Chapter 3

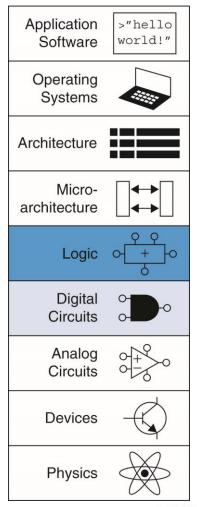
Professor Brendan Morris, SEB 3216, <u>brendan.morris@unlv.edu</u> http://www.ee.unlv.edu/~b1morris/cpe100/

CPE100: Digital Logic Design I

Section 1004: Dr. Morris Sequential Logic Design

Chapter 3 :: Topics

- Introduction
- Latches and Flip-Flops
- Synchronous Logic Design
- Finite State Machines
- Timing of Sequential Logic
- Parallelism



Introduction

- Previously, Combinational Logic design had outputs only depend on current value of inputs
- Outputs of sequential logic depend on current and prior input values – it has *memory*.
- Some definitions:
 - State: all the information about a circuit necessary to explain its future behavior
 - Latches and flip-flops: state elements that store one bit of state
 - Synchronous sequential circuits: combinational logic followed by a bank of flip-flops

Sequential Circuits

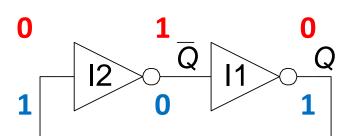
- Give sequence to events (i.e. a notion of time)
- Have memory (short-term)
- Use feedback from output to input to store information
 - Need to "remember" past output

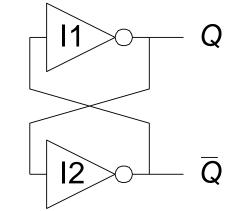
State Elements

- The state of a circuit influences its future behavior
- State elements store state
 - Bistable circuit
 - SR Latch
 - D Latch
 - D Flip-flop

Bistable Circuit

- Fundamental building block of other state elements
- Two outputs: Q, \overline{Q} (state)
- No inputs

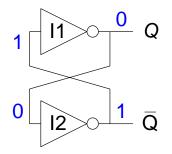




Redrawn circuit to emphasize symmetry

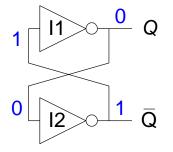
Bistable Circuit Analysis

- Consider the two possible cases:
 - Q = 0: then $\overline{Q} = 1$, Q = 0 (consistent)

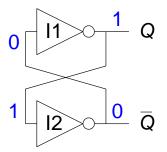


Bistable Circuit Analysis

- Consider the two possible cases:
 - Q = 0: then $\overline{Q} = 1$, Q = 0 (consistent)



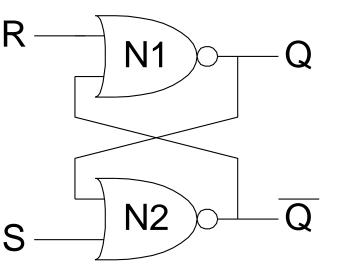
• Q = 1: then $\overline{Q} = 0$, Q = 1 (consistent)



- Stores 1 bit of state in the state variable, Q (or \overline{Q})
- But there are **no inputs to control the state**

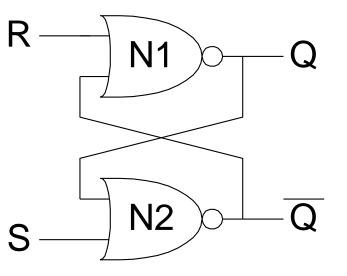
SR (Set/Reset) Latch

- SR Latch
 - S set Q=1
 - R reset Q = 0



SR (Set/Reset) Latch

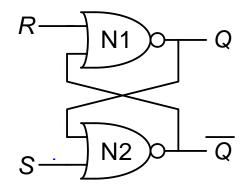
• SR Latch



- Consider the four possible cases:
 - S = 1, R = 0
 - S = 0, R = 1
 - S = 0, R = 0
 - S = 1, R = 1

• S = 1, R = 0:

then Q = 1 and $\overline{Q} = 0$

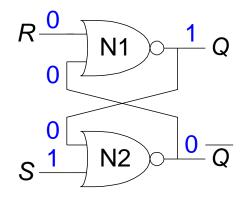


© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 3 <11>

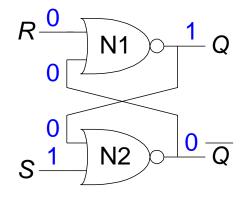
• S = 1, R = 0:

then Q = 1 and $\overline{Q} = 0$

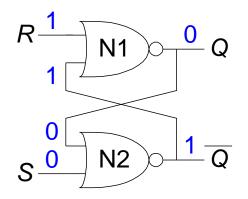


S = 1, *R* = 0:

then
$$Q = 1$$
 and $\overline{Q} = 0$



•
$$S = 0, R = 1$$
:
then $Q = 0$ and $\overline{Q} = 1$

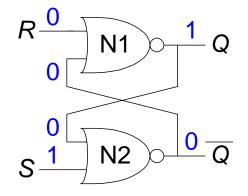


© *Digital Design and Computer Architecture*, 2nd Edition, 2012

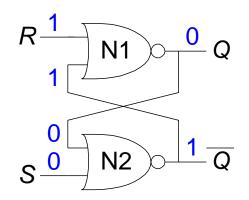
Chapter 3 <13>

• S = 1, R = 0:

- then Q = 1 and $\overline{Q} = 0$
- Set the output

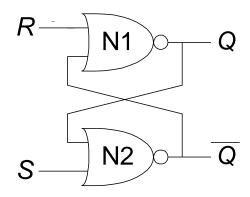


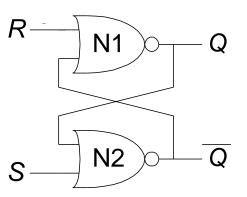
• S = 0, R = 1: then Q = 0 and $\overline{Q} = 1$ *Reset* the output



S = 0, R = 0:

then
$$Q = Q_{prev}$$





S = 0, R = 0: $Q_{prev} = 0$ $Q_{prev} = 1$ then $Q = Q_{prev}$ R____ R^{-0} ____Q N1 N1 Q - **Q** s<u> </u> s____ N2 N2 Q

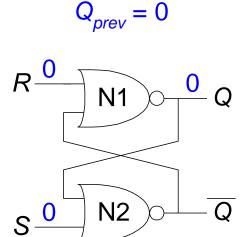
S = 0, R = 0: $Q_{prev} = 0$ $Q_{prev} = 1$ R____ R^{-0} then $Q = Q_{prev}$ ____Q N1 Q N1 $-\overline{Q}$ <u>s</u>_0 S_0 N2 N2 Q *S* = 1, *R* = 1: R^{\cdot} **N1** Q then Q = 0, Q = 0Q N2 S

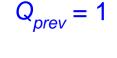
S = 0, R = 0: $Q_{prev} = 0$ $Q_{prev} = 1$ R<mark>_0</mark> R^{-0} then $Q = Q_{prev}$ ____Q N1 N1 Q $-\overline{Q}$ <u>s</u>_0 S_0 N2 N2 \overline{O} *S* = 1, *R* = 1: R^{-} <mark>0</mark> Q N1 0 then Q = 0, Q = 0<u>0</u>_Q N2 S.

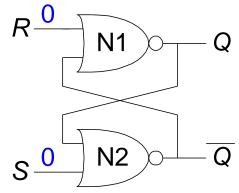
© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 3 <18>

- S = 0, R = 0:
- then $Q = Q_{prev}$ Memory!







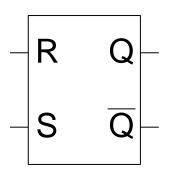
•
$$S = 1, R = 1$$
:
then $Q = 0, \overline{Q} = 0$
Invalid State
 $\overline{Q} \neq \text{NOT } Q$

SR Latch Symbol

- SR stands for Set/Reset Latch
 - Stores one bit of state (Q)
- Control what value is being stored with *S*, *R* inputs
 - Set: Make the output 1

$$(S = 1, R = 0, Q = 1)$$

- **Reset:** Make the output 0
 - (S = 0, R = 1, Q = 0)



D Latch

- Two inputs: *CLK*, *D*
 - *CLK*: controls *when* the output changes
 - **D** (the data input): controls *what* the output changes to
- Function
 - When CLK = 1,
 - *D* passes through to *Q* (*transparent*)
 - When CLK = 0,
 - Q holds its previous value (opaque)
- Avoids invalid case when $Q \neq \text{NOT } \overline{Q}$

 $\ensuremath{\mathbb{C}}$ Digital Design and Computer Architecture, 2^{nd} Edition, 2012

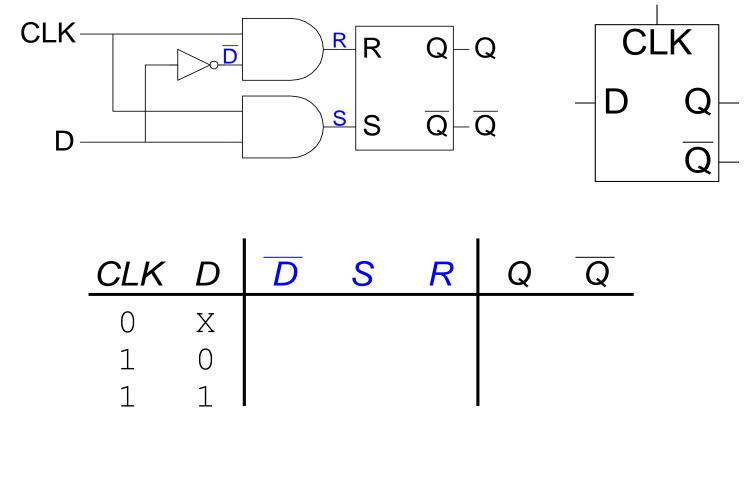
D Latch

Symbol

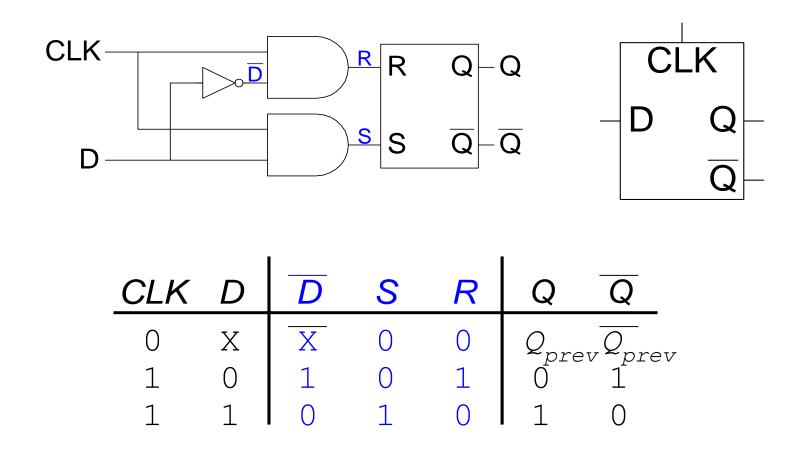
CLK

D

D Latch Internal Circuit



D Latch Internal Circuit

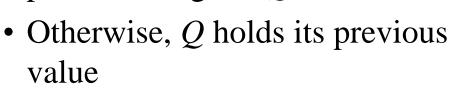


© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 3 <23>

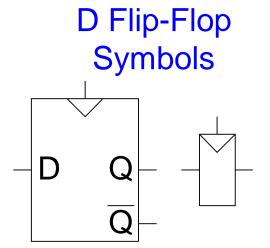
D Flip-Flop

- Inputs: CLK, D
- Function
 - Samples D on rising edge of CLK
 - When *CLK* rises from 0 to 1, *D* passes through to *Q*



- *Q* changes only on rising edge of *CLK*
- Called *edge-triggered*
- Activated on the clock edge

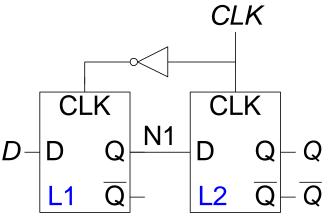
© Digital Design and Computer Architecture, 2nd Edition, 2012



Chapter 3 <24>

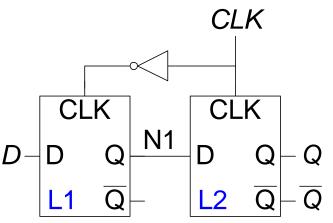
D Flip-Flop Internal Circuit

- Two back-to-back latches (L1 and L2) controlled by complementary clocks
- When CLK = 0
 - L1 is transparent
 - L2 is opaque
 - D passes through to N1



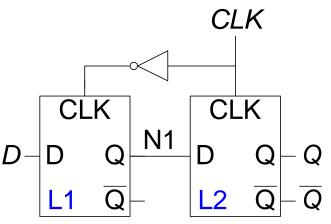
D Flip-Flop Internal Circuit

- Two back-to-back latches (L1 and L2) controlled by complementary clocks
- When CLK = 0
 - L1 is transparent
 - L2 is opaque
 - D passes through to N1
- When CLK = 1
 - L2 is transparent
 - L1 is opaque
 - N1 passes through to Q

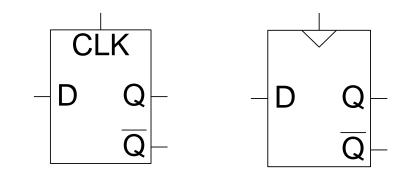


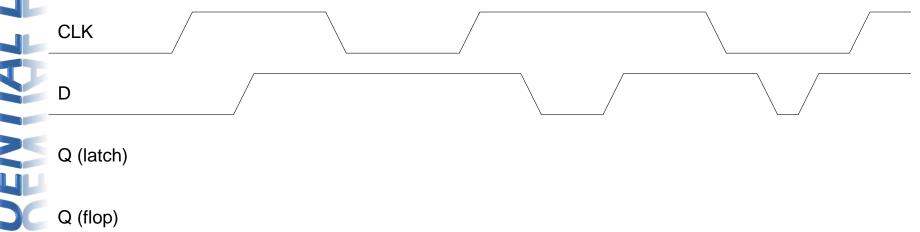
D Flip-Flop Internal Circuit

- Two back-to-back latches (L1 and L2) controlled by complementary clocks
- When CLK = 0
 - L1 is transparent
 - L2 is opaque
 - D passes through to N1
- When CLK = 1
 - L2 is transparent
 - L1 is opaque
 - N1 passes through to Q
- Thus, on the edge of the clock (when *CLK* rises from $0 \rightarrow 1$)
 - D passes through to Q



D Latch vs. D Flip-Flop

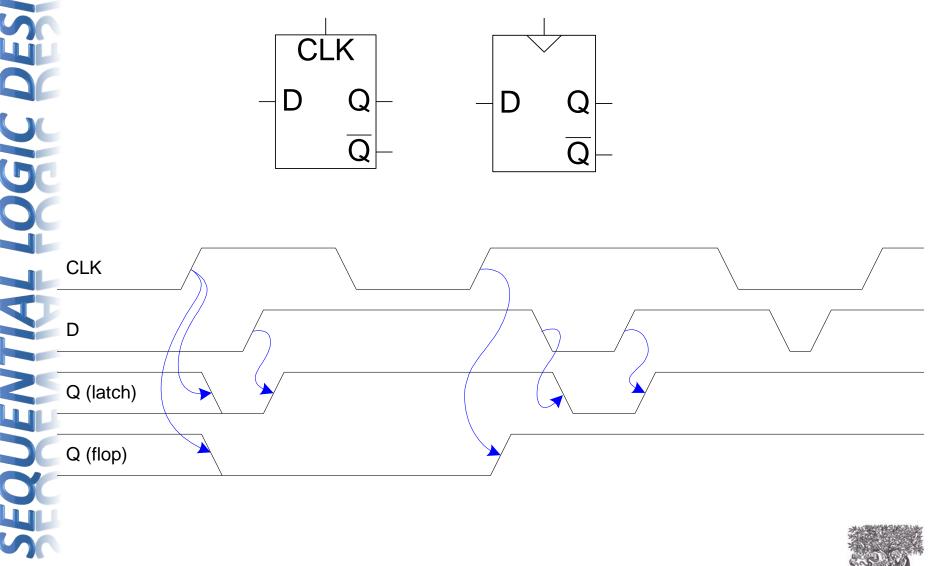




© Digital Design and Computer Architecture, 2nd Edition, 2012

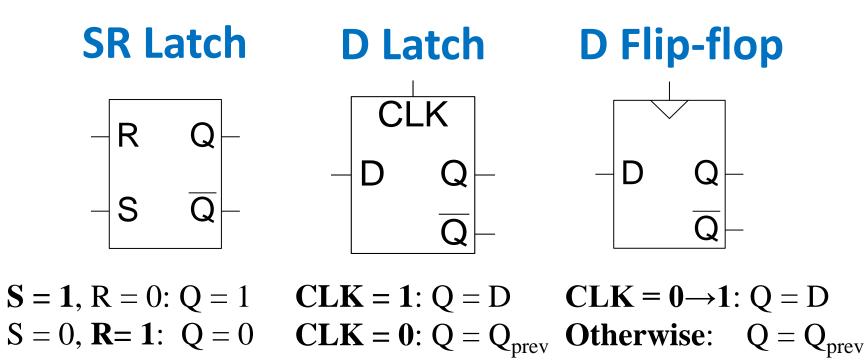
Chapter 3 <28>

D Latch vs. D Flip-Flop



ELSEVI

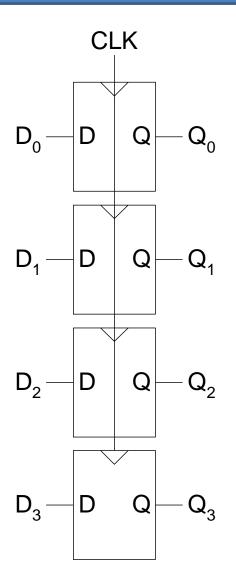
Review

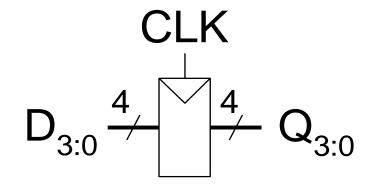


© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 3 < 30>

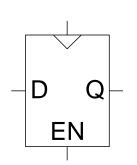
Registers





Enabled Flip-Flops

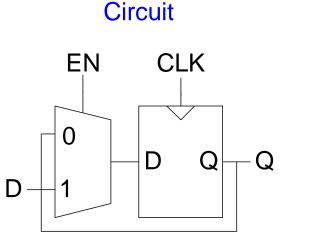
- Inputs: CLK, D, EN
 - The enable input (EN) controls when new data (D) is stored
- Function
 - EN = 1: D passes through to Q on the clock edge
 - EN = 0: the flip-flop retains its previous state



Symbol

Enabled Flip-Flops

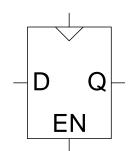
- Inputs: CLK, D, EN
 - The enable input (EN) controls when new data (D) is stored
- Function
 - EN = 1: D passes through to Q on the clock edge
 - EN = 0: the flip-flop retains its previous state



Internal

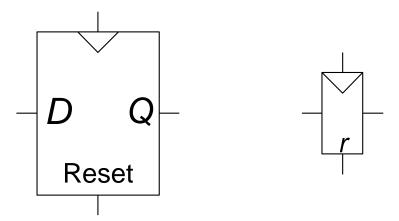
 $\ensuremath{\mathbb{C}}$ Digital Design and Computer Architecture, 2^{nd} Edition, 2012

Symbol



Resettable Flip-Flops

- Inputs: CLK, D, Reset
- Function:
 - **Reset** = 1: Q is forced to 0
 - *Reset* = 0: flip-flop behaves as ordinary D flip-flop

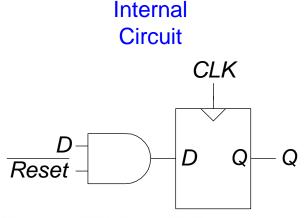


Resettable Flip-Flops

- Two types:
 - Synchronous: resets at the clock edge only
 - **Asynchronous:** resets immediately when *Reset* = 1
- Asynchronously resettable flip-flop requires changing the internal circuitry of the flip-flop
- Synchronously resettable flip-flop?

Resettable Flip-Flops

- Two types:
 - Synchronous: resets at the clock edge only
 - **Asynchronous:** resets immediately when *Reset* = 1
- Asynchronously resettable flip-flop requires changing the internal circuitry of the flip-flop
- Synchronously resettable flip-flop?



Chapter 3 <36>

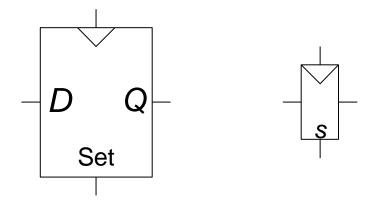
Settable Flip-Flops

Inputs: CLK, D, Set

• Function:

- **Set** = 1: Q is set to 1
- *Set* = 0: the flip-flop behaves as ordinary D flip-flop

Symbols



Synchronous Sequential Logic Design

- Registers inserted between combinational logic
- Registers contain state of the system
- State changes at clock edge: system synchronized to the clock

Synchronous Sequential Logic Design

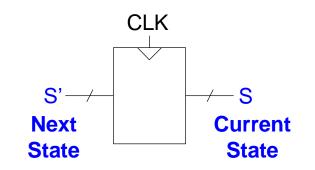
- **Rules** of synchronous sequential circuit composition:
 - Every circuit element is either a register or a combinational circuit
 - At least one circuit element is a register
 - All registers receive the same clock signal
 - Every cyclic path contains at least one register

Synchronous Sequential Logic Design

- **Rules** of synchronous sequential circuit composition:
 - Every circuit element is either a register or a combinational circuit
 - At least one circuit element is a register
 - All registers receive the same clock signal
 - Every cyclic path contains at least one register
- Two common synchronous sequential circuits
 - Finite State Machines (FSMs)
 - Pipelines

Finite State Machine (FSM)

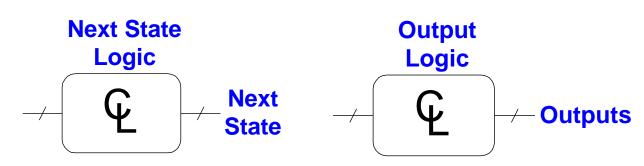
- Consists of:
 - -State register
 - Stores current state



• Loads next state at clock edge

- Combinational logic

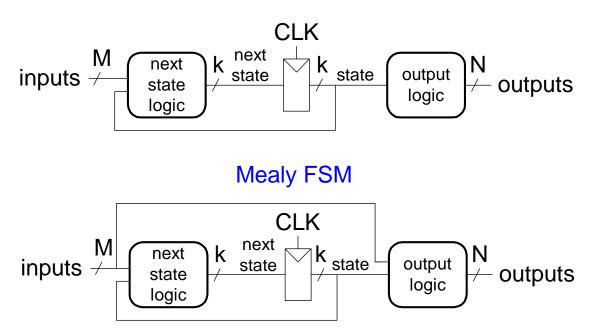
- Computes the next state
- Computes the outputs



Finite State Machines (FSMs)

- Next state determined by current state and inputs
- Two types of finite state machines differ in output logic:
 - Moore FSM: outputs depend only on current state
 - Mealy FSM: outputs depend on current state *and* inputs

Moore FSM



ELSEVIER

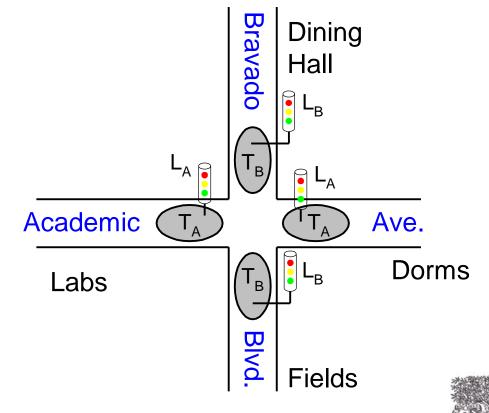
 $\ensuremath{\mathbb{C}}$ Digital Design and Computer Architecture, 2^{nd} Edition, 2012

- . Identify inputs and outputs
- 2. Sketch state transition diagram
 - . Write state transition table
 - . Select state encodings
 - . Rewrite state transition table with state encodings
- 5. Write output table
 - Write Boolean equations for next state and output logic
- S. Sketch the circuit schematic

FSM Example

- Lights: L_A, L_B

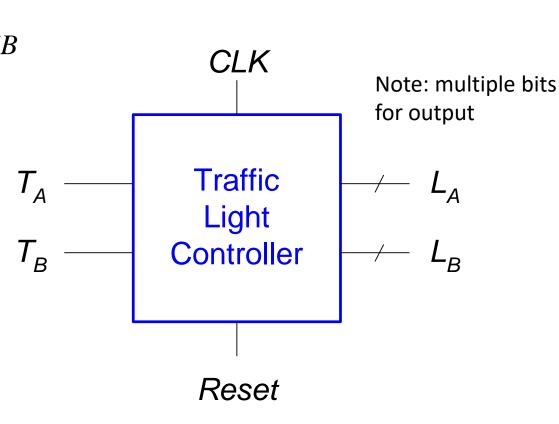
- Traffic light controller
 - Traffic sensors: T_A , T_B (TRUE when there's traffic)



- . Identify inputs and outputs
- 2. Sketch state transition diagram
 - Write state transition table
- . Select state encodings
- . Rewrite state transition table with state encodings
- 5. Write output table
 - Write Boolean equations for next state and output logic
- S. Sketch the circuit schematic

FSM Black Box

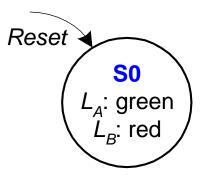
- Inputs: *CLK*, *Reset*, T_A , T_B
- Outputs: L_A , L_B

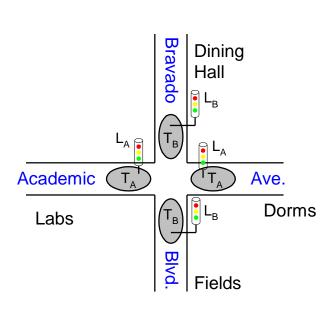


- . Identify inputs and outputs
- 2. Sketch state transition diagram
 - Write state transition table
 - . Select state encodings
 - . Rewrite state transition table with state encodings
- 5. Write output table
 - Write Boolean equations for next state and output logic
- . Sketch the circuit schematic

FSM State Transition Diagram

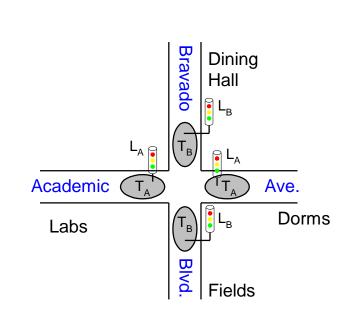
- Moore FSM: outputs labeled in each state
- States: Circles
- Transitions: Arcs

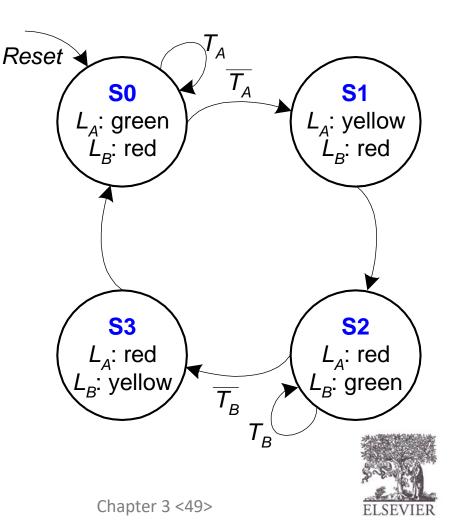




FSM State Transition Diagram

- Moore FSM: outputs labeled in each state
- States: Circles
- Transitions: Arcs

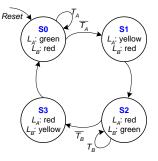




- . Identify inputs and outputs
- 2. Sketch state transition diagram
- . Write state transition table
- Select state encodings
- . Rewrite state transition table with state encodings
- 5. Write output table
 - Write Boolean equations for next state and output logic
- . Sketch the circuit schematic

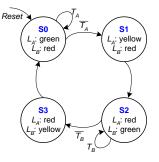
FSM State Transition Table

Current State	Inp	Next State	
S	T_A	T_B	S'
SO	0	Х	
S 0	1	X	
S 1	Х	X	
S2	Х	0	
S2	Х	1	
S 3	Х	X	



FSM State Transition Table

Current State	Inp	Next State	
S	T_A	T_B	S'
S 0	0	X	S 1
S0	1	X	S 0
S 1	Х	X	S2
S2	Х	0	S 3
S2	Х	1	S2
S 3	Х	X	S 0



- . Identify inputs and outputs
- 2. Sketch state transition diagram
 - Write state transition table
 - Select state encodings
 - Rewrite state transition table with state encodings
- 5. Write output table
- 7. Write Boolean equations for next state and output logic
- S. Sketch the circuit schematic

FSM Encoded State Transition Table

Y	Current State		ent State Inputs		Next State			
	S_1	S ₀	T_A	T_B	<i>S</i> ′ ₁	<i>S</i> ′ ₀		Sta
	0	0	0	X				
C	0	0	1	X				S
	0	1	X	X				S
	1	0	X	0				Sź
	1	0	X	1				S.
	1	1	X	X			T	wo b
C							-	F

State	Encoding
S 0	00
S 1	01
S 2	10
S 3	11

Two bits required for 4 states

Reset S0 L_{a} ; green T_{A} S1 L_{b} ; vellow L_{b} ; red $L_{$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 3 <54>

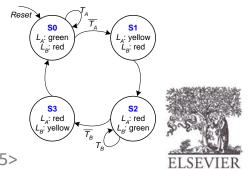
FSM Encoded State Transition Table

Curren	Current State		Inputs		Next State	
<i>S</i> ₁	S ₀	T_A	T_B	<i>S</i> ′ ₁	<i>S</i> ′ ₀	Sta
0	0	0	X	0	1	
0	0	1	X	0	0	
0	1	Х	X	1	0	S
1	0	Х	0	1	1	S
1	0	X	1	1	0	S
1	1	X	X	0	0	Two b
$S'_{\cdot} - S_{\cdot} \oplus S_{\cdot}$						
	$S'_{1} = S_{1} \oplus S_{0}$ $S'_{0} = \overline{S_{1}} \overline{S_{0}} \overline{T_{A}} + S_{1} \overline{S_{0}} \overline{T_{B}}$					

© Digital Design and	Computer Architecture,	2 nd Edition, 2012
----------------------	------------------------	-------------------------------

State	Encoding
S 0	00
S 1	01
S 2	10
S 3	11

Two bits required for 4 states



Chapter 3 <55>

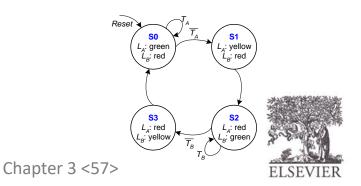
- . Identify inputs and outputs
- 2. Sketch state transition diagram
 - Write state transition table
 - Select state encodings
 - . Rewrite state transition table with state encodings
- . Write output table
- Write Boolean equations for next state and output logic
- Sketch the circuit schematic

FSM Output Table

Current State		Outputs			
<i>S</i> ₁	S ₀	L_{A1}	L_{A0}	L_{B1}	L_{B0}
0	0				
0	1				
1	0				
1	1				

Output	Encoding
green	00
yellow	01
red	10

Two bits required for 3 outputs



FSM Output Table

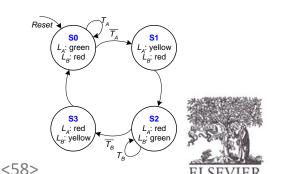
Current State						
S_1	S ₀	L_{A1}	L_{A0}	L_{B1}	L_{B0}	
0	0	0	0	1	0	
0	1	0	1	1	0	
1	0	1	0	0	0	
1	1	1	0	0	1	
$L_{A1} = S_1$						
	$L_{A1} = S_1$ $L_{A0} = \overline{S_1}S_0$					

 $L_{B1} = S_1$

 $L_{B0} = S_1 S_0$

Output	Encoding
green	00
yellow	01
red	10

Two bits required for 3 outputs

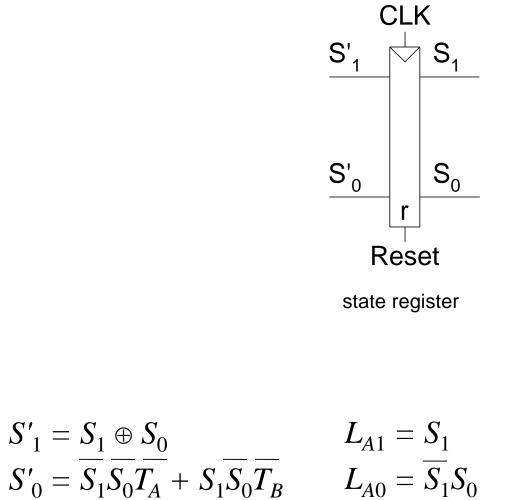


© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 3 <58>

- . Identify inputs and outputs
- 2. Sketch state transition diagram
 - Write state transition table
 - . Select state encodings
 - . Rewrite state transition table with state encodings
- 5. Write output table
 - Write Boolean equations for next state and output logic
- . Sketch the circuit schematic

FSM Schematic: State Register



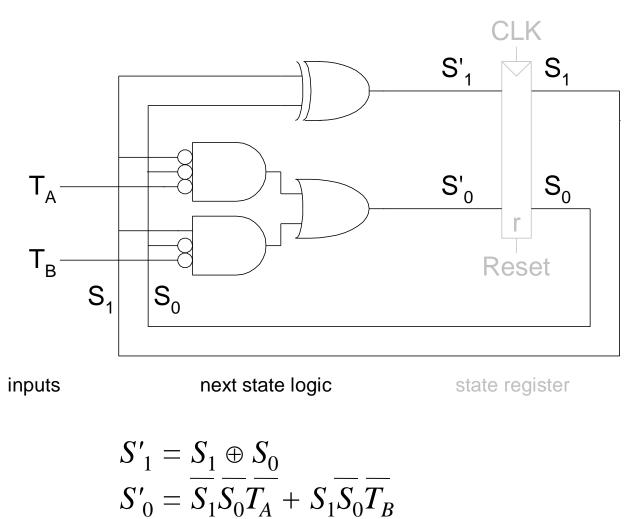
$$L_{A1} = S_1$$
$$L_{A0} = \overline{S_1}S_0$$

$$L_{B1} = \overline{S_1}$$
$$L_{B0} = S_1 S_0$$

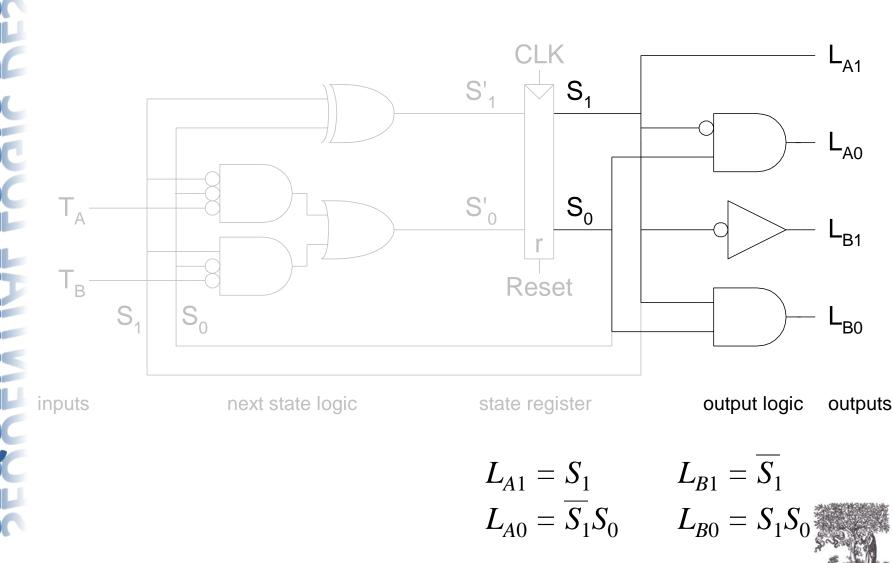
© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 3 <60>

FSM Schematic: Next State Logic



FSM Schematic: Output Logic

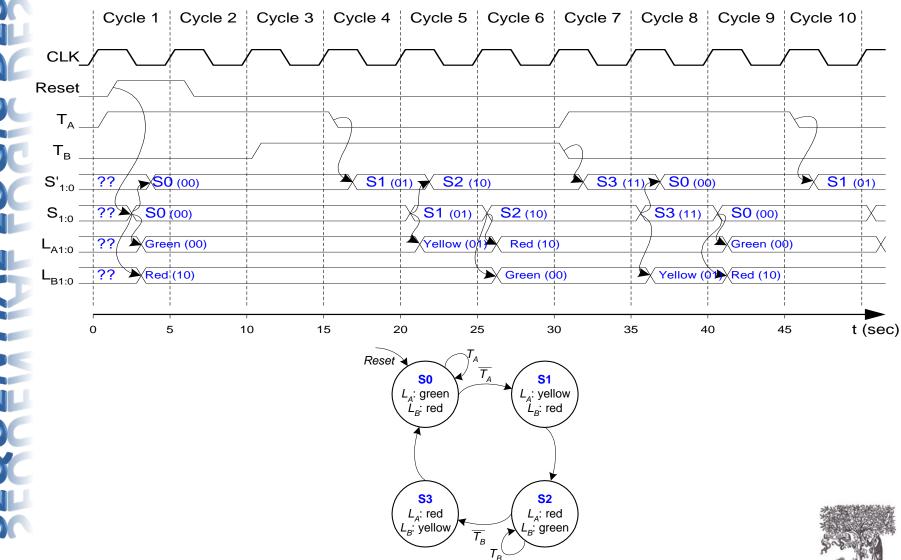


© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 3 <62>

ELSEVIER

FSM Timing Diagram



© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 3 <63>

ELSEVIER

FSM State Encoding

- **Binary** encoding:
 - i.e., for four states, 00, 01, 10, 11
- One-hot encoding
 - One state bit per state
 - Only one state bit HIGH at once
 - i.e., for 4 states, 0001, 0010, 0100, 1000
 - Requires more flip-flops
 - Often next state and output logic is simpler

- . Identify inputs and outputs
- 2. Sketch state transition diagram
 - . Write state transition table
 - . Select state encodings
 - . Rewrite state transition table with state encodings
- 5. Write output table
 - Write Boolean equations for next state and output logic
- S. Sketch the circuit schematic

FSM Problems

- 1. Design a circuit to detect 3 or more 1's in a row in a bit stream
- 2. Vending machine: Release an item after receiving 15 cents
 - Single coin slot but tells if you put in dime or nickel
 - No change given

- 1. Identify inputs and outputs
- 2. Sketch state transition diagram
- 3. Write state transition table
- 4. Select state encodings
- 5. Rewrite state transition table with state encodings

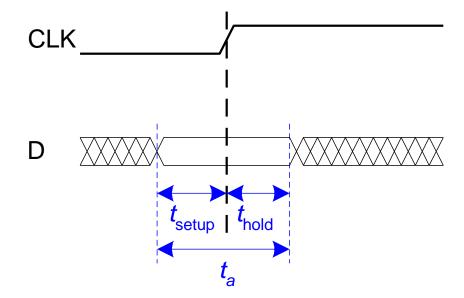
- 6. Write output table
- 7. Write Boolean equations for next state and output logic
- 8. Sketch the circuit schematic

Timing

- Flip-flop samples *D* at clock edge
- *D* must be stable when sampled
 - Similar to a photograph, *D* must be stable around clock edge
 - Moving right before or after shutter click results in blurry photo
- If not, metastability can occur

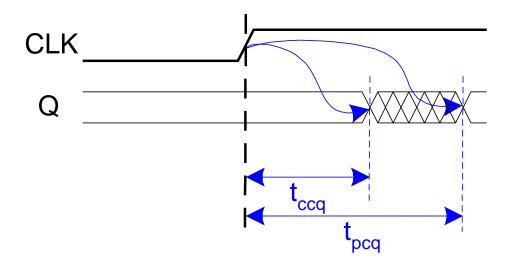
Input Timing Constraints

- Setup time: t_{setup} = time *before* clock edge data must be stable (i.e. not changing)
- Hold time: t_{hold} = time *after* clock edge data must be stable
- Aperture time: t_a = time *around* clock edge data must be stable ($t_a = t_{setup} + t_{hold}$)



Output Timing Constraints

- **Propagation delay:** t_{pcq} = time after clock edge that the output Q is guaranteed to be stable (i.e., to stop changing)
- Contamination delay: t_{ccq} = time after clock edge that Q might be unstable (i.e., start changing)

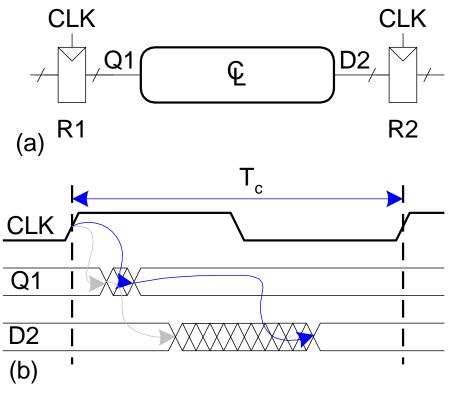


Dynamic Discipline

- Synchronous sequential circuit inputs must be stable during aperture (setup and hold) time around clock edge
 - Specifically, inputs must be stable:
 - at least t_{setup} before the clock edge
 - at least until t_{hold} after the clock edge
- Previously, static discipline:
 - With logically valid inputs, every circuit element must produce logically valid outputs

Dynamic Discipline

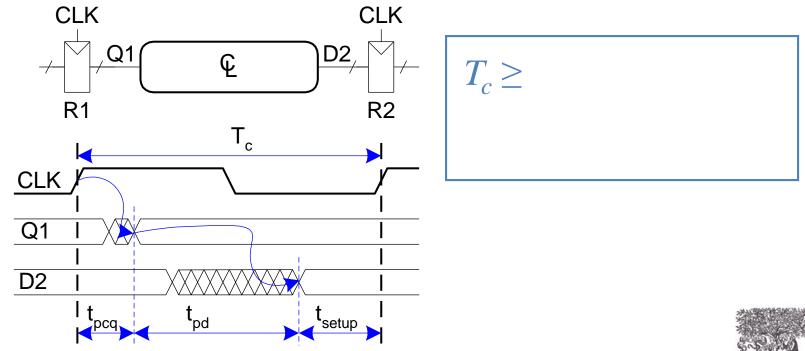
 The delay between registers has a minimum and maximum delay, dependent on the delays of the circuit elements



ELSEVIER

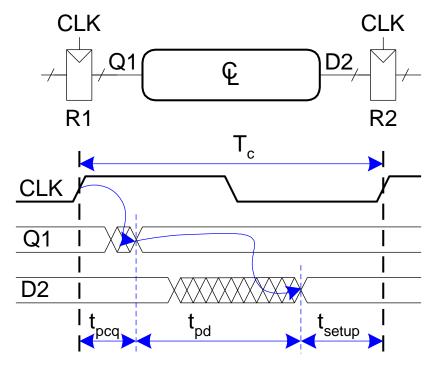
Setup Time Constraint

- Depends on the maximum delay from register R1 through combinational logic to R2
- The input to register R2 must be stable at least t_{setup} before clock edge



Setup Time Constraint

- Depends on the maximum delay from register R1 through combinational logic to R2
- The input to register R2 must be stable at least t_{setup} before clock edge

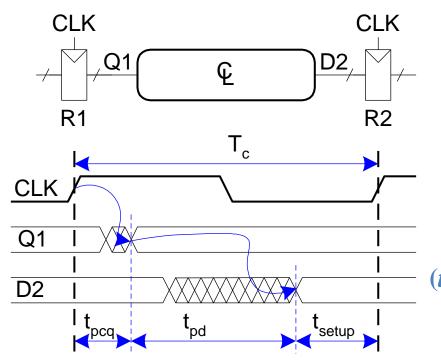


 $T_c \ge t_{pcq} + t_{pd} + t_{setup}$ $t_{pd} \leq$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Setup Time Constraint

- Depends on the maximum delay from register R1 through combinational logic to R2
- The input to register R2 must be stable at least t_{setup} before clock edge



 $T_c \ge t_{pcq} + t_{pd} + t_{setup}$ $t_{pd} \leq T_c - (t_{pca} + t_{setup})$

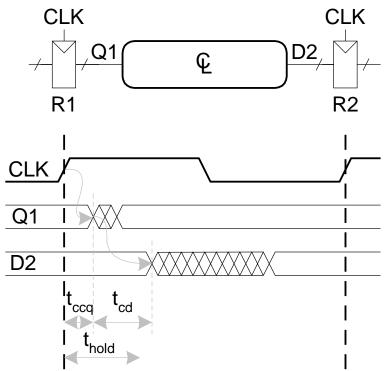
 $(t_{pcq} + t_{setup})$: sequencing overhead

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 3 <74>

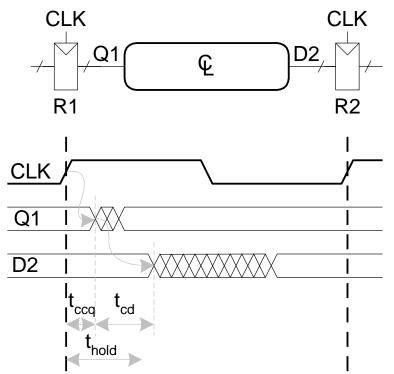
Hold Time Constraint

- Depends on the minimum delay from register R1 through the combinational logic to R2
- The input to register R2 must be stable for at least t_{hold} after the clock edge



Hold Time Constraint

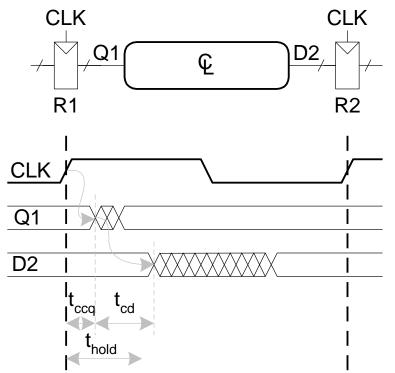
- Depends on the minimum delay from register R1 through the combinational logic to R2
- The input to register R2 must be stable for at least t_{hold} after the clock edge



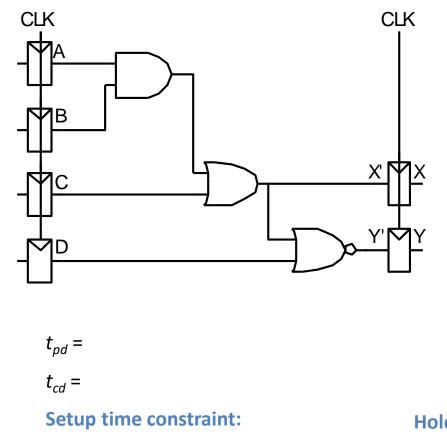
 $t_{\text{hold}} < t_{ccq} + t_{cd}$ $t_{cd} >$

Hold Time Constraint

- Depends on the minimum delay from register R1 through the combinational logic to R2
- The input to register R2 must be stable for at least t_{hold} after the clock edge



 $t_{\text{hold}} < t_{ccq} + t_{cd}$ $t_{cd} > t_{hold} - t_{cca}$



Timing Characteristics

 t_{ccq} = 30 ps

$$t_{pcq}$$
 = 50 ps

$$t_{\text{setup}} = 60 \text{ ps}$$

 t_{hold} = 70 ps

gate	t _{pd} t _{cd}	= 35 ps
per	_t _{cd}	= 25 ps

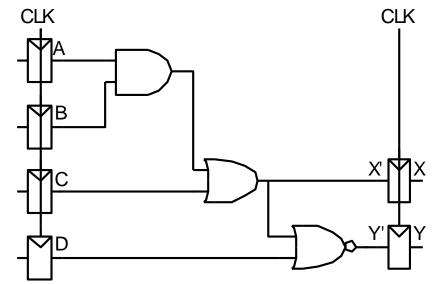
Hold time constraint:

$$t_{\rm ccq} + t_{cd} > t_{\rm hold}$$
 ?

© Digital Design and Computer Architecture, 2nd Edition, 2012

 $T_c \ge$

 $f_c =$



t_{pd} = 3 x 35 ps = 105 ps

t_{cd} = 25 ps

Setup time constraint:

 $T_c \ge (50 + 105 + 60) \text{ ps} = 215 \text{ ps}$

 $f_c = 1/T_c = 4.65 \text{ GHz}$

Timing Characteristics

 t_{ccq} = 30 ps

$$t_{pcq}$$
 = 50 ps

$$t_{\text{setup}} = 60 \text{ ps}$$

 t_{hold} = 70 ps

$$\begin{bmatrix} t_{pd} & = 35 \text{ ps} \\ t_{cd} & = 25 \text{ ps} \end{bmatrix}$$

Hold time constraint:

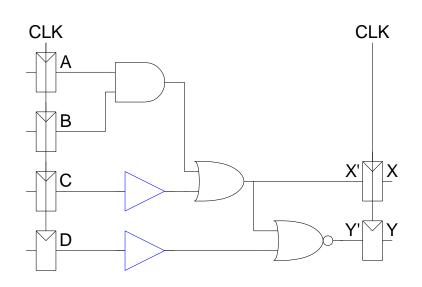
$$t_{ccq} + t_{cd} > t_{hold}$$
 ?

(30 + 25) ps > 70 ps ? No!

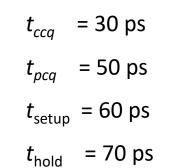
© *Digital Design and Computer Architecture*, 2nd Edition, 2012

Chapter 3 <79>

Add buffers to the short paths:



Timing Characteristics



$$\begin{bmatrix} \mathbf{t}_{pd} &= 35 \text{ ps} \\ \mathbf{t}_{cd} &= 25 \text{ ps} \end{bmatrix}$$

Hold time constraint:

$$t_{ccq} + t_{cd} > t_{hold}$$
 ?

Setup time constraint:

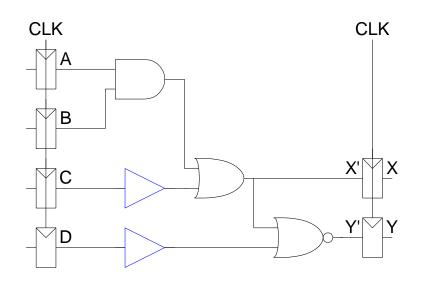
 $t_{pd} =$

 t_{cd} =

 $T_c \ge$

 $f_c =$

Add buffers to the short paths:



t_{pd} = 3 x 35 ps = 105 ps

 t_{cd} = 2 x 25 ps = 50 ps

Setup time constraint:

 $T_c \ge (50 + 105 + 60) \text{ ps} = 215 \text{ ps}$ $f_c = 1/T_c = 4.65 \text{ GHz}$

Timing Characteristics

- t_{ccq} = 30 ps t_{pcq} = 50 ps t_{setup} = 60 ps
- $t_{\text{hold}} = 70 \text{ ps}$

$$\begin{bmatrix} t_{pd} &= 35 \text{ ps} \\ t_{cd} &= 25 \text{ ps} \end{bmatrix}$$

Hold time constraint:

$$t_{ccq} + t_{cd} > t_{hold}$$
 ?

(30 + 50) ps > 70 ps ? Yes!

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 3 <81>

Parallelism

- Two types of parallelism:
 - Spatial parallelism
 - duplicate hardware performs multiple tasks at once
 - Temporal parallelism
 - task is broken into multiple stages
 - also called pipelining
 - for example, an assembly line

Parallelism Definitions

- **Token:** Group of inputs processed to produce group of outputs
- Latency: Time for one token to pass from start to end
- **Throughput:** Number of tokens produced per unit time

Parallelism increases throughput

Parallelism Example

- Ben Bitdiddle bakes cookies to celebrate traffic light controller installation
- 5 minutes to roll cookies
- 15 minutes to bake
- What is the latency and throughput without parallelism?

Parallelism Example

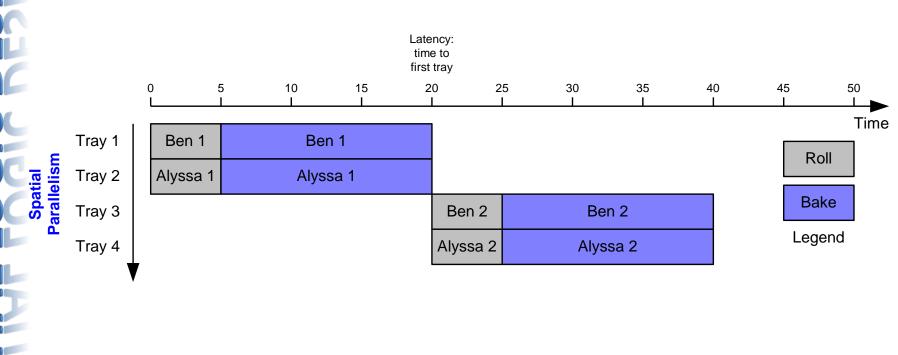
- Ben Bitdiddle bakes cookies to celebrate traffic light controller installation
- 5 minutes to roll cookies
- 15 minutes to bake
- What is the latency and throughput without parallelism?

Latency = 5 + 15 = 20 minutes = 1/3 hour Throughput = 1 tray/ 1/3 hour = 3 trays/hour

Parallelism Example

- What is the latency and throughput if Ben uses parallelism?
 - Spatial parallelism: Ben asks Allysa P. Hacker to help, using her own oven
 - Temporal parallelism:
 - two stages: rolling and baking
 - He uses two trays
 - While first batch is baking, he rolls the second batch, etc.

Spatial Parallelism

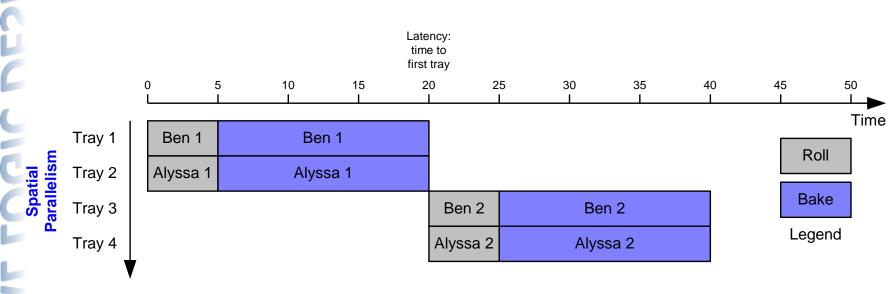


Latency = ? Throughput = ?

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 3 <87>

Spatial Parallelism

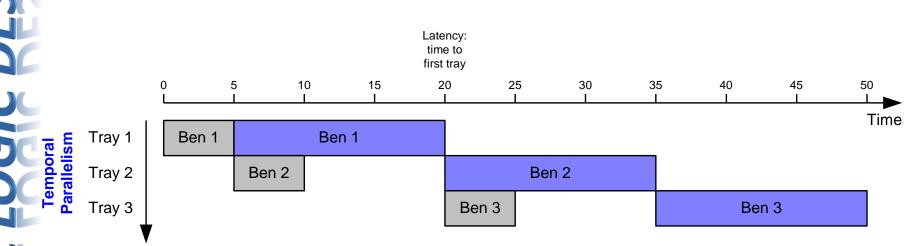


Latency = 5 + 15 = 20 minutes = 1/3 hour Throughput = 2 trays/ 1/3 hour = 6 trays/hour

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 3 <88>

Temporal Parallelism

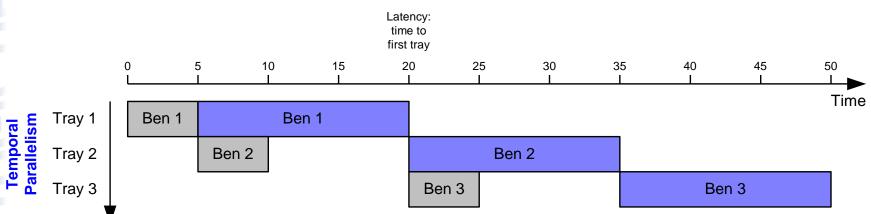


Latency = ? Throughput = ?

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 3 <89>

Temporal Parallelism



Latency = 5 + 15 = 20 minutes = 1/3 hour Throughput = 1 trays/ 1/4 hour = 4 trays/hour

Using both spatial and temporal techniques, the throughput would be **8 trays/hour**

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 3 <90>