Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu

CPE100: Digital Logic Design I

Midtermo1 Review

http://www.ee.unlv.edu/~b1morris/cpe100/

Logistics

- Thursday Oct. 5th
 - In normal lecture (13:00-14:15)
 - I hour and 15 minutes
- Chapters 1-2.6
- Closed book, closed notes
- No calculators
- Must show work and be legible for credit
- Boolean Axioms and Theorems will

Preparation

- Read the book (2nd Edition)
 Then, read it again
- Do example problems
 - Use both Harris and Roth books
- Be sure you understand homework solutions
- Come visit during office hours for questions

Chapter 1.2 Managing Complexity

- Abstraction hiding details that aren't important
- Digital discipline restricting design choices to digital logic for more simple design
- Hierarchy dividing a system into modules and further submodules for easier understanding
- Modularity modules have well-defined functions and interfaces for easy interconnection
- Regularity uniformity among modules for reuse

Chapter 1.3 Digital Abstraction

- Analog \rightarrow digital computing
- Information in a discrete variable
 D = log₂ N bits
- Introduction to binary variables
- Example1: Information in 9-state variable
 - $D = \log_2 9 = 3.1699$ bits
 - Note 3 bits can represent 8 values so requires just more than 3 bits

Chapter 1.4 - Number Systems

- Number representation
 - N-digit number $\{a_{N-1}a_{N-2} \dots a_1a_0\}$ of base *R* in decimal
 - $a_{N-1}R^{N-1} + a_{N-2}R^{N-2} + \dots + a_1R^1 + a_0R^0$
 - = $\sum_{i=0}^{N-1} a_i R^i$
 - Range of values
- Base 2, 10, 16, etc. conversion
 - Often from base R_0 to decimal to R_1
 - Two methods:
 - Repeatedly remove largest power of 2
 - Repeatedly divide by two

Number Examples

• Convert 10110₂ to decimal

• Convert 10110₂ to base 5

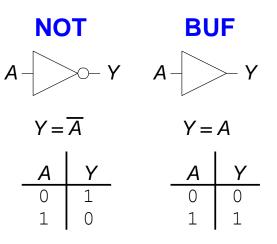
Convert 10110₂ to hex and octal

Chapter 1.4.5 - Binary Addition

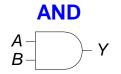
- Signed number representation
 Unsigned, two's complement, sign-magnitude
- Addition
 - Binary carries
 - Potential for overflow
- Subtraction
 - Find negative of number and add
- Zero/Sign extension

Example Binary Addition

- Assume 6-bit 2's complement and indicate if overflow occurs
- Add $13_{10} + 11_{10}$


• Add $-25_{10} + 18_{10}$

• Add $21_{10} + 11_{10}$


• Add -12 + 13

Chapter 1.5 - Logic Gates

• NOT, BUF

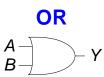
• AND, OR

В

0

1

0


1

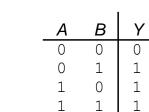
0

0

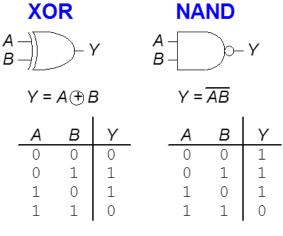
1

1

Y

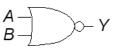

0

0


0

1

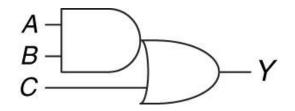
) –	1		
	Y = A	+	В



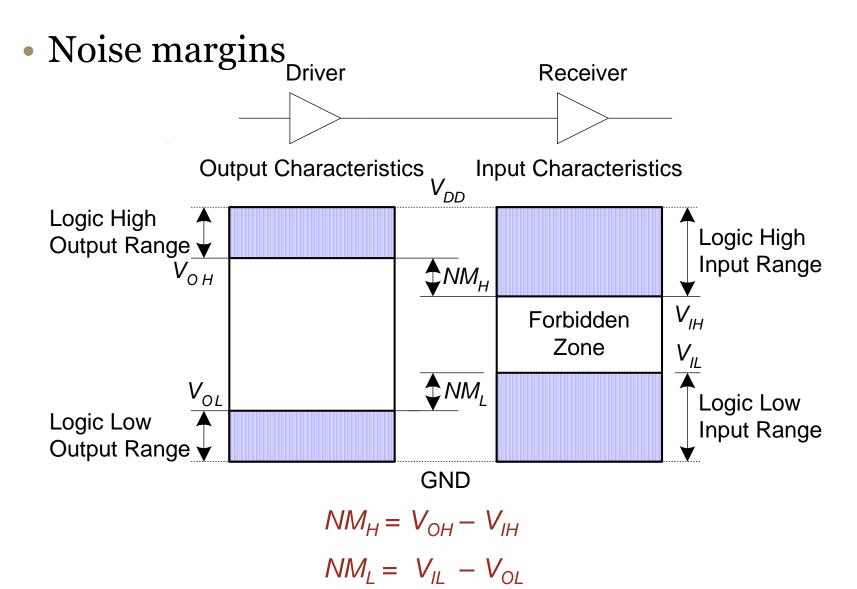
• XOR, NAND

• NOR, XNOR

XNOR

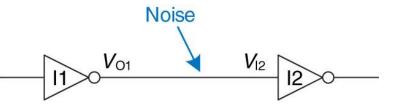

NOR

 $Y = \overline{A \oplus B}$


А	В	Y	Α	В	Y	
0	0	1	0	0	1	
0	1	0	0	1	0	
1	0	0	1	0	0	
1	0 1 0 1	0	1	0 1 0 1	1	

Example

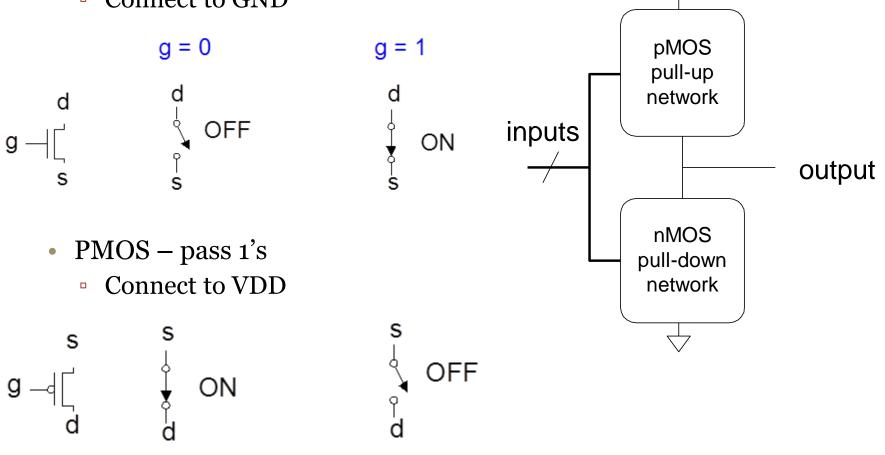
• Give truth table for logic gate



Chapter 1.6 Beneath Digital Abstraction

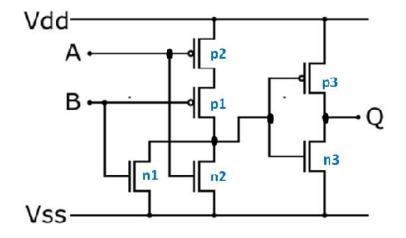
Example 1.18

• What is the inverter low and high noise margins



• $V_{DD} = 5, V_{IL} = 1.35, V_{IH} = 3.15, V_{OL} = 0.33, V_{OH} = 3.84$

Chapter 1.7 - Transistors


- Voltage controlled switch
- NMOS pass o's
 - Connect to GND

• CMOS logic gates

Example

• Give the truth table and function

Chapter 1.7 - Power Consumption

- Two types of power consumption
- Dynamic power required to charge gate capacitances (turn on/off transistor switches)

$$P_{dynamic} = \frac{1}{2}CV_{DD}^2f$$

Static – power consumed when no gates switching

$$P_{static} = I_{DD}V_{DD}$$

Chapter 2.2 - Boolean Equations

- Terms: variable/complement, literal, product/implicant
- Order of operations: NOT \rightarrow AND \rightarrow OR
- Sum-of-product (SOP) form
 Determined by minterms of truth table
- Product-of-sums (POS) form
 - Determined by maxterms of truth table

Chapter 2.3 - Boolean Algebra

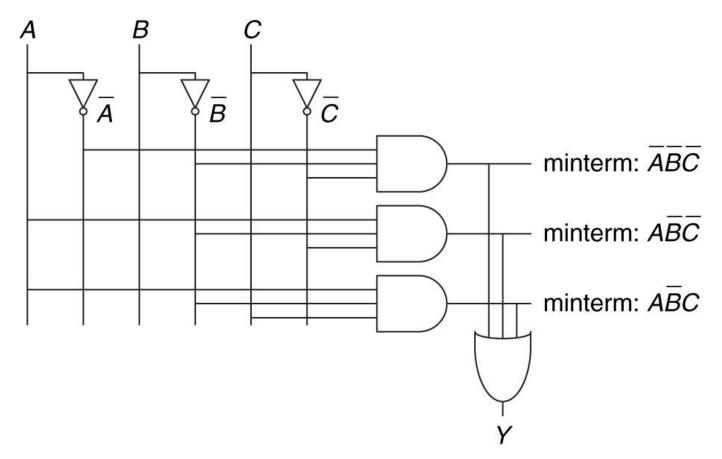
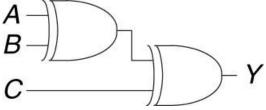
- Boolean algebra is very much like our normal algebra
- Need to know Boolean Axioms and Theorems
 Distributivity, covering, De Morgan's
- Proving equations
 - Perfect induction/proof by exhaustion show truth tables match
 - Simplification use theorems/axioms to show both sides of equation are equal

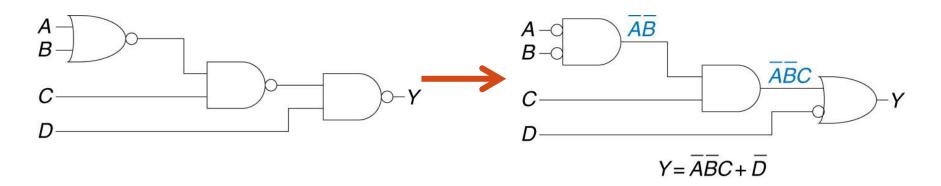
Chapter 2.3.5 - Simplifying Equations

• Practice, practice, practice

Chapter 2.4 - Logic to Gates

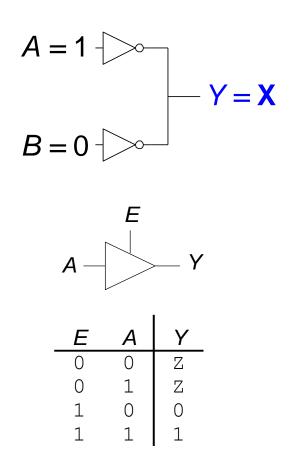
• Schematic diagram of digital circuit


Figure 2.23 Schematic of $Y = \overline{A} \overline{B} \overline{C} + A\overline{B} \overline{C} + A\overline{B}C$

Chapter 2.5 - Multilevel Combinational Logic

Convert gate level schematic into Boolean equation



Bubble pushing – application of De Morgan's in schematic

Chapter 2.6 - Real Circuit Issues

- Don't cares: X
 Truth table flexibility
- Contention: X
 Illegal output value
 - Output could be 1 or 0 in error
- Floating: Z
 - High impedance, high Z
 - Output between 0, 1 by design

