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Chapter 5 :: Topics

• Introduction

• Arithmetic Circuits

• Number Systems

• Sequential Building Blocks

• Memory Arrays

• Logic Arrays
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• Digital building blocks:
– Gates, multiplexers, decoders, registers, 

arithmetic circuits, counters, memory arrays, 
logic arrays

• Building blocks demonstrate hierarchy, 
modularity, and regularity:
– Hierarchy of simpler components

– Well-defined interfaces and functions

– Regular structure easily extends to different sizes

• You can use these building blocks to build 
a processor (see Chapter 7, CpE 300)

Introduction
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Review: 1-Bit Adders
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• Types of carry propagate adders (CPAs):

– Ripple-carry (slow)

– Carry-lookahead (fast)

– Prefix (faster) – see book

• Carry-lookahead and prefix adders faster for large adders 

but require more hardware

Symbol

Multibit Adders (CPAs)
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• Chain 1-bit adders together

• Carry ripples through entire chain

• Disadvantage: slow

Ripple-Carry Adder
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tripple = NtFA

where tFA is the delay of a 1-bit full adder

Ripple-Carry Adder Delay



Chapter 5 <10> 

• Some definitions:

– Column i produces a carry out by either generating a carry out 

or propagating a carry in to the carry out

Carry-Lookahead Adder
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• Some definitions:

– Column i produces a carry out by either generating a carry out 

or propagating a carry in to the carry out

– Generate (Gi) and propagate (Pi) signals for each column:

• Generate: Column i will generate a carry out if Ai AND Bi are 

both 1. 

Gi = Ai Bi

Carry-Lookahead Adder
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• Some definitions:

– Column i produces a carry out by either generating a carry out 

or propagating a carry in to the carry out

– Generate (Gi) and propagate (Pi) signals for each column:

• Generate: Column i will generate a carry out if Ai AND Bi are 

both 1. 

Gi = Ai Bi

• Propagate: Column i will propagate a carry in to the carry out 

if Ai OR Bi is 1.

Pi = Ai  + Bi

Carry-Lookahead Adder
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• Some definitions:

– Column i produces a carry out by either generating a carry out 

or propagating a carry in to the carry out

– Generate (Gi) and propagate (Pi) signals for each column:

• Generate: Column i will generate a carry out if Ai AND Bi are 

both 1. 

Gi = Ai Bi

• Propagate: Column i will propagate a carry in to the carry out 

if Ai OR Bi is 1.

Pi = Ai  + Bi

• Carry out: The carry out of column i (Ci) is:

Ci = Gi + Pi Ci-1

Carry-Lookahead Adder
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• Some definitions:

– Column i produces a carry out by either generating a carry out 

or propagating a carry in to the carry out

– Generate (Gi) and propagate (Pi) signals for each column:

• Generate: Column i will generate a carry out if Ai AND Bi are 

both 1. 

Gi = Ai Bi

• Propagate: Column i will propagate a carry in to the carry out 

if Ai OR Bi is 1.

Pi = Ai  + Bi

• Carry out: The carry out of column i (Ci) is:

Ci = Gi + Pi Ci-1 = Ai Bi + (Ai  + Bi )Ci-1

Carry-Lookahead Adder
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Compute carry out (Cout) for k-bit blocks using generate and 

propagate signals

Carry-Lookahead Adder
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• Example: 4-bit blocks:

Carry-Lookahead Adder
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• Example: 4-bit blocks:

Propagate: P3:0 = P3P2 P1P0

• All columns must propagate

Generate: G3:0 = G3 + P3 (G2 + P2 (G1 + P1G0 ))

• Most significant bit generates or lower bit 

propagates a generated carry

Carry-Lookahead Adder
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• Example: 4-bit blocks:

Propagate: P3:0 = P3P2 P1P0

• All columns must propagate

Generate: G3:0 = G3 + P3 (G2 + P2 (G1 + P1G0 ))

• Most significant bit generates or lower bit 

propagates a generated carry

• Generally,

Pi:j = PiPi-1 Pi-2Pj

Gi:j = Gi + Pi (Gi-1 + Pi-1 (Gi-2 + Pi-2Gj )

Ci = Gi:j + Pi:j Cj-1

Carry-Lookahead Adder



Chapter 5 <19> 

• Step 1: Compute Gi and Pi for all columns 

• Step 2: Compute G and P for k-bit blocks

• Step 3: Cin propagates through each k-bit 

propagate/generate block

Carry-Lookahead Addition
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• Chain 1-bit adders together

• Carry ripples through entire chain

• Disadvantage: slow

Ripple-Carry Adder

tripple = NtFA
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32-bit CLA with 4-bit Blocks

tCLA = tpg + tpg_block + (N/k – 1)tAND_OR + ktFA
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For N-bit CLA with k-bit blocks:

tCLA = tpg + tpg_block + (N/k – 1)tAND_OR + ktFA

– tpg : delay to generate all Pi, Gi

– tpg_block : delay to generate all Pi:j, Gi:j

– tAND_OR : delay from Cin to Cout of final AND/OR gate in k-bit CLA 

block

An N-bit carry-lookahead adder is generally much faster than a 

ripple-carry adder for N > 16

Carry-Lookahead Adder Delay
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Compare delay of 32-bit ripple-carry and 

carry-lookahead adders 
• CLA has 4-bit blocks

• 2-input gate delay = 100 ps; full adder delay = 300 ps

• Ripple

• 𝑡𝑟𝑖𝑝𝑝𝑙𝑒 = 𝑁𝑡𝐹𝐴 = 32 300 = 9.6 ns

• Carry-lookahead

• 𝑡𝐶𝐿𝐴 = 𝑡𝑝𝑔 + 𝑡𝑝𝑔_𝑏𝑙𝑜𝑐𝑘 + 𝑁/𝑘 − 1 𝑡𝐴𝑁𝐷_𝑂𝑅 + 𝑘 𝑡𝐹𝐴

• 𝑡𝐶𝐿𝐴 = 100 + 600 + 7 200 + 4 300 = 3.3 ns 

Adder Delay Comparisons

AND/OR
6 Gates 
for 𝐺3:0

3 Gates for 
𝐶𝑖𝑛 → 𝐶𝑜𝑢𝑡
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Symbol Implementation
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Symbol Implementation
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Symbol Implementation

• Increments on each clock edge

• Used to cycle through numbers. For example, 

– 000, 001, 010, 011, 100, 101, 110, 111, 000, 001…

• Example uses:

– Digital clock displays

– Program counter: keeps track of current instruction executing

Counters
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Symbol Implementation

• Increments on each clock edge

• Used to cycle through numbers. For example, 

– 000, 001, 010, 011, 100, 101, 110, 111, 000, 001…

• Example uses:

– Digital clock displays

– Program counter: keeps track of current instruction executing

Counters
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• Shift a new bit in on each clock edge

• Shift a bit out on each clock edge

• Serial-to-parallel converter: converts serial input (Sin) to 

parallel output (Q0:N-1)

Shift Registers

Symbol:
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Implementation:

• Shift a new bit in on each clock edge

• Shift a bit out on each clock edge

• Serial-to-parallel converter: converts serial input (Sin) to 

parallel output (Q0:N-1)

Shift Registers

Symbol:


