
Chapter 5 <1> 

Digital Design and Computer Architecture, 2nd Edition

Chapter 5

David Money Harris and Sarah L. Harris



Chapter 5 <2> 

Chapter 5 :: Topics

• Introduction

• Arithmetic Circuits

• Number Systems

• Sequential Building Blocks

• Memory Arrays

• Logic Arrays



Chapter 5 <3> 

• Digital building blocks:
– Gates, multiplexers, decoders, registers, 

arithmetic circuits, counters, memory arrays, 
logic arrays

• Building blocks demonstrate hierarchy, 
modularity, and regularity:
– Hierarchy of simpler components

– Well-defined interfaces and functions

– Regular structure easily extends to different sizes

• You can use these building blocks to build 
a processor (see Chapter 7, CpE 300)

Introduction



Chapter 5 <4> 

A B

0 0

0 1

1 0

1 1

SC
out

S      =

C
out

  =

Half

Adder

A B

S

C
out +

A B

0 0

0 1

1 0

1 1

SC
out

S     =

C
out

 =

Full

Adder

C
in

0 0

0 1

1 0

1 1

0

0

0

0

1

1

1

1

A B

S

C
out

C
in+

Review: 1-Bit Adders



Chapter 5 <5> 

A B

0 0

0 1

1 0

1 1

0

1

1

0

SC
out

0

0

0

1

S      =

C
out

  =

Half

Adder

A B

S

C
out +

A B

0 0

0 1

1 0

1 1

0

1

1

0

SC
out

0

0

0

1

S     =

C
out

 =

Full

Adder

C
in

0 0

0 1

1 0

1 1

0

0

0

0

1

1

1

1

1

0

0

1

0

1

1

1

A B

S

C
out

C
in+

Review: 1-Bit Adders



Chapter 5 <6> 

A B

0 0

0 1

1 0

1 1

0

1

1

0

SC
out

0

0

0

1

S      = A  B

C
out

  = AB

Half

Adder

A B

S

C
out +

A B

0 0

0 1

1 0

1 1

0

1

1

0

SC
out

0

0

0

1

S     = A  B C
in

C
out

 = AB + AC
in 

+ BC
in

Full

Adder

C
in

0 0

0 1

1 0

1 1

0

0

0

0

1

1

1

1

1

0

0

1

0

1

1

1

A B

S

C
out

C
in+

Review: 1-Bit Adders



Chapter 5 <7> 

A B

S

C
out

C
in+

N

NN

• Types of carry propagate adders (CPAs):

– Ripple-carry (slow)

– Carry-lookahead (fast)

– Prefix (faster) – see book

• Carry-lookahead and prefix adders faster for large adders 

but require more hardware

Symbol

Multibit Adders (CPAs)



Chapter 5 <8> 

S
31

A
30

B
30

S
30

A
1

B
1

S
1

A
0

B
0

S
0

C
30

C
29

C
1

C
0

C
out ++++

A
31

B
31

C
in

• Chain 1-bit adders together

• Carry ripples through entire chain

• Disadvantage: slow

Ripple-Carry Adder



Chapter 5 <9> 

tripple = NtFA

where tFA is the delay of a 1-bit full adder

Ripple-Carry Adder Delay



Chapter 5 <10> 

• Some definitions:

– Column i produces a carry out by either generating a carry out 

or propagating a carry in to the carry out

Carry-Lookahead Adder



Chapter 5 <11> 

• Some definitions:

– Column i produces a carry out by either generating a carry out 

or propagating a carry in to the carry out

– Generate (Gi) and propagate (Pi) signals for each column:

• Generate: Column i will generate a carry out if Ai AND Bi are 

both 1. 

Gi = Ai Bi

Carry-Lookahead Adder



Chapter 5 <12> 

• Some definitions:

– Column i produces a carry out by either generating a carry out 

or propagating a carry in to the carry out

– Generate (Gi) and propagate (Pi) signals for each column:

• Generate: Column i will generate a carry out if Ai AND Bi are 

both 1. 

Gi = Ai Bi

• Propagate: Column i will propagate a carry in to the carry out 

if Ai OR Bi is 1.

Pi = Ai  + Bi

Carry-Lookahead Adder



Chapter 5 <13> 

• Some definitions:

– Column i produces a carry out by either generating a carry out 

or propagating a carry in to the carry out

– Generate (Gi) and propagate (Pi) signals for each column:

• Generate: Column i will generate a carry out if Ai AND Bi are 

both 1. 

Gi = Ai Bi

• Propagate: Column i will propagate a carry in to the carry out 

if Ai OR Bi is 1.

Pi = Ai  + Bi

• Carry out: The carry out of column i (Ci) is:

Ci = Gi + Pi Ci-1

Carry-Lookahead Adder



Chapter 5 <14> 

• Some definitions:

– Column i produces a carry out by either generating a carry out 

or propagating a carry in to the carry out

– Generate (Gi) and propagate (Pi) signals for each column:

• Generate: Column i will generate a carry out if Ai AND Bi are 

both 1. 

Gi = Ai Bi

• Propagate: Column i will propagate a carry in to the carry out 

if Ai OR Bi is 1.

Pi = Ai  + Bi

• Carry out: The carry out of column i (Ci) is:

Ci = Gi + Pi Ci-1 = Ai Bi + (Ai  + Bi )Ci-1

Carry-Lookahead Adder



Chapter 5 <15> 

Compute carry out (Cout) for k-bit blocks using generate and 

propagate signals

Carry-Lookahead Adder



Chapter 5 <16> 

• Example: 4-bit blocks:

Carry-Lookahead Adder



Chapter 5 <17> 

• Example: 4-bit blocks:

Propagate: P3:0 = P3P2 P1P0

• All columns must propagate

Generate: G3:0 = G3 + P3 (G2 + P2 (G1 + P1G0 ))

• Most significant bit generates or lower bit 

propagates a generated carry

Carry-Lookahead Adder



Chapter 5 <18> 

• Example: 4-bit blocks:

Propagate: P3:0 = P3P2 P1P0

• All columns must propagate

Generate: G3:0 = G3 + P3 (G2 + P2 (G1 + P1G0 ))

• Most significant bit generates or lower bit 

propagates a generated carry

• Generally,

Pi:j = PiPi-1 Pi-2Pj

Gi:j = Gi + Pi (Gi-1 + Pi-1 (Gi-2 + Pi-2Gj )

Ci = Gi:j + Pi:j Cj-1

Carry-Lookahead Adder



Chapter 5 <19> 

• Step 1: Compute Gi and Pi for all columns 

• Step 2: Compute G and P for k-bit blocks

• Step 3: Cin propagates through each k-bit 

propagate/generate block

Carry-Lookahead Addition



Chapter 5 <20> 

S
31

A
30

B
30

S
30

A
1

B
1

S
1

A
0

B
0

S
0

C
30

C
29

C
1

C
0

C
out ++++

A
31

B
31

C
in

• Chain 1-bit adders together

• Carry ripples through entire chain

• Disadvantage: slow

Ripple-Carry Adder

tripple = NtFA



Chapter 5 <21> 

B
0

++++

P
3:0

G
3

P
3

G
2

P
2

G
1

P
1

G
0

P
3

P
2

P
1

P
0

G
3:0

C
in

C
out

A
0

S
0

C
0

B
1

A
1

S
1

C
1

B
2

A
2

S
2

C
2

B
3

A
3

S
3

C
in

A
3:0

B
3:0

S
3:0

4-bit CLA

Block
C

in

A
7:4

B
7:4

S
7:4

4-bit CLA

Block

C
3

C
7

A
27:24

B
27:24

S
27:24

4-bit CLA

Block

C
23

A
31:28

B
31:28

S
31:28

4-bit CLA

Block

C
27

C
out

32-bit CLA with 4-bit Blocks

tCLA = tpg + tpg_block + (N/k – 1)tAND_OR + ktFA



Chapter 5 <22> 

For N-bit CLA with k-bit blocks:

tCLA = tpg + tpg_block + (N/k – 1)tAND_OR + ktFA

– tpg : delay to generate all Pi, Gi

– tpg_block : delay to generate all Pi:j, Gi:j

– tAND_OR : delay from Cin to Cout of final AND/OR gate in k-bit CLA 

block

An N-bit carry-lookahead adder is generally much faster than a 

ripple-carry adder for N > 16

Carry-Lookahead Adder Delay



Chapter 5 <23> 

Compare delay of 32-bit ripple-carry and 

carry-lookahead adders 
• CLA has 4-bit blocks

• 2-input gate delay = 100 ps; full adder delay = 300 ps

• Ripple

• 𝑡𝑟𝑖𝑝𝑝𝑙𝑒 = 𝑁𝑡𝐹𝐴 = 32 300 = 9.6 ns

• Carry-lookahead

• 𝑡𝐶𝐿𝐴 = 𝑡𝑝𝑔 + 𝑡𝑝𝑔_𝑏𝑙𝑜𝑐𝑘 + 𝑁/𝑘 − 1 𝑡𝐴𝑁𝐷_𝑂𝑅 + 𝑘 𝑡𝐹𝐴

• 𝑡𝐶𝐿𝐴 = 100 + 600 + 7 200 + 4 300 = 3.3 ns 

Adder Delay Comparisons

AND/OR
6 Gates 
for 𝐺3:0

3 Gates for 
𝐶𝑖𝑛 → 𝐶𝑜𝑢𝑡



Chapter 5 <24> 

Symbol Implementation

+

A B

-

Y
Y

A B

NN

N

N N

N

N

Subtracter



Chapter 5 <25> 

Symbol Implementation

A
3

B
3

A
2

B
2

A
1

B
1

A
0

B
0

Equal=

A B

Equal

44

Comparator: Equality



Chapter 5 <26> 

Q

CLK

Reset

N

+
N

1

CLK

Reset

N

N

Q
N

r

Symbol Implementation

• Increments on each clock edge

• Used to cycle through numbers. For example, 

– 000, 001, 010, 011, 100, 101, 110, 111, 000, 001…

• Example uses:

– Digital clock displays

– Program counter: keeps track of current instruction executing

Counters



Chapter 5 <27> 

Q

CLK

Reset

N

+
N

1

CLK

Reset

N

N

Q
N

r

Symbol Implementation

• Increments on each clock edge

• Used to cycle through numbers. For example, 

– 000, 001, 010, 011, 100, 101, 110, 111, 000, 001…

• Example uses:

– Digital clock displays

– Program counter: keeps track of current instruction executing

Counters



Chapter 5 <28> 

N
Q

S
in

S
out

• Shift a new bit in on each clock edge

• Shift a bit out on each clock edge

• Serial-to-parallel converter: converts serial input (Sin) to 

parallel output (Q0:N-1)

Shift Registers

Symbol:



Chapter 5 <29> 

N
Q

S
in

S
out

CLK

S
in

S
out

Q
0

Q
1

Q
N-1

Q
2

Implementation:

• Shift a new bit in on each clock edge

• Shift a bit out on each clock edge

• Serial-to-parallel converter: converts serial input (Sin) to 

parallel output (Q0:N-1)

Shift Registers

Symbol:


