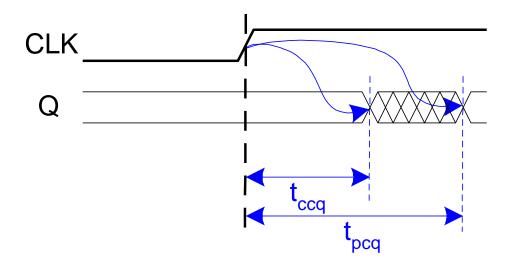

Timing

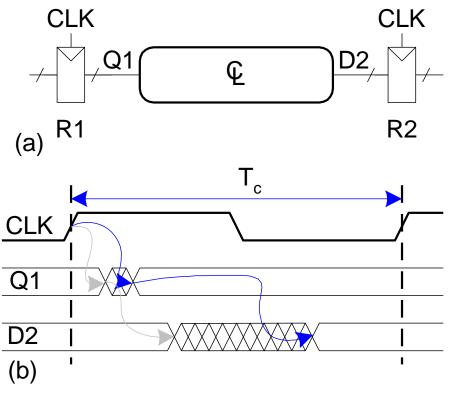
- Flip-flop samples *D* at clock edge
- *D* must be stable when sampled
 - Similar to a photograph, *D* must be stable around clock edge
 - Moving right before or after shutter click results in blurry photo
- If not, metastability can occur

Input Timing Constraints


- Setup time: t_{setup} = time *before* clock edge data must be stable (i.e. not changing)
- Hold time: t_{hold} = time *after* clock edge data must be stable
- Aperture time: t_a = time *around* clock edge data must be stable ($t_a = t_{setup} + t_{hold}$)

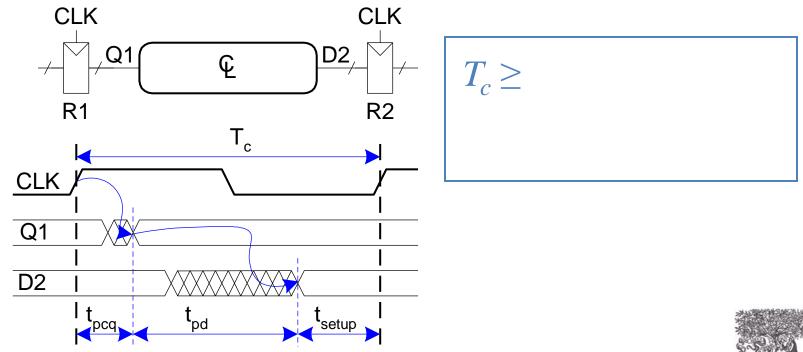
Output Timing Constraints

- **Propagation delay:** t_{pcq} = time after clock edge that the output Q is guaranteed to be stable (i.e., to stop changing)
- Contamination delay: t_{ccq} = time after clock edge that Q might be unstable (i.e., start changing)


Dynamic Discipline

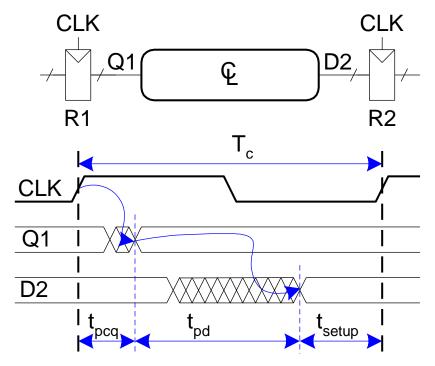
- Synchronous sequential circuit inputs must be stable during aperture (setup and hold) time around clock edge
 - Specifically, inputs must be stable:
 - at least t_{setup} before the clock edge
 - at least until t_{hold} after the clock edge
- Previously, static discipline:
 - With logically valid inputs, every circuit element must produce logically valid outputs

Dynamic Discipline


 The delay between registers has a minimum and maximum delay, dependent on the delays of the circuit elements

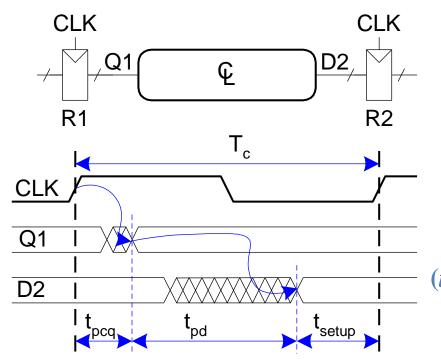
ELSEVIER

Setup Time Constraint


- Depends on the maximum delay from register R1 through combinational logic to R2
- The input to register R2 must be stable at least t_{setup} before clock edge

Setup Time Constraint

- Depends on the maximum delay from register R1 through combinational logic to R2
- The input to register R2 must be stable at least t_{setup} before clock edge



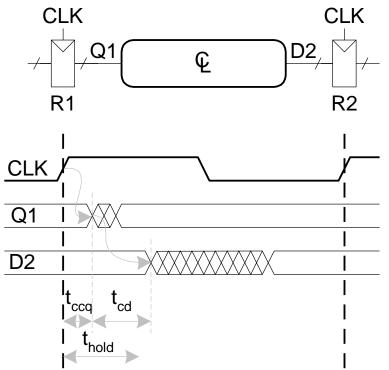
 $T_c \ge t_{pcq} + t_{pd} + t_{setup}$ $t_{pd} \leq$

Setup Time Constraint

- Depends on the maximum delay from register R1 through combinational logic to R2
- The input to register R2 must be stable at least t_{setup} before clock edge

 $T_c \ge t_{pcq} + t_{pd} + t_{setup}$ $t_{pd} \le T_c - (t_{pcq} + t_{setup})$

 $(t_{pcq} + t_{setup})$: sequencing overhead

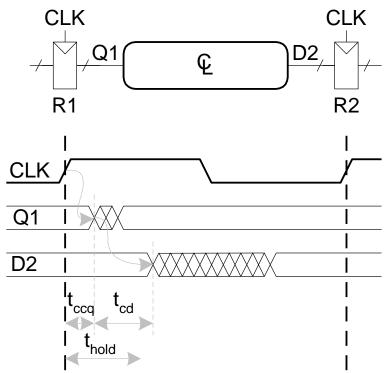


© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 3 <74>

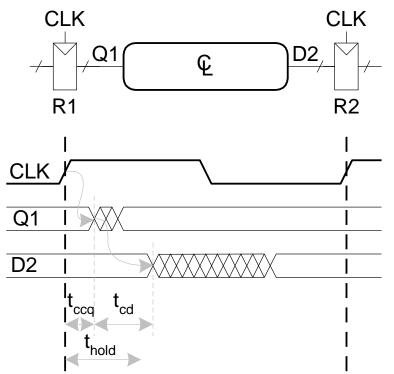
Hold Time Constraint

- Depends on the minimum delay from register R1 through the combinational logic to R2
- The input to register R2 must be stable for at least $t_{\rm hold}$ after the clock edge

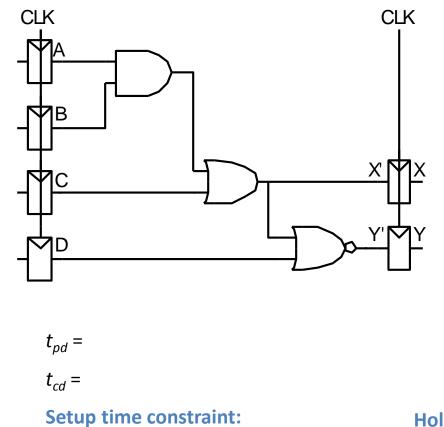


Hold Time Constraint

- Depends on the minimum delay from register R1 through the combinational logic to R2
- The input to register R2 must be stable for at least t_{hold} after the clock edge



 $t_{\text{hold}} < t_{ccq} + t_{cd}$ $t_{cd} >$


Hold Time Constraint

- Depends on the minimum delay from register R1 through the combinational logic to R2
- The input to register R2 must be stable for at least $t_{\rm hold}$ after the clock edge

 $t_{\text{hold}} < t_{ccq} + t_{cd}$ $t_{cd} > t_{hold} - t_{cca}$

Timing Characteristics

 t_{ccq} = 30 ps

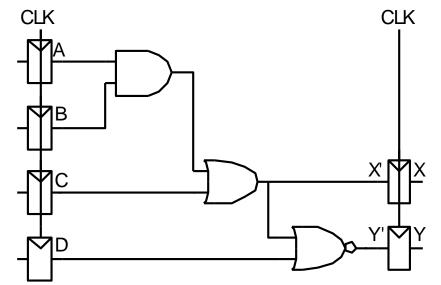
$$t_{pcq}$$
 = 50 ps

$$t_{\text{setup}} = 60 \text{ ps}$$

 t_{hold} = 70 ps

$$\begin{bmatrix} t_{pd} & = 35 \text{ ps} \\ t_{cd} & = 25 \text{ ps} \end{bmatrix}$$

Hold time constraint:


$$t_{\rm ccq} + t_{cd} > t_{\rm hold}$$
 ?

© Digital Design and Computer Architecture, 2nd Edition, 2012

 $T_c \ge$

 $f_c =$

t_{pd} = 3 x 35 ps = 105 ps

t_{cd} = 25 ps

Setup time constraint:

 $T_c \ge (50 + 105 + 60) \text{ ps} = 215 \text{ ps}$

 $f_c = 1/T_c = 4.65 \text{ GHz}$

Timing Characteristics

 t_{ccq} = 30 ps

$$t_{pcq}$$
 = 50 ps

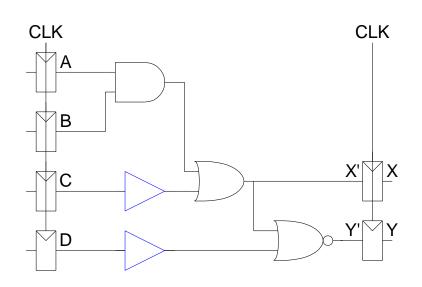
$$t_{\text{setup}} = 60 \text{ ps}$$

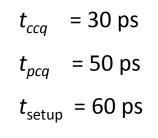
 t_{hold} = 70 ps

$$\begin{bmatrix} t_{pd} & = 35 \text{ ps} \\ t_{cd} & = 25 \text{ ps} \end{bmatrix}$$

Hold time constraint:

$$t_{ccq} + t_{cd} > t_{hold}$$
 ?


(30 + 25) ps > 70 ps ? No!


© *Digital Design and Computer Architecture*, 2nd Edition, 2012

Chapter 3 <79>

Add buffers to the short paths:

Timing Characteristics

 t_{hold} = 70 ps

$$\begin{bmatrix} t_{pd} & = 35 \text{ ps} \\ t_{cd} & = 25 \text{ ps} \end{bmatrix}$$

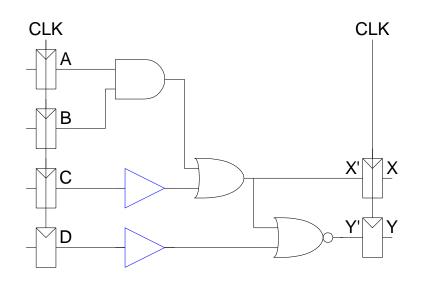
Hold time constraint:

$$t_{ccq} + t_{cd} > t_{hold}$$
 ?

© Digital Design and Computer Architecture, 2nd Edition, 2012

Setup time constraint:

 $t_{pd} =$


 t_{cd} =

 $T_c \ge$

 $f_c =$

Chapter 3 <80>

Add buffers to the short paths:

t_{pd} = 3 x 35 ps = 105 ps

 t_{cd} = 2 x 25 ps = 50 ps

Setup time constraint:

 $T_c \ge (50 + 105 + 60) \text{ ps} = 215 \text{ ps}$

 $f_c = 1/T_c = 4.65 \text{ GHz}$

Timing Characteristics

$$t_{ccq}$$
 = 30 ps
 t_{pcq} = 50 ps
 t_{setup} = 60 ps

 t_{hold} = 70 ps

$$\begin{bmatrix} t_{pd} &= 35 \text{ ps} \\ t_{cd} &= 25 \text{ ps} \end{bmatrix}$$

Hold time constraint:

$$t_{ccq} + t_{cd} > t_{hold}$$
 ?

(30 + 50) ps > 70 ps ? Yes!

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 3 <81>