Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu

CPE100: Digital Logic Design I

Midtermo2 Review

http://www.ee.unlv.edu/~b1morris/cpe100/

Logistics

- Thursday Nov. 14th
 - In normal lecture (13:00-14:15)
 - I hour and 15 minutes
- Chapters 2.7-3.4
 - Responsible for all material but emphasis on sections since Midtermo1
- Closed book, closed notes
- No calculators
- Must show work and be legible for credit

Preparation

- Read the book (2nd Edition)
 - Then, read it again
- Do example problems
 - Use both Harris and Roth books
- Be sure you understand homework solutions
- Come visit during office hours for questions
- Exam Advice: Be sure to attempt all problems.
 - Partial credit can only be given for something written on the page
 - Don't spend too much time thinking move on and come back

Chapter 2.7 K-Maps

- Logic minimization in graphical form
 - Generally easier than using Theorems/Axioms
 - Expected to know up to 5 variables
- Use K-map to encode truth table
 - Adjacent rows/columns only differ by a single bit to exploit combining
 - Implement both SOP ("1") and POS ("0") forms
 - Draw largest circle possible to cover each 1
 - Take advantage of Don't Cares ("X") to have more simple logic

Chapter 2.7 Kmap Example

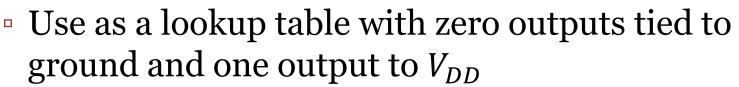
5-input function (A,B,C,D,E)
Create two 4-input K-maps and "stack"

A = 0 BC					A = 1 BC						
		00	01	11	10			00	01	11	10
DE	00	0	4	12	8	DE	00	16	20	28	24
	01	1	5	13	9		01	17	21	29	25
	11	3	7	15	11		11	19	23	31	27
	10	2	6	14	10		10	18	22	30	26

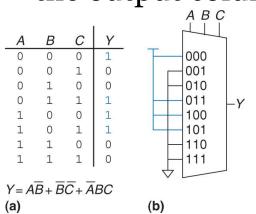
- Draw bubbles within 4x4 and in between stack (above or below)
 - E.g. cell 5 and 21 \rightarrow B'CD'E

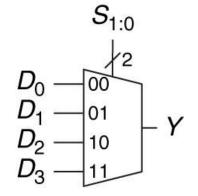
A≈o

 $A \ge 1$

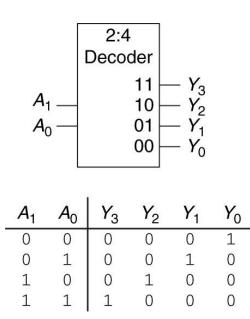

Example 8

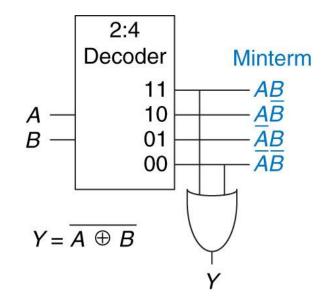
• $Y = \sum m(0,1,2,3,8,9,16,17,20,21,24,25,28,29,30,31)$


A = 0 BC $A = 1$ BC											
DE		00	01	11	10	DE		00	01	11	10
	00	1	4	12	1		00	1	1	1	1
	01	1	5	13	1		01	1	1	1	1
	11	1	7	15	11		11	19	23	1	27
	10	1	6	14	10		10	18	22	1	26

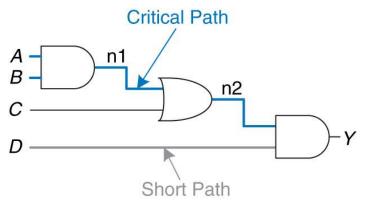

Chapter 2.8.1 - Mux

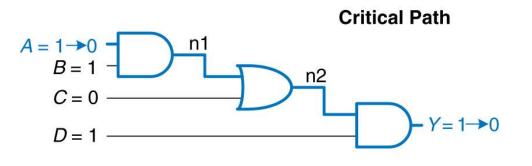
- Select one of N inputs for output
 Select → log₂ N-bits
- Mux logic:

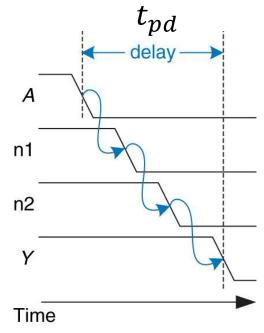

- Use simplification technique for smaller mux size
 - Combine rows and move far right input variable into the output column



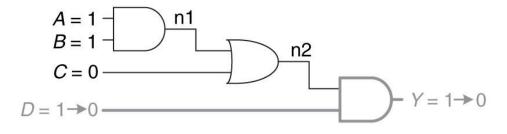
Chapter 2.8.2 Decoder

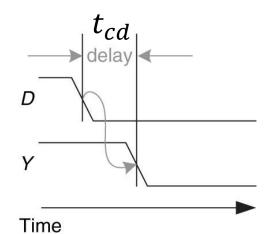

- Given *N* inputs $\rightarrow 2^N$ (one-hot) outputs
 - Each output is a row of truth table
- Decoder logic:
 - Build SOP logic by OR-ing output

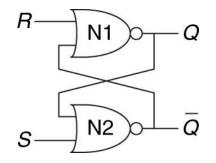



Chapter 2.9 Timing

- Takes time (delay) for input change to cause output change
 - Signal must travel through logic gates
- Two important delay components
 - Propagation t_{pd} is max time from input to final stable output (longest path)
 - Contamination t_{cd} is minimum time from input to first change in output (shortest path)




Chapter 2.9 Timing

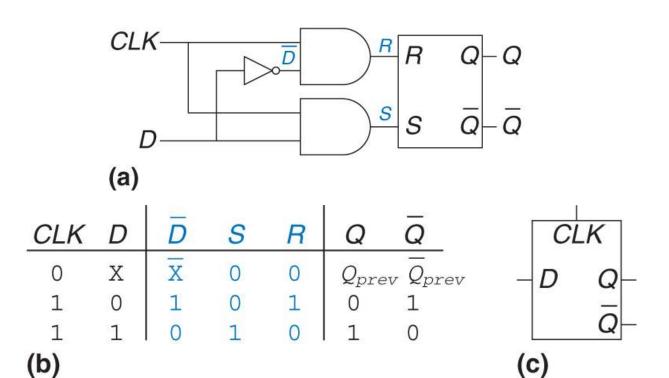


Chapter 3 Sequential Logic Design

- Logic that depends on both current input as well as past input values (memory)
- State all information about a circuit necessary to explain its future behavior
- Latches and flip-flops state elements that store a single bit of state (memory element)
- Synchronous sequential circuits combinational logic followed by a register

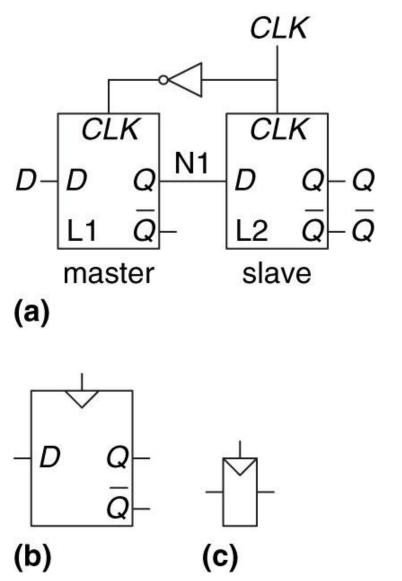
Chapter 3.2.1 SR Latch

- Bistable circuit to store state Q and \overline{Q}
 - $\circ S \operatorname{set} Q = 1$
 - $R \operatorname{reset} Q = 0$
 - S = R = 0 hold Q state

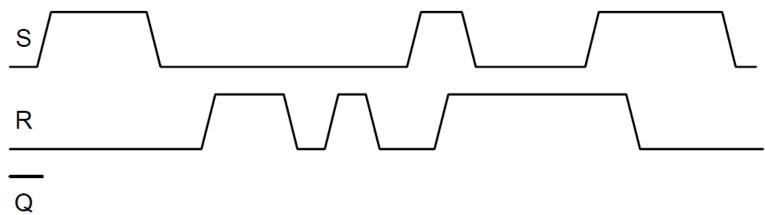


Circuit symbol and operation
Note: logic does not hold for S = R = 1

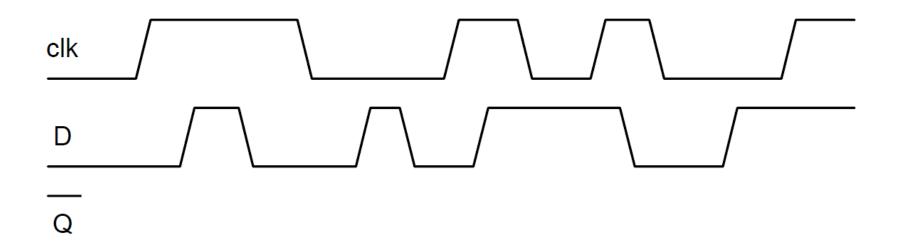
		Case	S	R	Q	\overline{Q}
-R	Q_{-}	IV	0	0	Qpre	\overline{Q}_{prev}
- <i>s</i>		I	0	1	0	1
	Q_{-}	II	1	0	1	0
		III	1	1	0	0


Chapter 3.2.2 D Latch

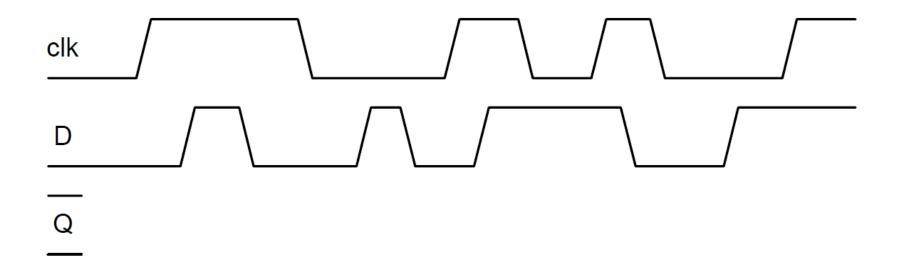
- Simplify SR Latch logic
 - *D* single input
 - CLK pass D on high cycle
 - Avoids previous $Q \neq \overline{Q}$ case


Chapter 3.2.3 D Flip-Flop

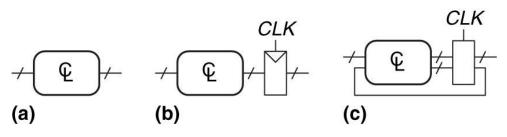
- More tightly controlled timing than D latch
 - Only passes *D* value on rising edge of *CLK*
- Edge-triggered device
 - Only activated on
 CLK transition from 0→1
 - Samples value of *D* at time of rising edge to pass through to *Q*

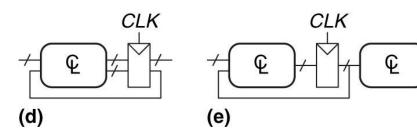

Chapter 3.2 Examples

• Given SR Latch provide output Q

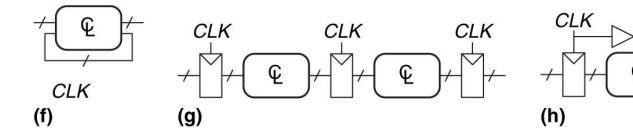

Chapter 3.2 Examples

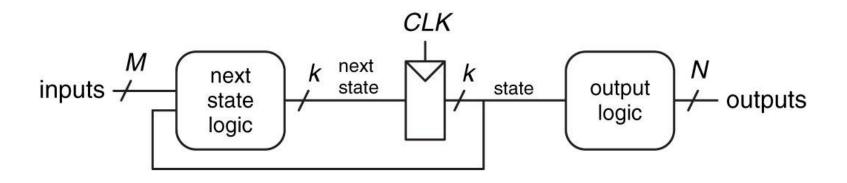
Given D Latch provide output *Q*Note: *Q* "follows" *D* during *CLK* high period


Chapter 3.2 Examples


• Given D flip-flop provide output *Q*

Chapter 3.3 Sequential Circuit Design


- Synchronous Design
 - Every circuit element is either a register or a combinational circuit
 - At least one circuit element is a register
 - All registers receive the same clock signal
 - Every cyclic path contains at least one register


Identify sequential designs

23

Chapter 3.4 Finite State Machine

- Technique for representing synchronous sequential circuit
 - Consists of combinational logic and state register
 - Moore machine output only dependent on state (not inputs)

Chapter 3.4 FSM Design Steps

- **1.** Identify inputs and outputs
- 2. Sketch state transition diagram
- 3. Write state transition table
- 4. Select state encodings
- 5. Rewrite state transition table with state encodings
- 6. Write output table
- 7. Write Boolean equations for next state and output logic
- 8. Sketch the circuit schematic

Chapter 3.4 FSM Examples

- Given problem description, give state transition diagram
- Given state transition diagram, encode state and provide next state/output equations
- Given FSM circuit, describe what system does and give state transition/output tables

Chapter 3.4 FSM Examples

- Design an edge detector circuit. The output should go HIGH for one cycle after the input makes a 0 → 1 transition.
- Single input: A

