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Chapter 5 
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Chapter 5 :: Topics 

• Introduction 

• Arithmetic Circuits 

• Number Systems 

• Sequential Building Blocks 

• Memory Arrays 

• Logic Arrays 
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• Digital building blocks: 
– Gates, multiplexers, decoders, registers, 

arithmetic circuits, counters, memory arrays, 
logic arrays 

• Building blocks demonstrate hierarchy, 
modularity, and regularity: 
– Hierarchy of simpler components 

– Well-defined interfaces and functions 

– Regular structure easily extends to different sizes 

• You can use these building blocks to build 
a processor (see Chapter 7, CpE 300) 

 

Introduction 
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Review: 1-Bit Adders 
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Review: 1-Bit Adders 
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Review: 1-Bit Adders 
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• Types of carry propagate adders (CPAs): 

– Ripple-carry   (slow) 

– Carry-lookahead  (fast) 

– Prefix    (faster) – see book 

• Carry-lookahead and prefix adders faster for large adders 

but require more hardware 

            Symbol 

Multibit Adders (CPAs) 
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• Chain 1-bit adders together 

• Carry ripples through entire chain 

• Disadvantage: slow 

Ripple-Carry Adder 
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   tripple = NtFA 
   

     where tFA is the delay of a 1-bit full adder 

Ripple-Carry Adder Delay 



Chapter 5 <10>  

• Some definitions: 

– Column i produces a carry out by either generating a carry out 

or propagating a carry in to the carry out 

Carry-Lookahead Adder 
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• Some definitions: 

– Column i produces a carry out by either generating a carry out 

or propagating a carry in to the carry out 

– Generate (Gi) and propagate (Pi) signals for each column: 

• Generate: Column i will generate a carry out if Ai AND Bi are 

both 1.  

    Gi = Ai Bi 

Carry-Lookahead Adder 
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• Some definitions: 

– Column i produces a carry out by either generating a carry out 

or propagating a carry in to the carry out 

– Generate (Gi) and propagate (Pi) signals for each column: 

• Generate: Column i will generate a carry out if Ai AND Bi are 

both 1.  

    Gi = Ai Bi 

• Propagate: Column i will propagate a carry in to the carry out 

if Ai OR Bi is 1. 

    Pi = Ai  + Bi 

Carry-Lookahead Adder 
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• Some definitions: 

– Column i produces a carry out by either generating a carry out 

or propagating a carry in to the carry out 

– Generate (Gi) and propagate (Pi) signals for each column: 

• Generate: Column i will generate a carry out if Ai AND Bi are 

both 1.  

    Gi = Ai Bi 

• Propagate: Column i will propagate a carry in to the carry out 

if Ai OR Bi is 1. 

    Pi = Ai  + Bi 

• Carry out: The carry out of column i (Ci) is: 

     Ci = Gi  + Pi Ci-1 

 

Carry-Lookahead Adder 
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• Some definitions: 

– Column i produces a carry out by either generating a carry out 

or propagating a carry in to the carry out 

– Generate (Gi) and propagate (Pi) signals for each column: 

• Generate: Column i will generate a carry out if Ai AND Bi are 

both 1.  

    Gi = Ai Bi 

• Propagate: Column i will propagate a carry in to the carry out 

if Ai OR Bi is 1. 

    Pi = Ai  + Bi 

• Carry out: The carry out of column i (Ci) is: 

     Ci = Gi  + Pi Ci-1 = Ai Bi  + (Ai  + Bi )Ci-1 

 

Carry-Lookahead Adder 
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Compute carry out (Cout) for k-bit blocks using generate and 

propagate signals 

Carry-Lookahead Adder 



Chapter 5 <16>  

• Example: 4-bit blocks: 

Carry-Lookahead Adder 
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• Example: 4-bit blocks: 

Propagate: P3:0 = P3P2 P1P0 

• All columns must propagate 

Generate: G3:0 = G3 + P3 (G2 + P2 (G1 + P1G0 )) 

• Most significant bit generates or lower bit 

propagates a generated carry 

Carry-Lookahead Adder 
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• Example: 4-bit blocks: 

Propagate: P3:0 = P3P2 P1P0 

• All columns must propagate 

Generate: G3:0 = G3 + P3 (G2 + P2 (G1 + P1G0 )) 

• Most significant bit generates or lower bit 

propagates a generated carry 

• Generally, 

       Pi:j = PiPi-1 Pi-2Pj 

     Gi:j = Gi + Pi (Gi-1 + Pi-1 (Gi-2 + Pi-2Gj ) 

  Ci  = Gi:j  + Pi:j Cj-1 

Carry-Lookahead Adder 
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• Step 1: Compute Gi and Pi for all columns  

• Step 2: Compute G and P for k-bit blocks 

• Step 3: Cin propagates through each k-bit 

propagate/generate block 

Carry-Lookahead Addition 
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• Chain 1-bit adders together 

• Carry ripples through entire chain 

• Disadvantage: slow 

Ripple-Carry Adder 

tripple = NtFA 
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32-bit CLA with 4-bit Blocks 

tCLA = tpg + tpg_block + (N/k – 1)tAND_OR + ktFA 
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For N-bit CLA with k-bit blocks: 

   tCLA = tpg + tpg_block + (N/k – 1)tAND_OR + ktFA 

  

– tpg :  delay to generate all Pi, Gi 

– tpg_block : delay to generate all Pi:j, Gi:j 

– tAND_OR : delay from Cin to Cout of final AND/OR gate in k-bit CLA 

block 

 

An N-bit carry-lookahead adder is generally much faster than a 

ripple-carry adder for N  > 16 

 

Carry-Lookahead Adder Delay 
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Compare delay of 32-bit ripple-carry and 

carry-lookahead adders  
• CLA has 4-bit blocks 

• 2-input gate delay = 100 ps; full adder delay = 300 ps 

• Ripple 

• 𝑡𝑟𝑖𝑝𝑝𝑙𝑒 = 𝑁𝑡𝐹𝐴 = 32 300 = 9.6 ns 

• Carry-lookahead 

• 𝑡𝐶𝐿𝐴 = 𝑡𝑝𝑔 + 𝑡𝑝𝑔_𝑏𝑙𝑜𝑐𝑘 + 𝑁𝑘 − 1 𝑡𝐴𝑁𝐷_𝑂𝑅 + 𝑘 𝑡𝐹𝐴 

• 𝑡𝐶𝐿𝐴 = 100 + 600 + 7 200 + 4 300 = 3.3 ns  

Adder Delay Comparisons 

AND/OR 
6 Gates  
for 𝐺3:0 

3 Gates for  
𝐶𝑖𝑛 → 𝐶𝑜𝑢𝑡 
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Symbol Implementation
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Subtracter 
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Symbol Implementation
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Comparator: Equality 
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• Increments on each clock edge 

• Used to cycle through numbers. For example,  

– 000, 001, 010, 011, 100, 101, 110, 111, 000, 001… 

• Example uses: 

– Digital clock displays 

– Program counter: keeps track of current instruction executing 

Counters 
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• Increments on each clock edge 

• Used to cycle through numbers. For example,  

– 000, 001, 010, 011, 100, 101, 110, 111, 000, 001… 

• Example uses: 

– Digital clock displays 

– Program counter: keeps track of current instruction executing 

Counters 
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• Shift a new bit in on each clock edge 

• Shift a bit out on each clock edge 

• Serial-to-parallel converter: converts serial input (Sin) to 

parallel output (Q0:N-1) 

Shift Registers 

Symbol: 
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Implementation: 

• Shift a new bit in on each clock edge 

• Shift a bit out on each clock edge 

• Serial-to-parallel converter: converts serial input (Sin) to 

parallel output (Q0:N-1) 

Shift Registers 

Symbol: 


