Distributivity (T8, T8')
 - B(C+D) = BC + BD
 - $\mathbf{B} + \mathbf{C}\mathbf{D} = (\mathbf{B} + \mathbf{C})(\mathbf{B} + \mathbf{D})$
- Covering (T9')
 - A + AP = A
- **Combining (T10)** $PA + P\overline{A} = P$
- **Expansion**
 - $\mathbf{P} = \mathbf{P}\mathbf{A} + \mathbf{P}\mathbf{A}$
 - $\mathbf{A} = \mathbf{A} + \mathbf{A}\mathbf{P}$
- Duplication
 - A = A + A
- A combination of Combining/Covering $PA + \overline{A} = P + \overline{A}$

 $\ensuremath{\mathbb{C}}$ Digital Design and Computer Architecture, 2^{nd} Edition, 2012

• A combination of Combining/Covering $PA + \overline{A} = P + \overline{A}$

Proof: $PA + \overline{A} = PA + (\overline{A} + \overline{A}P)$ = $PA + P\overline{A} + \overline{A}$ = $P(A + \overline{A}) + \overline{A}$ = $P(1) + \overline{A}$ = $P + \overline{A}$ T9' Covering T6 Commutativity T8 Distributivity T5' Complements T1 Identity

T11: Consensus

Prove using other theorems and axioms:

T11: Consensus

Number	Theorem	Name
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + \overline{B} \bullet D$	Consensus

Prove using other theorems and axioms:

 $\mathbf{B} \bullet \mathbf{C} + \overline{\mathbf{B}} \bullet \mathbf{D} + \mathbf{C} \bullet \mathbf{D}$

- $= BC + \overline{B}D + (CDB + CD\overline{B})$
- $= BC + \overline{B}D + BCD + \overline{B}CD$
- $= BC + BCD + \overline{BD} + \overline{BCD}$
- $= (BC + BCD) + (\overline{B}D + \overline{B}CD)$
- $= BC + \overline{B}D$

- **T10: Combining**
- **T6:** Commutativity
- **T6:** Commutativity
- **T7:** Associativity
- **T9': Covering**

Recap: Boolean Thms of Several Vars

#	Theorem	Dual	Name
T6	$B \bullet C = C \bullet B$	B+C = C+B	Commutativity
Τ7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	(B + C) + D = B + (C + D)	Associativity
T8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	$B + (C \bullet D) = (B+C) (B+D)$	Distributivity
Т9	B • (B+C) = B	$B + (B \bullet C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	$(B+C) \bullet (B+\overline{C}) = B$	Combining
T11	$(B \bullet C) + (B \bullet \overline{D}) + (C \bullet D) =$ $(B \bullet C) + (B \bullet \overline{D})$	$(B+C) \bullet (B+\overline{D}) \bullet (C+D) =$ $(B+C) \bullet (B+\overline{D})$	Consensus

- Distributivity (T8, T8')
 - B(C+D) = BC + BD
 - $\mathbf{B} + \mathbf{C}\mathbf{D} = (\mathbf{B} + \mathbf{C})(\mathbf{B} + \mathbf{D})$
- Covering (T9')
 - A + AP = A
- **Combining (T10)** $PA + P\overline{A} = P$
- Expansion
 - $\mathbf{P} = \mathbf{P}\mathbf{A} + \mathbf{P}\mathbf{A}$
 - A = A + AP
- Duplication
 - A = A + A
- A combination of Combining/Covering $PA + \overline{A} = P + \overline{A}$

Example 1:

Y = AB + AB

Example 1:

Y = AB + AB

Y = A T10: Combining

or

 $= A(B + \overline{B})$ T8: Distributivity= A(1)T5': Complements= AT1: Identity

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <82>

- Distributivity (T8, T8')
 - B(C+D) = BC + BD
 - $\mathbf{B} + \mathbf{C}\mathbf{D} = (\mathbf{B} + \mathbf{C})(\mathbf{B} + \mathbf{D})$
- Covering (T9')
 - A + AP = A
- **Combining** (T10) $PA + P\overline{A} = P$
- Expansion
 - $\mathbf{P} = \mathbf{P}\mathbf{A} + \mathbf{P}\mathbf{A}$
 - A = A + AP
- Duplication
 - A = A + A
- A combination of Combining/Covering $PA + \overline{A} = P + \overline{A}$

Example 2:

Y = **A**(**AB** + **ABC**)

Example 2:

- Y = A(AB + ABC)
 - =A(AB(1+C))
 - = A(AB(1))
 - = A(AB)
 - = (AA)B
 - = *AB*

T8: Distributivity
T2': Null Element
T1: Identity
T7: Associativity
T3: Idempotency

- **Distributivity** (**T8, T8'**) B (C+D) = BC + BD
 - $\mathbf{B} + \mathbf{C}\mathbf{D} = (\mathbf{B} + \mathbf{C})(\mathbf{B} + \mathbf{D})$
- Covering (T9')
 - A + AP = A
- Combining (T10) $PA + P\overline{A} = P$
- Expansion
 - $\mathbf{P} = \mathbf{P}\mathbf{A} + \mathbf{P}\mathbf{A}$
 - A = A + AP
- Duplication
 - A = A + A
- A combination of Combining/Covering $PA + \overline{A} = P + \overline{A}$

Example 3:

Y = **A'BC** + **A'**

Recall: A' = A

Example 3:

- **Y** = **A'BC** + **A'**
 - = A'

or

- = A'(BC + 1) = A'(1)
- = A'

Recall: $A' = \overline{A}$ T9' Covering: X + XY = X

T8: Distributivity

T2': Null Element

T1: Identity

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <88>

- Distributivity (T8, T8')
 - B(C+D) = BC + BD
 - $\mathbf{B} + \mathbf{C}\mathbf{D} = (\mathbf{B} + \mathbf{C})(\mathbf{B} + \mathbf{D})$
- Covering (T9')
 - A + AP = A
- **Combining** (T10) $PA + P\overline{A} = P$
- Expansion
 - $\mathbf{P} = \mathbf{P}\mathbf{A} + \mathbf{P}\mathbf{A}$
 - A = A + AP
- Duplication

- A = A + A
- A combination of Combining/Covering $PA + \overline{A} = P + \overline{A}$

Example 4:

Y = AB'C + ABC + A'BC

Example 4:

- Y = AB'C + ABC + A'BC
 - = AB'C + **ABC** + **ABC** + A'BC T3': Idempotency
 - = (AB'C+ABC) + (ABC+A'BC) T7': Associativity
 - = AC + BC T10: Combining

- Distributivity (T8, T8')
 - B(C+D) = BC + BD
 - $\mathbf{B} + \mathbf{C}\mathbf{D} = (\mathbf{B} + \mathbf{C})(\mathbf{B} + \mathbf{D})$
- Covering (T9')
 - A + AP = A
- **Combining** (T10) $PA + P\overline{A} = P$
- Expansion
 - $\mathbf{P} = \mathbf{P}\mathbf{A} + \mathbf{P}\mathbf{A}$
 - A = A + AP
- Duplication
 - A = A + A
- A combination of Combining/Covering $PA + \overline{A} = P + \overline{A}$

Example 5:

Y = AB + BC + B'D' + AC'D'

Example 5:

Y = AB + BC + B'D' + AC'D'

Method 1:

- Y = AB + BC + B'D' + (ABC'D' + AB'C'D')
- = (AB + ABC'D') + BC + (B'D' + AB'C'D')

$$= AB + BC + B'D'$$

Method 2:

$$Y = AB + BC + B'D' + AC'D' + AD'$$
$$= AB + BC + B'D' + AD'$$
$$= AB + BC + B'D'$$

T10: CombiningT6: CommutativityT7: AssociativityT9: Covering

T11: ConsensusT9: CoveringT11: Consensus

- Distributivity (T8, T8')
 - B(C+D) = BC + BD
 - $\mathbf{B} + \mathbf{C}\mathbf{D} = (\mathbf{B} + \mathbf{C})(\mathbf{B} + \mathbf{D})$
- Covering (T9')
 - A + AP = A
- **Combining** (T10) $PA + P\overline{A} = P$
- Expansion
 - $\mathbf{P} = \mathbf{P}\mathbf{A} + \mathbf{P}\mathbf{A}$
 - A = A + AP
- Duplication
 - A = A + A
- A combination of Combining/Covering $PA + \overline{A} = P + \overline{A}$

Example 6:

Y = (A + BC)(A + DE)

Apply T8' first when possible: W+XZ = (W+X)(W+Z)

Example 6:

Y = (A + BC)(A + DE)

Apply T8' first when possible: W+XZ = (W+X)(W+Z)

Make: X = BC, Z = DE and rewrite equation

Y	= (A+X)(A+Z)	substitution (X=BC, Z=DE)
	= A + XZ	T8': Distributivity
	= A + BCDE	substitution

or

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 < 97>

Example 6:

Y = (A + BC)(A + DE)

Apply T8' first when possible: W+XZ = (W+X)(W+Z)

Make: X = BC, Z = DE and rewrite equation

Y	= (A+X)(A+Z)	substitution (X=BC, Z=DE)	
	= A + XZ	T8': Distributivity	
	= A + BCDE	substitution	This is

or

- Y = AA + ADE + ABC + BCDE T8: Distributivity= A + ADE + ABC + BCDE T3: Idempotency= A + ADE + ABC + BCDE= A + ABC + BCDE T9': Covering
 - = A + BCDE T9': Covering

This is called *multiplying out* an expression to get sum-of-products (SOP) form.

ELSEVIER

© Digital Design and Computer Architecture, 2^{nd} Edition, 2012

Multiplying Out: SOP Form

An expression is in simplified **sum-ofproducts (SOP)** form when all products contain literals only.

- SOP form: Y = AB + BC' + DE
- **NOT** SOP form: Y = DF + E(A'+B)
- SOP form: Z = A + BC + DE'F

Multiplying Out: SOP Form

Example:

Y = (A + C + D + E)(A + B)

Apply T8' first when possible: W+XZ = (W+X)(W+Z)

Multiplying Out: SOP Form

Example:

Y = (A + C + D + E)(A + B)

Apply T8' first when possible: W+XZ = (W+X)(W+Z)

Make: X = (C+D+E), Z = B and rewrite equation

Y = (A+X)(A+Z)substitution (X=(C+D+E), Z=B)= A + XZT8': Distributivity= A + (C+D+E)Bsubstitution= A + BC + BD + BET8: Distributivity

or

- Y = AA+AB+AC+BC+AD+BD+AE+BE T8: Distributivity = **A**+AB+AC+AD+AE+BC+BD+BE T3: Idempotency
 - = **A** + BC + BD + BE

T9': Covering

Canonical SOP & POS Form

• SOP – sum-of-products

	minterm	Е	С	0
		0	0	0
E = OC	O C	0	1	0
$= \Sigma(m_2)$	\overline{O}	1	0	(1
<u>/</u> /	ΟC	0	1	1

POS – product-of-sums

 $E = (O + C)(O + \overline{C})(\overline{O} + \overline{C})$ $= \Pi(M0, M1, M3)$

An expression is in simplified **productof-sums (POS)** form when all sums contain literals only.

- POS form: Y = (A+B)(C+D)(E'+F)
- NOT POS form: Y = (D+E)(F'+GH)
- POS form: Z = A(B+C)(D+E')

Example 1:

Y = (**A** + **B**'**CDE**)

Apply T8' first when possible: W+XZ = (W+X)(W+Z)

Example 1:

Y = (**A** + **B**'**CDE**)

Apply T8' first when possible: W+XZ = (W+X)(W+Z)

Make: X = B'C, Z = DE and rewrite equation

$$Y = (A + XZ)$$

substitution (X=B'C, Z=DE)

- T8': Distributivity
- T8': Distributivity

Example 2:

Y = AB + C'DE + F

Apply T8' first when possible: W+XZ = (W+X)(W+Z)

Example 2:

Y = AB + C'DE + F

Apply T8' first when possible: W+XZ = (W+X)(W+Z)

Make: W = AB, X = C', Z = DE and rewrite equation

- Y = (W + XZ) + F
 - = (W+X)(W+Z) + F

- substitution W = AB, X = C', Z = DE
- T8': Distributivity
- = (AB+C')(AB+DE)+F substitution
- = (A+C')(B+C')(AB+D)(AB+E)+F T8': Distributivity
- = (A+C')(B+C')(A+D)(B+D)(A+E)(B+E)+F T8': Distributivity
- = (A+C'+F)(B+C'+F)(A+D+F)(B+D+F)(A+E+F)(B+E+F) T8': Distributivity

#	Theorem	Dual	Name
T6	$B \bullet C = C \bullet B$	B+C = C+B	Commutativity
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	(B + C) + D = B + (C + D)	Associativity
T8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	B + (C•D) = (B+C) (B+D)	Distributivity
Т9	B • (B+C) = B	$B + (B \bullet C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	$(B+C) \bullet (B+\overline{C}) = B$	Combining
T11	$(B \bullet C) + (B \bullet \overline{D}) + (C \bullet D) =$ $(B \bullet C) + (B \bullet \overline{D})$	$(B+C) \bullet (B+\overline{D}) \bullet (C+D) =$ $(B+C) \bullet (B+\overline{D})$	Consensus

Axioms and theorems are useful for *simplifying* equations.

- Distributivity (T8, T8')
 - B(C+D) = BC + BD
 - $\mathbf{B} + \mathbf{C}\mathbf{D} = (\mathbf{B} + \mathbf{C})(\mathbf{B} + \mathbf{D})$
- Covering (T9')
 - A + AP = A
- **Combining (T10)** $PA + P\overline{A} = P$
- **Expansion**
 - $\mathbf{P} = \mathbf{P}\mathbf{A} + \mathbf{P}\mathbf{A}$
 - $\mathbf{A} = \mathbf{A} + \mathbf{A}\mathbf{P}$
- Duplication
 - A = A + A
- A combination of Combining/Covering PA + \overline{A} = P + \overline{A}

 $\ensuremath{\mathbb{C}}$ Digital Design and Computer Architecture, 2^{nd} Edition, 2012

