Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu

CPE100: Digital Logic Design I

Midtermo₁ Review

Logistics

- Thursday Oct. 3th
 - In normal lecture (13:00-14:15)
 - 1 hour and 15 minutes
- Chapters 1-2.6
- Closed book, closed notes
- No calculators
- Must show work and be legible for credit
- Boolean Axioms and Theorems will be provided

Preparation

- Read the book (2nd Edition)
 - Then, read it again
- Do example problems
 - Use both Harris and Roth books
- Be sure you understand homework solutions
- Come visit during office hours for questions

Chapter 1.2 Managing Complexity

- Abstraction hiding details that aren't important
- Digital discipline restricting design choices to digital logic for more simple design
- Hierarchy dividing a system into modules and further submodules for easier understanding
- Modularity modules have well-defined functions and interfaces for easy interconnection
- Regularity uniformity among modules for reuse

Chapter 1.3 Digital Abstraction

- Analog → digital computing
- Information in a discrete variable
 - $D = \log_2 N \text{ bits}$
- Introduction to binary variables
- Example1: Information in 9-state variable
 - $D = \log_2 9 = 3.1699 \text{ bits}$
 - Note 3 bits can represent 8 values so requires just more than 3 bits

Chapter 1.4 - Number Systems

- Number representation
 - N-digit number $\{a_{N-1}a_{N-2} \dots a_1a_0\}$ of base R in decimal
 - $a_{N-1}R^{N-1} + a_{N-2}R^{N-2} + \dots + a_1R^1 + a_0R^0$
 - $\bullet = \sum_{i=0}^{N-1} a_i R^i$
 - Range of values
- Base 2, 10, 16, etc. conversion
 - Often from base R_0 to decimal to R_1
 - Two methods:
 - Repeatedly remove largest power of 2
 - Repeatedly divide by two

Number Examples

• Convert 10110₂ to decimal

• Convert 10110₂ to base 5

Convert 10110₂ to hex and octal

Chapter 1.4.5 - Binary Addition

- Signed number representation
 - Unsigned, two's complement, sign-magnitude
- Addition
 - Binary carries
 - Potential for overflow
- Subtraction
 - Find negative of number and add
- Zero/Sign extension

Example Binary Addition

- Assume 6-bit 2's complement and indicate if overflow occurs
- Add 13₁₀+11₁₀

• Add $-25_{10} + 18_{10}$

• Add
$$21_{10} + 11_{10}$$

• Add
$$-12 + 13$$

Chapter 1.5 - Logic Gates

NOT, BUF

NOT

$$Y = \overline{A}$$

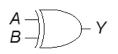
BUF

• AND, OR


AND

$$Y = AB$$

Α	В	Υ
0	0	0
0	1	0
1	0	0
1	1	1

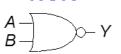

OR

$$Y = A + B$$

XOR, NAND

XOR

$$Y = A \oplus B$$


Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

$$Y = \overline{AB}$$

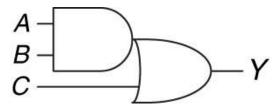
Α	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

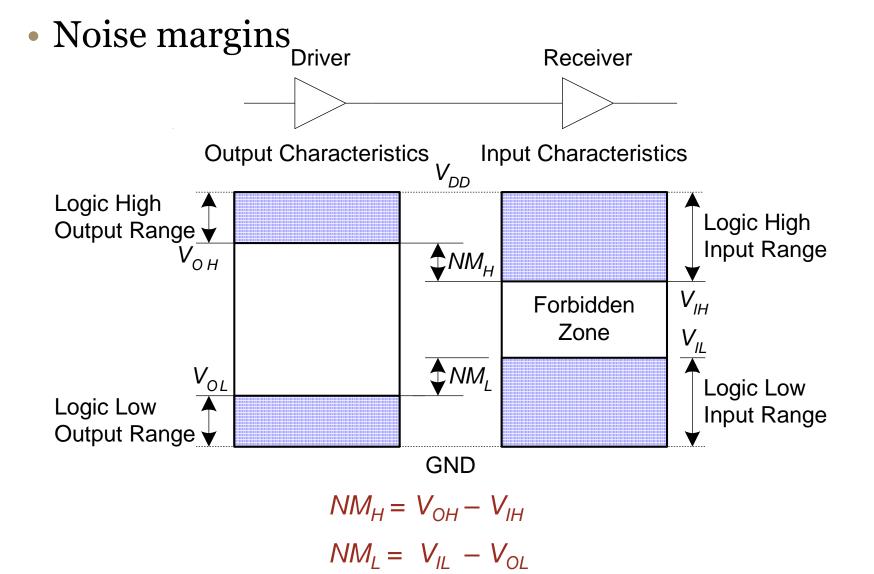
NOR, XNOR

NOR

$$Y = \overline{A + B}$$

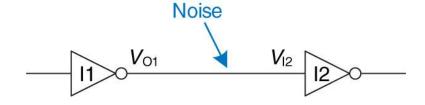
Α	В	γ
0	0	1
0	1	0
1	0	0
1	1	0


XNOR


$$Y = \overline{A \oplus B}$$

Example

• Give truth table for logic gate



Chapter 1.6 Beneath Digital Abstraction

Example 1.18

What is the inverter low and high noise margins

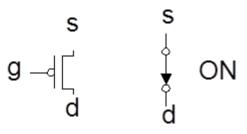
• $V_{DD} = 5$, $V_{IL} = 1.35$, $V_{IH} = 3.15$, $V_{OL} = 0.33$, $V_{OH} = 3.84$

Chapter 1.7 - Transistors

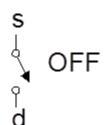
- Voltage controlled switch
- NMOS pass o's
 - Connect to GND

$$g = 0$$

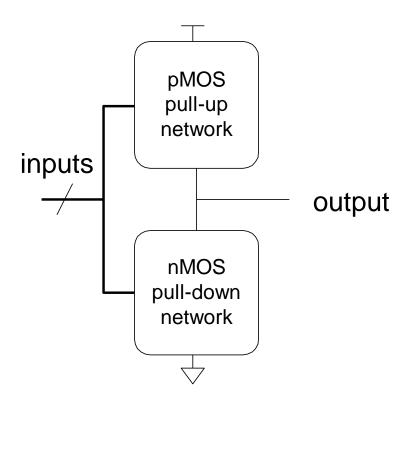
$$d$$

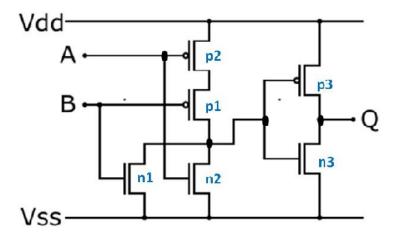

$$g = 0$$


$$g = 0$$


$$g = 0$$

$$g = 0$$


- PMOS pass 1's
 - Connect to VDD



CMOS logic gates

Example

• Give the truth table and function

Chapter 1.7 - Power Consumption

- Two types of power consumption
- Dynamic power required to charge gate capacitances (turn on/off transistor switches)

$$P_{dynamic} = \frac{1}{2}CV_{DD}^2 f$$

 Static – power consumed when no gates switching

$$P_{static} = I_{DD}V_{DD}$$

Chapter 2.2 - Boolean Equations

- Terms: variable/complement, literal, product/implicant
- Order of operations: NOT \rightarrow AND \rightarrow OR
- Sum-of-product (SOP) form
 - Determined by minterms of truth table
- Product-of-sums (POS) form
 - Determined by maxterms of truth table

Chapter 2.3 - Boolean Algebra

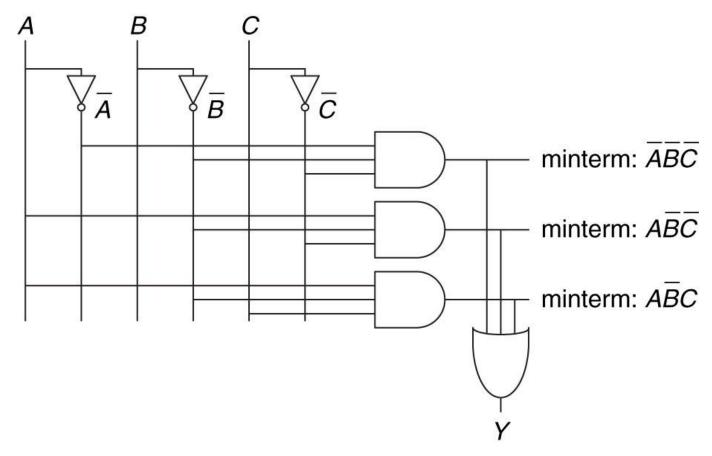
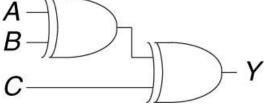
- Boolean algebra is very much like our normal algebra
- Need to know Boolean Axioms and Theorems
 - Distributivity, covering, De Morgan's
- Proving equations
 - Perfect induction/proof by exhaustion show truth tables match
 - Simplification use theorems/axioms to show both sides of equation are equal

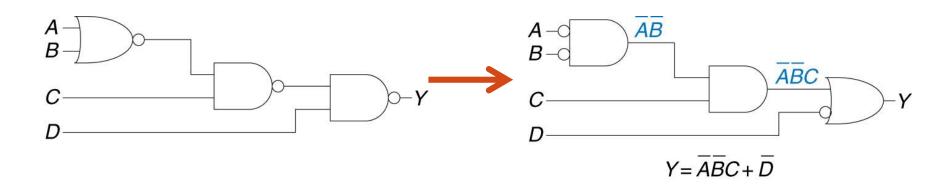
Chapter 2.3.5 - Simplifying Equations

• Practice, practice, practice

Chapter 2.4 - Logic to Gates

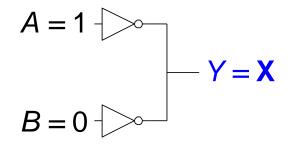
• Two-level schematic diagram of digital circuit

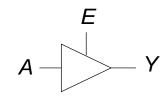




Figure 2.23 Schematic of $Y = \overline{A} \overline{B} \overline{C} + A \overline{B} \overline{C} + A \overline{B} C$

Chapter 2.5 - Multilevel Combinational Logic

Convert gate level schematic into Boolean equation




 Bubble pushing – application of De Morgan's in schematic

Chapter 2.6 - Real Circuit Issues

- Don't cares: X
 - Truth table flexibility
- Contention: X
 - Illegal output value
 - Output could be 1 or 0 in error
- Floating: Z
 - High impedance, high Z
 - Output between 0, 1 by design

E	Α	Y
0	0	Z
0	1	Z
1	0	0
1	1	1