Chapter 2

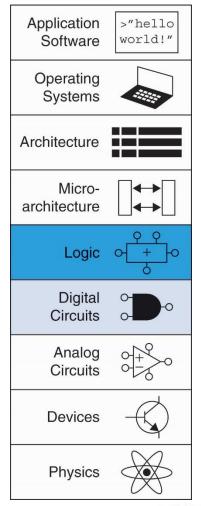
Professor Brendan Morris, SEB 3216, <u>brendan.morris@unlv.edu</u> http://www.ee.unlv.edu/~b1morris/cpe100/

CPE100: Digital Logic Design I

Combinational Logic Design

Chapter 2 :: Topics

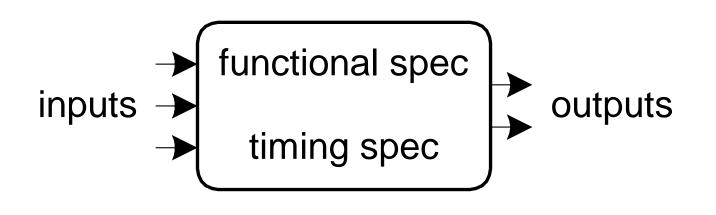
- Introduction
- Boolean Equations
- Boolean Algebra
- From Logic to Gates
- Multilevel Combinational Logic
- X's and Z's, Oh My
- Karnaugh Maps
- Combinational Building Blocks
- Timing



Introduction

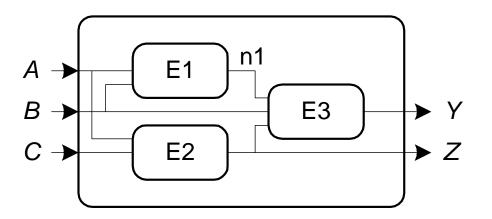
A logic circuit is composed of:

- Inputs
- Outputs
- Functional specification
- Timing specification



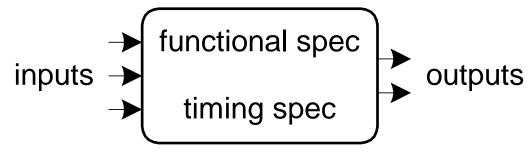
Circuits

- Nodes
 - Inputs: *A, B, C*
 - Outputs: Y, Z
 - Internal: n1
- Circuit elements
 - E1, E2, E3
 - Each a circuit



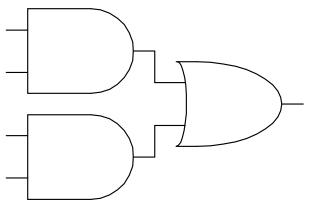
Types of Logic Circuits

- Combinational Logic (Ch 2)
 - Memoryless
 - Outputs determined by current values of inputs
- Sequential Logic (Ch 3)
 - Has memory
 - Outputs determined by previous and current values of inputs



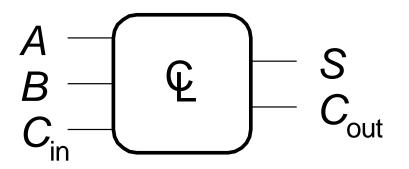
Rules of Combinational Composition

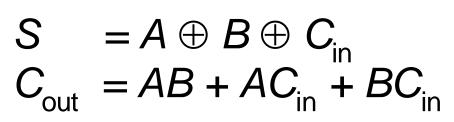
- Every element is combinational
- Every node is either an input or connects to *exactly one* output
- The circuit contains no cyclic paths
 - E.g. no connection from output to internal node
- Example:

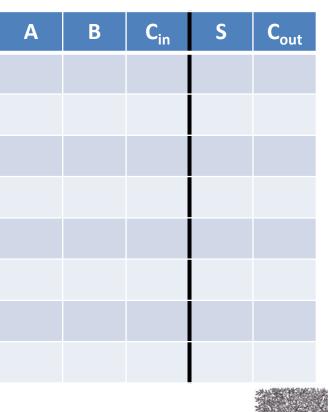


Boolean Equations

- Functional specification of outputs in terms of inputs
- Example: $S = F(A, B, C_{in})$ $C_{out} = F(A, B, C_{in})$







Functional specification

Goals:

- Systematically express logical functions using Boolean equations
- To simplify Boolean equations

Administrative Notes

- Note: New homework instructions starting with HW03
- Homework is due at the beginning of class
- Homework must be organized, legible (messy is not), and stapled to be graded

Some Definitions

- Complement: variable with a bar over it $\overline{A}, \overline{B}, \overline{C}$
- Literal: variable or its complement
 A, A, B, B, C, C
- Implicant: product of literals
 ABC, AC, BC
- Minterm: product that includes all input variables

$AB\overline{C}, A\overline{B}\overline{C}, ABC$

Maxterm: sum that includes all input variables
 (A+B+C), (A+B+C), (A+B+C)

Canonical Sum-of-Products (SOP) Form

- All equations can be written in SOP form
- Each row has a **minterm**
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)

				minterm
A	B	Y	minterm	name
0	0	0	A B	m_0
0	1	1	ĀB	m_1
1	0	0	AB	m_2
1	1	1	ΑB	m_{3}

Canonical Sum-of-Products (SOP) Form

- All equations can be written in SOP form
- Each row has a **minterm**
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where the output is TRUE

				minterm
A	B	Y	minterm	name
0	0	0	A B	m_0
0	1	1	Ā B	$\tilde{m_1}$
1	0	0	A B	m_2
$\left(1\right)$	1	1	ΑB	m_3

 $Y = \mathbf{F}(A, B) =$

Canonical Sum-of-Products (SOP) Form

- All equations can be written in SOP form
- Each row has a **minterm**
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where the output is TRUE
- Thus, a sum (OR) of products (AND terms)

				minterm
_	B	Y	minterm	name
() ()	0	A B	m_0
$\left(\right)$) 1	1	Ā B	$\widetilde{m_1}$
1	. 0	0	A B	m_2
(1)	. 1	1	ΑB	m_{3}

 $Y = F(A, B) = AB + AB = \Sigma(m_1, m_3)$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <13>

SOP Example

- Steps:
- Find minterms that result in Y=1
- Sum "TRUE" minterms

Α	В	Y
0	0	1
0	1	1
1	0	0
1	1	0

 $Y = \mathbf{F}(A, B) =$

Aside: Precedence

- AND has precedence over OR
- In other words:
 - AND is performed **before** OR

- Example:
 - $Y = \overline{A} \cdot B + A \cdot B$
 - Equivalent to:
 - $Y = (\overline{A}B) + (AB)$

Canonical Product-of-Sums (POS) Form

- All Boolean equations can be written in POS form
- Each row has a **maxterm**
- A maxterm is a sum (OR) of literals
- Each maxterm is FALSE for that row (and only that row)

				maxterm
Α	B	Y	maxterm	name
0	0	0	A + B	M
0	1	1	$A + \overline{B}$	M_1
1	0	0	<u>A</u> + B	M_2
1	1	1	$\overline{A} + \overline{B}$	M_3

Canonical Product-of-Sums (POS) Form

- All Boolean equations can be written in POS form
- Each row has a **maxterm**
- A maxterm is a sum (OR) of literals
- Each maxterm is FALSE for that row (and only that row)
- Form function by ANDing the maxterms for which the output is FALSE
- Thus, a product (AND) of sums (OR terms)

				maxterm
Α	B	Y	maxterm	name
0	0	0	A + B	M _o
0	1	1	$A + \overline{B}$	M_1
(1	0	0	<u>A</u> + B	M_2
1	1	1	$\overline{A} + \overline{B}$	M_3
<i>Y</i> =	$= M_0$	$\cdot M_2$	= (A + B)	$) \cdot (\bar{A} + B)$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <17>

SOP and POS Comparison

- Sum of Products (SOP)
 - Implement the "ones" of the output
 - Sum all "one" terms → OR results in "one"
- Product of Sums (POS)
 - Implement the "zeros" of the output
 - Multiply "zero" terms \rightarrow AND results in "zero"

Boolean Equations Example

- You are going to the cafeteria for lunch
 - You will eat lunch (E=1)
 - If it's open (O=1) and
 - If they're not serving corndogs (C=0)
- Write a truth table for determining if you will eat lunch (E).

Boolean Equations Example

- You are going to the cafeteria for lunch
 - You will eat lunch (E=1)
 - If it's open (O=1) and
 - If they're not serving corndogs (C=0)
- Write a truth table for determining if you will eat lunch (E).

• SOP – sum-of-products

	0	С	Е	minterm
-	0	0		$\overline{O} \overline{C}$
	0	1		Ō C
	1	0		$O\overline{C}$
	1	1		ΟC

• POS – product-of-sums

0	С	E	maxterm
0	0		0 + C
0	1		$O + \overline{C}$
1	0		<u> </u>
1	1		$\overline{O} + \overline{C}$

• SOP – sum-of-products

0	С	Ε	minterm
0	0	0	
0	1	0	O C
(1	0	1	$O\overline{C}$
1	1	0	ΟC

• POS – product-of-sums

0	С	Е	maxterm
0	0	0	O + C
0	1	0	$O + \overline{C}$
1	0	1	<u> </u>
1	1	0	$\overline{O} + \overline{C}$

• SOP – sum-of-products

 0	С	Ε	minterm	
0	0	0		
0	1	0	O C	E = OC
(1	0	1	0 C	$=\Sigma(m_2)$
1	1	0	ΟC	-(2)

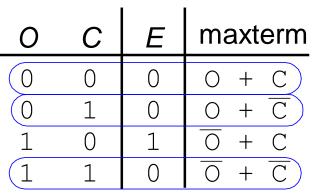
• POS – product-of-sums

0	С	Е	maxterm
0	0	0	O + C
0	1	0	$O + \overline{C}$
1	0	1	<u>O</u> + C
1	1	0	$\overline{O} + \overline{C}$

• SOP – sum-of-products

0	С	Е	minterm	
0	0	0		
0	1	0	O C	E = OC
(1	0	1	\overline{O}	$=\Sigma(m_2)$
1	1	0	ΟC	- (<u>/</u>)

POS – product-of-sums



 $E = (O + C)(O + \overline{C})(\overline{O} + \overline{C})$ $= \Pi(M0, M1, M3)$

Boolean Algebra

- Axioms and theorems to simplify Boolean equations
- Like regular algebra, but simpler: variables have only two values (1 or 0)
- **Duality** in axioms and theorems:
 - ANDs and ORs, 0's and 1's interchanged

Axiom

A1	$B = 0$ if $B \neq 1$
A2	$\overline{0} = 1$
A3	$0 \bullet 0 = 0$
A4	1 • 1 = 1
A5	$0 \bullet 1 = 1 \bullet 0 = 0$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <26>

Duality

Duality in Boolean axioms and theorems:

- ANDs and ORs, 0's and 1's interchanged

Axiom

A1	$B = 0$ if $B \neq 1$
A2	$\overline{0} = 1$
A3	$0 \bullet 0 = 0$
A4	1 • 1 = 1
A5	$0 \bullet 1 = 1 \bullet 0 = 0$

	Axiom		Dual
A1	$B = 0$ if $B \neq 1$	A1′	$B = 1$ if $B \neq 0$
A2	$\overline{0} = 1$	A2′	$\overline{1} = 0$
A3	$0 \bullet 0 = 0$	A3′	1 + 1 = 1
A4	1 • 1 = 1	A4′	0 + 0 = 0
A5	$0 \bullet 1 = 1 \bullet 0 = 0$	A5′	1 + 0 = 0 + 1 = 1

Dual: Exchange: • and + 0 and 1

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <29>

	Axiom		Dual	Name
A1	$B = 0$ if $B \neq 1$	A1′	$B = 1$ if $B \neq 0$	Binary field
A2	$\overline{0} = 1$	A2′	$\overline{1} = 0$	NOT
A3	$0 \bullet 0 = 0$	A3′	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	A4′	0 + 0 = 0	AND/OR
A5	$0 \bullet 1 = 1 \bullet 0 = 0$	A5′	1 + 0 = 0 + 1 = 1	AND/OR

Dual: Exchange: • and + 0 and 1

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <30>

Basic Boolean Theorems

	Theorem
T1	$B \bullet 1 = B$
T2	$B \bullet 0 = 0$
T3	$B \bullet B = B$
T4	$\overline{\overline{B}} = B$
T5	$B \bullet \overline{B} = 0$

Basic Boolean Theorems: Duals

	Theorem		Dual	Name
T1	$B \bullet 1 = B$	T1′	B + 0 = B	Identity
T2	$B \bullet 0 = 0$	T2′	B + 1 = 1	Null Element
Т3	$B \bullet B = B$	T3′	B + B = B	Idempotency
T4		$\overline{\overline{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5′	$B + \overline{B} = 1$	Complements

Dual: Exchange: • and + 0 and 1

© *Digital Design and Computer Architecture*, 2nd Edition, 2012

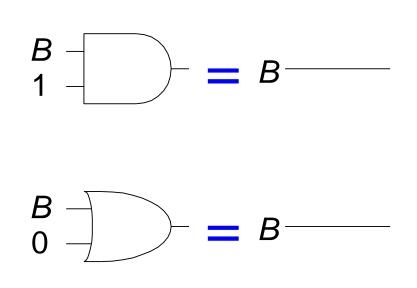
Chapter 2 <32>

T1: Identity Theorem

- B 1 = B
- $\mathbf{B} + \mathbf{0} = \mathbf{B}$

T1: Identity Theorem

- B 1 = B
- $\mathbf{B} + \mathbf{0} = \mathbf{B}$

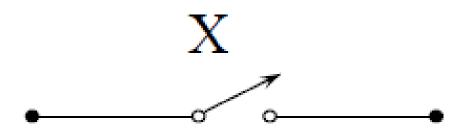


© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <34>

Switching Algebra

- Simplification of digital logic → connecting wires with a on/off switch
- X = 0 (switch open)
- X = 1 (switch closed)

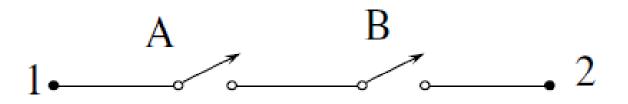


© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <35>

Series Switching Network: AND

• Switching circuit in series performs AND



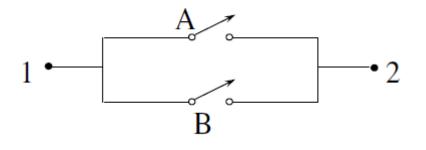
• 1 is connected to 2 iff A AND B are 1

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <36>

Parallel Switching Network: OR

• Switching circuit in parallel performs OR



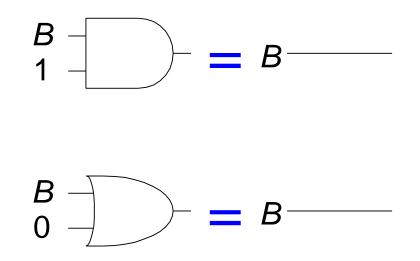
• 1 is connected to 2 if A **OR** B is 1

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 < 37>

T1: Identity Theorem

- $B \cdot 1 = B$
- $\mathbf{B} + \mathbf{0} = \mathbf{B}$

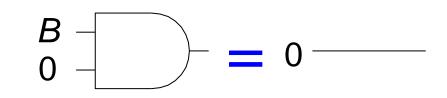


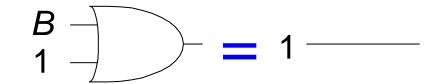
T2: Null Element Theorem

- $B \cdot 0 = 0$
- B + 1 = 1

T2: Null Element Theorem

- $B \cdot 0 = 0$
- B + 1 = 1





© Digital Design and Computer Architecture, 2nd Edition, 2012

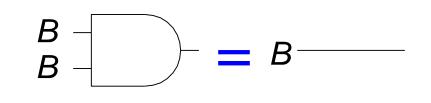
Chapter 2 <40>

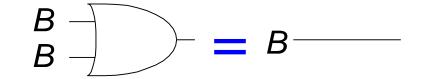
T3: Idempotency Theorem

- $\mathbf{B} \cdot \mathbf{B} = \mathbf{B}$
- B + B = B

T3: Idempotency Theorem

- $\mathbf{B} \cdot \mathbf{B} = \mathbf{B}$
- B + B = B





T4: Involution Theorem

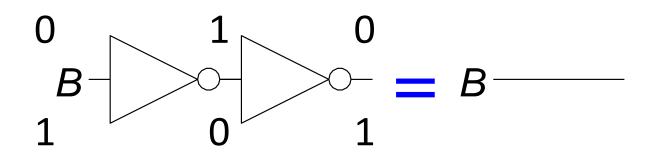
• $\overline{B} = B$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <43>

T4: Involution Theorem

• $\overline{B} = B$



T5: Complements Theorem

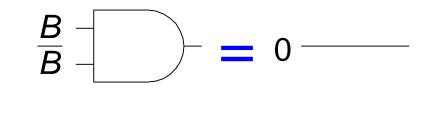
- $\mathbf{B} \cdot \overline{\mathbf{B}} = \mathbf{0}$
- $B + \overline{B} = 1$

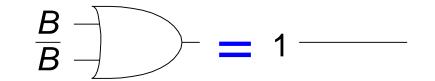
© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <45>

T5: Complements Theorem

- B $\overline{B} = 0$
- $B + \overline{B} = 1$





Recap: Basic Boolean Theorems

	Theorem		Dual	Name
T1	$B \bullet 1 = B$	T1′	B + 0 = B	Identity
T2	$B \bullet 0 = 0$	T2′	B + 1 = 1	Null Element
Т3	$B \bullet B = B$	T3′	B + B = B	Idempotency
T4		$\overline{\overline{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5'	$B + \overline{B} = 1$	Complements

Boolean Theorems of Several Vars

Number	Theorem	Name
Т6	$B \bullet C = C \bullet B$	Commutativity
Τ7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	Associativity
Т8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	Distributivity
Т9	B● (B+C) = B	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	Combining
T11	$B \bullet C + (\overline{B} \bullet D) + (C \bullet D) =$ $B \bullet C + \overline{B} \bullet D$	Consensus

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <48>

Boolean Theorems of Several Vars

Number	Theorem	Name
Т6	$B \bullet C = C \bullet B$	Commutativity
Т7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	Associativity
Т8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	Distributivity
Т9	B● (B+C) = B	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	Combining
T11	$B \bullet C + (\overline{B} \bullet D) + (C \bullet D) =$ $B \bullet C + \overline{B} \bullet D$	Consensus

How do we prove these are true?

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <49>

How to Prove Boolean Relation

- Method 1: Perfect induction
- Method 2: Use other theorems and axioms to simplify the equation
 - Make one side of the equation look like the other

Proof by Perfect Induction

- Also called: proof by exhaustion
- Check every possible input value
- If two expressions produce the same value for every possible input combination, the expressions are equal

Example: Proof by Perfect Induction

Number	Theorem	Name
Т6	$B \bullet C = C \bullet B$	Commutativity

В	С	ВС	СВ	
0	0			
0	1			
1	0			
1	1			

Example: Proof by Perfect Induction

Number	Theorem	Name
Т6	$B \bullet C = C \bullet B$	Commutativity

В	С	ВС	СВ	
0	0	0	0	
0	1	0	0	
1	0	0	0	
1	1	1	1	

Boolean Theorems of Several Vars

Number	Theorem	Name
Т6	$B \bullet C = C \bullet B$	Commutativity
Τ7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	Associativity
Т8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	Distributivity
Т9	B● (B+C) = B	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	Combining
T11	$B \bullet C + (\overline{B} \bullet D) + (C \bullet D) =$ $B \bullet C + \overline{B} \bullet D$	Consensus

T7: Associativity

Number	Theorem	Name
Τ7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	Associativity

T8: Distributivity

Number	Theorem	Name
Т8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	Distributivity

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <57>

Number	Theorem	Name
Т9	B● (B+C) = B	Covering

Prove true by:

- Method 1: Perfect induction
- Method 2: Using other theorems and axioms

Number	Theorem	Name
Т9	B● (B+C) = B	Covering

Method 1: Perfect Induction

В	С	(B+C)	B(B+C)	
0	0			
0	1			
1	0			
1	1			
		I		

Number	Theorem	Name
Т9	B● (B+C) = B	Covering

Method 1: Perfect Induction

В	С	(B+C)	B(B+C)	
0	0	0	0	
0	1	1	0	
1	0	1	1	
1	1	1	1	

Number	Theorem	Name
Т9	B● (B+C) = B	Covering

Method 2: Prove true using other axioms and theorems.

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <61>

Number	Theorem	Name
Т9	B● (B+C) = B	Covering

Method 2: Prove true using other axioms and theorems.

 $B \bullet (B+C) = B \bullet B + B \bullet C$ T8: Distributivity

 $= \mathbf{B} + \mathbf{B} \cdot \mathbf{C}$

 $= B \cdot (1 + C)$

 $= \mathbf{B} \cdot (\mathbf{1})$

 $\equiv \mathbf{B}$

- T3: Idempotency
- T8: Distributivity
- T2: Null element

T1:	Iden	tity
Chapter	2 <62>	•

T10: Combining

Number	Theorem	Name
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	Combining

Prove true using other axioms and theorems:

T10: Combining

Number	Theorem	Name
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	Combining

Prove true using other axioms and theorems: $B \cdot C + B \cdot \overline{C} = B \cdot (C + \overline{C})$ T8: Distributivity $= B \cdot (1)$ T5': Complements = B T1: Identity

T11: Consensus

Number	Theorem	Name
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + \overline{B} \bullet D$	Consensus

Prove true using (1) perfect induction or (2) other axioms and theorems.

Recap: Boolean Thms of Several Vars

Number	Theorem	Name
Т6	$B \bullet C = C \bullet B$	Commutativity
Τ7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	Associativity
Т8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	Distributivity
Т9	B● (B+C) = B	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	Combining
T11	$B \bullet C + (\overline{B} \bullet D) + (C \bullet D) =$ $B \bullet C + \overline{B} \bullet D$	Consensus

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <66>

Boolean Thms of Several Vars: Duals

#	Theorem	Dual	Name
T6	$B \bullet C = C \bullet B$	B+C = C+B	Commutativity
Τ7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	(B + C) + D = B + (C + D)	Associativity
Т8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	$B + (C \bullet D) = (B+C) (B+D)$	Distributivity
Т9	B • (B+C) = B	$B + (B \bullet C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	$(B+C) \bullet (B+\overline{C}) = B$	Combining
T11	$(B \bullet C) + (B \bullet \overline{D}) + (C \bullet D) =$ $(B \bullet C) + (B \bullet \overline{D})$	$(B+C) \bullet (B+\overline{D}) \bullet (C+D) =$ $(B+C) \bullet (B+\overline{D})$	Consensus

Dual: Replace: • with + 0 with 1

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <67>

Boolean Thms of Several Vars: Duals

#	Theorem	Dual	Name
T6	$B \bullet C = C \bullet B$	B+C = C+B	Commutativity
Τ7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	(B + C) + D = B + (C + D)	Associativity
Т8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	$B + (C \bullet D) = (B+C) (B+D)$	Distributivity
Т9	B • (B+C) = B	$B + (B \bullet C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	$(B+C) \bullet (B+\overline{C}) = B$	Combining
T11	$(B \bullet C) + (B \bullet \overline{D}) + (C \bullet D) =$ $(B \bullet C) + (B \bullet \overline{D})$	$(B+C) \bullet (B+\overline{D}) \bullet (C+D) =$ $(B+C) \bullet (B+\overline{D})$	Consensus

Dual: Replace: • with + 0 with 1

Warning: T8' differs from traditional algebra: OR (+) distributes over AND (•)

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <68>

Boolean Thms of Several Vars: Duals

#	Theorem	Dual	Name
T6	$B \bullet C = C \bullet B$	B+C = C+B	Commutativity
Т7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	(B + C) + D = B + (C + D)	Associativity
Т8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	B + (C•D) = (B+C) (B+D)	Distributivity
Т9	B • (B+C) = B	$B + (B \bullet C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	$(B+C) \bullet (B+\overline{C}) = B$	Combining
T11	$(B \bullet C) + (B \bullet \overline{D}) + (C \bullet D) =$ $(B \bullet C) + (B \bullet \overline{D})$	$(B+C) \bullet (B+\overline{D}) \bullet (C+D) =$ $(B+C) \bullet (B+\overline{D})$	Consensus

Axioms and theorems are useful for *simplifying* equations.

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <69>

Simplifying an Equation

• Reducing an equation to the fewest number of implicants, where each implicant has the fewest literals

Simplifying an Equation

• Reducing an equation to the fewest number of implicants, where each implicant has the fewest literals

Recall:

- Implicant: product of literals ABC, AC, BC
- Literal: variable or its complement A, A, B, B, C, C

Simplifying an Equation

• Reducing an equation to the fewest number of implicants, where each implicant has the fewest literals

Recall:

- Implicant: product of literals ABC, AC, BC
- Literal: variable or its complement A, A, B, B, C, C
- Also called: **minimizing** the equation

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <72>

- Distributivity (T8, T8')
 - B(C+D) = BC + BD
 - $\mathbf{B} + \mathbf{C}\mathbf{D} = (\mathbf{B} + \mathbf{C})(\mathbf{B} + \mathbf{D})$
- Covering (T9')
 - $\mathbf{A} + \mathbf{A}\mathbf{P} = \mathbf{A}$
- **Combining (T10)** $PA + P\overline{A} = P$

- Distributivity (T8, T8')
 - B(C+D) = BC + BD
 - $\mathbf{B} + \mathbf{C}\mathbf{D} = (\mathbf{B} + \mathbf{C})(\mathbf{B} + \mathbf{D})$
- Covering (T9')
 - A + AP = A
- **Combining (T10)** $PA + P\overline{A} = P$
- **Expansion**
 - $\mathbf{P} = \mathbf{P}\mathbf{A} + \mathbf{P}\mathbf{A}$
 - A = A + AP
- Duplication
 - A = A + A

- Distributivity (T8, T8')
 - B(C+D) = BC + BD
 - $\mathbf{B} + \mathbf{C}\mathbf{D} = (\mathbf{B} + \mathbf{C})(\mathbf{B} + \mathbf{D})$
- Covering (T9')
 - A + AP = A
- **Combining (T10)** $PA + P\overline{A} = P$
- **Expansion**
 - $\mathbf{P} = \mathbf{P}\mathbf{A} + \mathbf{P}\mathbf{A}$
 - A = A + AP
- Duplication
 - A = A + A
- A combination of Combining/Covering PA + \overline{A} = P + \overline{A}

 $\ensuremath{\mathbb{C}}$ Digital Design and Computer Architecture, 2^{nd} Edition, 2012

• A combination of Combining/Covering $PA + \overline{A} = P + \overline{A}$

Proof: $PA + \overline{A} = PA + (\overline{A} + \overline{A}P)$ = $PA + P\overline{A} + \overline{A}$ = $P(A + \overline{A}) + \overline{A}$ = $P(1) + \overline{A}$ = $P + \overline{A}$ T9' Covering T6 Commutativity T8 Distributivity T5' Complements T1 Identity

T11: Consensus

Number	Theorem	Name
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + \overline{B} \bullet D$	Consensus

Prove using other theorems and axioms:

T11: Consensus

Number	Theorem	Name
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + \overline{B} \bullet D$	Consensus

Prove using other theorems and axioms:

 $\mathbf{B} \bullet \mathbf{C} + \overline{\mathbf{B}} \bullet \mathbf{D} + \mathbf{C} \bullet \mathbf{D}$

- $= BC + \overline{B}D + (CDB + CD\overline{B})$
- $= BC + \overline{B}D + BCD + \overline{B}CD$
- $= BC + BCD + \overline{BD} + \overline{BCD}$
- $=(BC + BCD) + (\overline{B}D + \overline{B}CD)$
- $= BC + \overline{B}D$

- **T10: Combining**
- **T6:** Commutativity
- **T6:** Commutativity
- **T7:** Associativity
- **T9': Covering**

Recap: Boolean Thms of Several Vars

#	Theorem	Dual	Name
T6	$B \bullet C = C \bullet B$	B+C = C+B	Commutativity
Τ7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	(B + C) + D = B + (C + D)	Associativity
Т8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	$B + (C \bullet D) = (B+C) (B+D)$	Distributivity
Т9	B • (B+C) = B	$B + (B \bullet C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	$(B+C) \bullet (B+\overline{C}) = B$	Combining
T11	$(B \bullet C) + (B \bullet \overline{D}) + (C \bullet D) =$ $(B \bullet C) + (B \bullet \overline{D})$	$(B+C) \bullet (B+\overline{D}) \bullet (C+D) =$ $(B+C) \bullet (B+\overline{D})$	Consensus

- Distributivity (T8, T8')
 - B(C+D) = BC + BD
 - $\mathbf{B} + \mathbf{C}\mathbf{D} = (\mathbf{B} + \mathbf{C})(\mathbf{B} + \mathbf{D})$
- Covering (T9')
 - A + AP = A
- **Combining (T10)** $PA + P\overline{A} = P$
- Expansion
 - $\mathbf{P} = \mathbf{P}\mathbf{A} + \mathbf{P}\mathbf{A}$
 - A = A + AP
- Duplication

- A = A + A
- A combination of Combining/Covering $PA + \overline{A} = P + \overline{A}$

Example 1:

Y = AB + AB

Example 1:

Y = AB + AB

Y = A T10: Combining

or

 $= A(B + \overline{B})$ T8: Distributivity= A(1)T5': Complements= AT1: Identity

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <82>

- Distributivity (T8, T8')
 - B(C+D) = BC + BD
 - $\mathbf{B} + \mathbf{C}\mathbf{D} = (\mathbf{B} + \mathbf{C})(\mathbf{B} + \mathbf{D})$
- Covering (T9')
 - A + AP = A
- **Combining** (T10) $PA + P\overline{A} = P$
- Expansion
 - $\mathbf{P} = \mathbf{P}\mathbf{A} + \mathbf{P}\mathbf{A}$
 - A = A + AP
- Duplication

- A = A + A
- A combination of Combining/Covering $PA + \overline{A} = P + \overline{A}$

Example 2:

Y = A(AB + ABC)

Example 2:

- Y = A(AB + ABC)
 - = A(AB(1+C))
 - = A(AB(1))
 - = A(AB)
 - = (AA)B
 - = *AB*

T8: DistributivityT2': Null ElementT1: IdentityT7: AssociativityT3: Idempotency

- **Distributivity** (**T8, T8'**) B (C+D) = BC + BD
 - $\mathbf{B} + \mathbf{C}\mathbf{D} = (\mathbf{B} + \mathbf{C})(\mathbf{B} + \mathbf{D})$
- Covering (T9')
 - A + AP = A
- Combining (T10) $PA + P\overline{A} = P$
- Expansion
 - $\mathbf{P} = \mathbf{P}\mathbf{A} + \mathbf{P}\mathbf{A}$
 - A = A + AP
- Duplication
 - A = A + A
- A combination of Combining/Covering $PA + \overline{A} = P + \overline{A}$

Example 3:

Y = **A'BC** + **A'**

Recall: A' = A

Example 3:

- **Y** = **A'BC** + **A'**
 - = A'

or

- = A'(BC + 1) = A'(1)
- = A'

- Recall: A' = A
- T9' Covering: X + XY = X
- T8: Distributivity
- T2': Null Element
- T1: Identity

- Distributivity (T8, T8')
 - B(C+D) = BC + BD
 - $\mathbf{B} + \mathbf{C}\mathbf{D} = (\mathbf{B} + \mathbf{C})(\mathbf{B} + \mathbf{D})$
- Covering (T9')
 - A + AP = A
- **Combining** (T10) $PA + P\overline{A} = P$
- Expansion
 - $\mathbf{P} = \mathbf{P}\mathbf{A} + \mathbf{P}\mathbf{A}$
 - A = A + AP
- Duplication
 - A = A + A
- A combination of Combining/Covering $PA + \overline{A} = P + \overline{A}$

Example 4:

Y = AB'C + ABC + A'BC

Example 4:

- Y = AB'C + ABC + A'BC
 - = AB'C + **ABC** + **ABC** + A'BC T3': Idempotency
 - = (AB'C+ABC) + (ABC+A'BC) T7': Associativity
 - = AC + BC T10: Combining

- Distributivity (T8, T8')
 - B(C+D) = BC + BD
 - $\mathbf{B} + \mathbf{C}\mathbf{D} = (\mathbf{B} + \mathbf{C})(\mathbf{B} + \mathbf{D})$
- Covering (T9')
 - A + AP = A
- Combining (T10) $PA + P\overline{A} = P$
- Expansion
 - $\mathbf{P} = \mathbf{P}\mathbf{A} + \mathbf{P}\mathbf{A}$
 - A = A + AP
- Duplication
 - A = A + A
- A combination of Combining/Covering $PA + \overline{A} = P + \overline{A}$

Example 5:

Y = AB + BC + B'D' + AC'D'

Example 5:

Y = AB + BC + B'D' + AC'D'

Method 1:

- Y = AB + BC + B'D' + (ABC'D' + AB'C'D')
- = (AB + ABC'D') + BC + (B'D' + AB'C'D')

$$= AB + BC + B'D'$$

Method 2:

$$Y = AB + BC + B'D' + AC'D' + AD'$$
$$= AB + BC + B'D' + AD'$$
$$= AB + BC + B'D'$$

T10: CombiningT6: CommutativityT7: AssociativityT9: Covering

T11: Consensus T9: Covering T11: Consensus

- Distributivity (T8, T8')
 - B(C+D) = BC + BD
 - $\mathbf{B} + \mathbf{C}\mathbf{D} = (\mathbf{B} + \mathbf{C})(\mathbf{B} + \mathbf{D})$
- Covering (T9')
 - A + AP = A
- **Combining** (T10) $PA + P\overline{A} = P$
- Expansion
 - $\mathbf{P} = \mathbf{P}\mathbf{A} + \mathbf{P}\mathbf{A}$
 - A = A + AP
- Duplication

- A = A + A
- A combination of Combining/Covering $PA + \overline{A} = P + \overline{A}$

Example 6:

Y = (A + BC)(A + DE)

Apply T8' first when possible: W+XZ = (W+X)(W+Z)

Example 6:

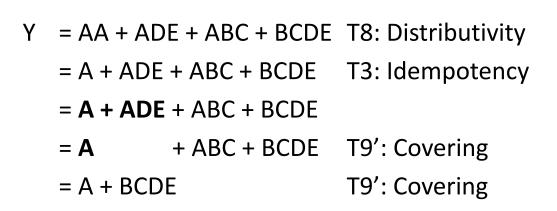
Y = (A + BC)(A + DE)

Apply T8' first when possible: W+XZ = (W+X)(W+Z)

Make: X = BC, Z = DE and rewrite equation

Y	= (A+X)(A+Z)	substitution (X=BC, Z=DE)
	= A + XZ	T8': Distributivity
	= A + BCDE	substitution

or



Example 6:

Y = (A + BC)(A + DE)

Apply T8' first when possible: W+XZ = (W+X)(W+Z)

Make: X = BC, Z = DE and rewrite equation

Y	= (A+X)(A+Z)	substitution (X=BC, Z=DE)	
	= A + XZ	T8': Distributivity	
	= A + BCDF	substitution	This is o

or

- Y = AA + ADE + ABC + BCDE T8: Distributivity = A + ADE + ABC + BCDE T3: Idempotency = A + ADE + ABC + BCDE= A + ADE + ABC + BCDE= A + ABC + BCDE T9': Covering
 - = A + BCDE T9': Covering

This is called *multiplying out* an expression to get sum-of-products (SOP) form.

Reminder

Midterm 1: Thursday, Oct. 3

- In class: 1 hour and 15 minutes
- Chap 1 2.6
- Closed book, closed notes
- No calculator
- Boolean Theorems & Axioms document will be attached as last page of the exam for your convenience

Multiplying Out: SOP Form

An expression is in simplified **sum-ofproducts (SOP)** form when all products contain literals only.

- SOP form: Y = AB + BC' + DE
- **NOT** SOP form: Y = DF + E(A'+B)
- SOP form: Z = A + BC + DE'F

Multiplying Out: SOP Form

Example:

Y = (A + C + D + E)(A + B)

Apply T8' first when possible: W+XZ = (W+X)(W+Z)

Multiplying Out: SOP Form

Example:

Y = (A + C + D + E)(A + B)

Apply T8' first when possible: W+XZ = (W+X)(W+Z)

Make: X = (C+D+E), Z = B and rewrite equation

Y = (A+X)(A+Z)substitution (X=(C+D+E), Z=B)= A + XZT8': Distributivity= A + (C+D+E)Bsubstitution= A + BC + BD + BET8: Distributivity

or

- Y = AA+AB+AC+BC+AD+BD+AE+BE T8: Distributivity= A+AB+AC+AD+AE+BC+BD+BE T3: Idempotency
 - **= A** + BC + BD + BE

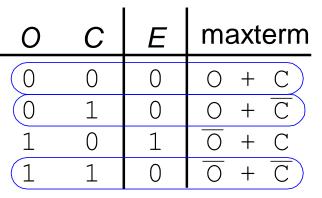
T9': Covering

Canonical SOP & POS Form

• SOP – sum-of-products

0	С	Ε	minterm	
0	0	0		
0	1	0	O C	E = OC
1	0	1	0 C	$=\Sigma(m_2)$
1	1	0	ΟC	= (2/

POS – product-of-sums



 $E = (O + C)(O + \overline{C})(\overline{O} + \overline{C})$ $= \Pi(M0, M1, M3)$

An expression is in simplified **productof-sums (POS)** form when all sums contain literals only.

- POS form: Y = (A+B)(C+D)(E'+F)
- NOT POS form: Y = (D+E)(F'+GH)
- POS form: Z = A(B+C)(D+E')

Example 1:

Y = (**A** + **B**'**CDE**)

Apply T8' first when possible: W+XZ = (W+X)(W+Z)

Example 1:

Y = (**A** + **B**'**CDE**)

Apply T8' first when possible: W+XZ = (W+X)(W+Z)

Make: X = B'C, Z = DE and rewrite equation

$$Y = (A + XZ)$$

substitution (X=B'C, Z=DE)

- T8': Distributivity
- T8': Distributivity

Example 2:

Y = AB + C'DE + F

Apply T8' first when possible: W+XZ = (W+X)(W+Z)

Example 2:

Y = AB + C'DE + F

Apply T8' first when possible: W+XZ = (W+X)(W+Z)

Make: W = AB, X = C', Z = DE and rewrite equation

- Y = (W + XZ) + F
 - = (W+X)(W+Z) + F

- substitution W = AB, X = C', Z = DE
- T8': Distributivity
- = (AB+C')(AB+DE)+F substitution
- = (A+C')(B+C')(AB+D)(AB+E)+F T8': Distributivity
- = (A+C')(B+C')(A+D)(B+D)(A+E)(B+E)+F T8': Distributivity
- = (A+C'+F)(B+C'+F)(A+D+F)(B+D+F)(A+E+F)(B+E+F) T8': Distributivity

Boolean Thms of Several Vars: Duals

#	Theorem	Dual	Name
T6	$B \bullet C = C \bullet B$	B+C = C+B	Commutativity
Т7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	(B + C) + D = B + (C + D)	Associativity
Т8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	$B + (C \bullet D) = (B+C) (B+D)$	Distributivity
Т9	B • (B+C) = B	$B + (B \bullet C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	$(B+C) \bullet (B+\overline{C}) = B$	Combining
T11	$(B \bullet C) + (B \bullet \overline{D}) + (C \bullet D) =$ $(B \bullet C) + (B \bullet \overline{D})$	$(B+C) \bullet (B+\overline{D}) \bullet (C+D) =$ $(B+C) \bullet (B+\overline{D})$	Consensus

Axioms and theorems are useful for *simplifying* equations.

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <109>

Simplification methods

- Distributivity (T8, T8')
 - B(C+D) = BC + BD
 - $\mathbf{B} + \mathbf{C}\mathbf{D} = (\mathbf{B} + \mathbf{C})(\mathbf{B} + \mathbf{D})$
- Covering (T9')
 - A + AP = A
- **Combining (T10)** $PA + P\overline{A} = P$
- **Expansion**
 - $\mathbf{P} = \mathbf{P}\mathbf{A} + \mathbf{P}\mathbf{A}$
 - A = A + AP
- Duplication
 - A = A + A
- A combination of Combining/Covering PA + \overline{A} = P + \overline{A}

 $\ensuremath{\mathbb{C}}$ Digital Design and Computer Architecture, 2^{nd} Edition, 2012

DeMorgan's Theorem

Number	Theorem	Name
T12	$\overline{B_0 \bullet B_1 \bullet B_2} = \overline{B_0} + \overline{B_1} + \overline{B_2}$	DeMorgan's Theorem

DeMorgan's Theorem

Number	Theorem	Name
T12	$\overline{B_0 \bullet B_1 \bullet B_2} = \overline{B_0} + \overline{B_1} + \overline{B_2}$	DeMorgan's
		Theorem

The complement of the product is the sum of the complements

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <112>

DeMorgan's Theorem: Dual

#	Theorem	Dual	Name
T12	$B_0 \bullet B_1 \bullet B_2 \dots =$	$B_0 + B_1 + B_2 \dots =$	DeMorgan's
	$\overline{B}_0 + \overline{B}_1 + \overline{B}_2 \dots$	$B_0 \bullet B_1 \bullet B_2 \dots$	Theorem

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <113>

DeMorgan's Theorem: Dual

#	Theorem	Dual	Name
T12	$B_0 \bullet B_1 \bullet B_2 \dots =$	$B_0 + B_1 + B_2 \dots =$	DeMorgan's
	$\overline{B}_0 + \overline{B}_1 + \overline{B}_2 \dots$	$B_0 \bullet B_1 \bullet B_2 \dots$	Theorem

The complement of the product is the sum of the complements

DeMorgan's Theorem: Dual

#	Theorem	Dual	Name
T12	$B_0 \bullet B_1 \bullet B_2 \dots =$	$B_0 + B_1 + B_2 \dots =$	DeMorgan's
	$\overline{B}_0 + \overline{B}_1 + \overline{B}_2 \dots$	$B_0 \bullet B_1 \bullet B_2 \dots$	Theorem

The complement of the product is the sum of the complements.

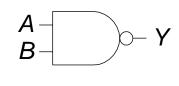
Dual: The complement of the sum is the product of the complements.

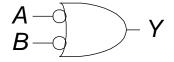
© Digital Design and Computer Architecture, 2nd Edition, 2012

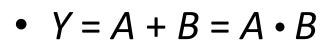
Chapter 2 <115>

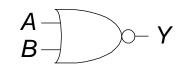
DeMorgan's Theorem

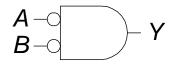
• Y = AB = A + B











© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <116>

 $Y = (A + \overline{BD})\overline{C}$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <117>

 $Y = (A + \overline{BD})\overline{C}$

- $=(\overline{A+BD})+\overline{\overline{C}}$
- $=(\overline{A}\bullet(\overline{\overline{B}\overline{D}}))+C$
- $=(\overline{A}\bullet(BD))+C$
- $=\overline{A}BD + C$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <118>

 $Y = (\overline{ACE} + \overline{D}) + B$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <119>

$$\gamma = (\overline{ACE} + \overline{D}) + B$$

$$= (\overline{AC}E + \overline{D}) \bullet \overline{B}$$

$$=(\overline{ACE}\bullet\overline{D})\bullet\overline{B}$$

$$=((\overline{AC}+\overline{E})\bullet D)\bullet \overline{B}$$

$$= ((AC + \overline{E}) \bullet D) \bullet \overline{B}$$

$$= (ACD + D\overline{E}) \bullet \overline{B}$$

$$= A\overline{B}CD + \overline{B}D\overline{E}$$

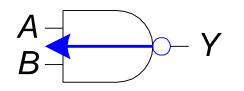
© Digital Design and Computer Architecture, 2nd Edition, 2012

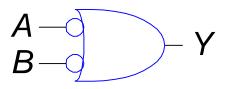
Chapter 2 <120>

Bubble Pushing

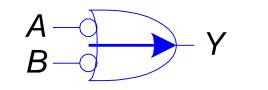
• Backward:

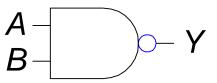
- Body changes
- Adds bubbles to inputs





- Forward:
 - Body changes
 - Adds bubble to output



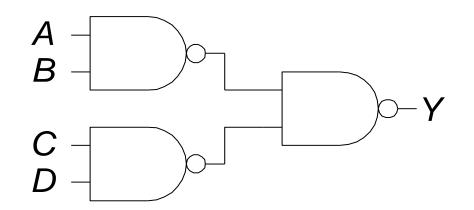


© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <121>

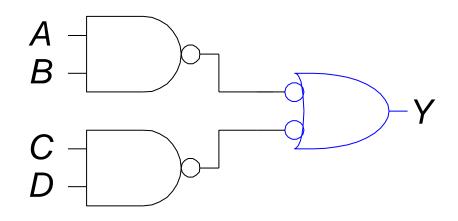
Bubble Pushing

• What is the Boolean expression for this circuit?



Bubble Pushing

• What is the Boolean expression for this circuit?



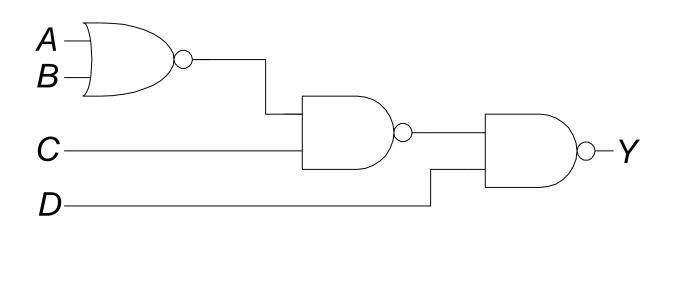
Y = AB + CD

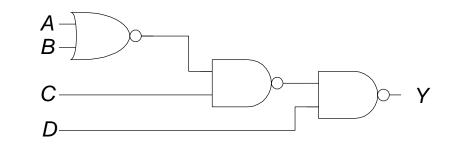
© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <123>

Bubble Pushing Rules

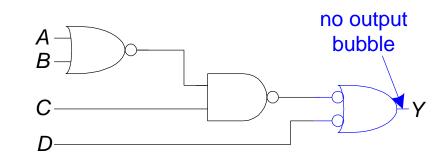
- Begin at output, then work toward inputs
- Push bubbles on final output back
- Draw gates in a form so bubbles cancel





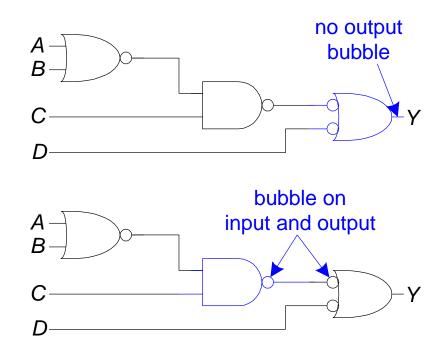
© Digital Design and Computer Architecture, 2nd Edition, 2012

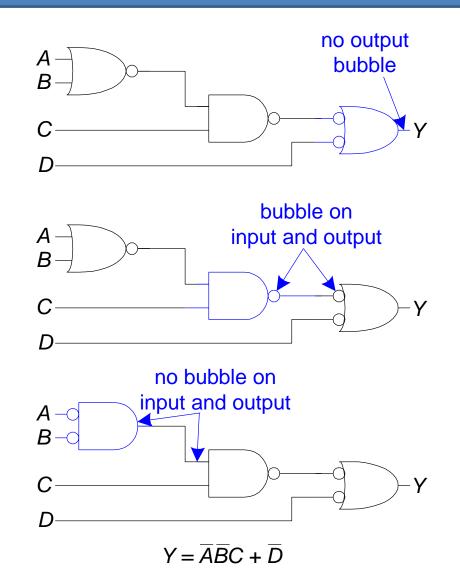
Chapter 2 <125>



© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <126>





© *Digital Design and Computer Architecture*, 2nd Edition, 2012

Chapter 2 <128>

Canonical SOP & POS Form Revisited

• SOP – sum-of-products

0	С	Е	minterm
0	0	0	\overline{O} \overline{C}
0	1	0	O C
(1	0	1	$O\overline{C}$
1	1	0	O C

How do we implement this logic function with gates?

 $E = O\overline{C}$ $= \Sigma(m_2)$

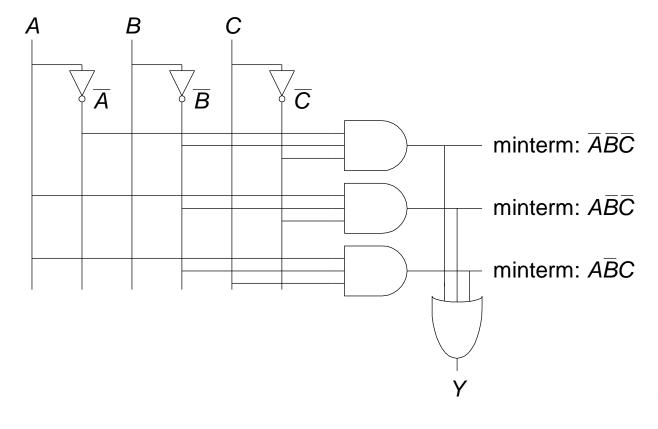
• POS – product-of-sums



 $E = (O + C)(O + \overline{C})(\overline{O} + \overline{C})$ $= \Pi(M0, M1, M3)$

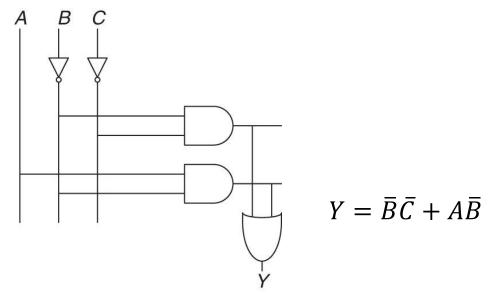
From Logic to Gates

- Two-level logic: ANDs followed by ORs
- Example: $Y = \overline{ABC} + A\overline{BC} + A\overline{BC}$



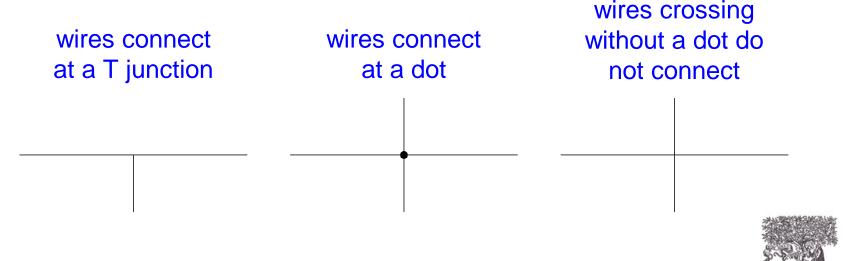
Circuit Schematics Rules

- Inputs on the left (or top)
- Outputs on right (or bottom)
- Gates flow from left to right
- Straight wires are best



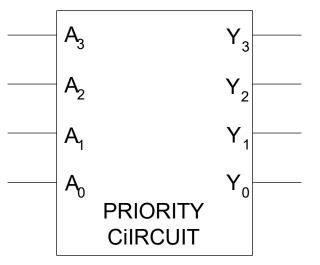
Circuit Schematic Rules (cont.)

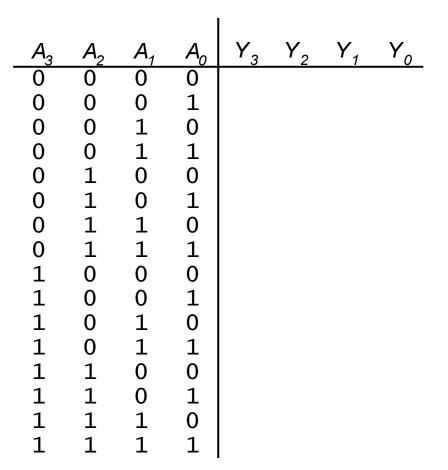
- Wires always connect at a T junction
- A dot where wires cross indicates a connection between the wires
- Wires crossing *without* a dot make no connection



Multiple-Output Circuits

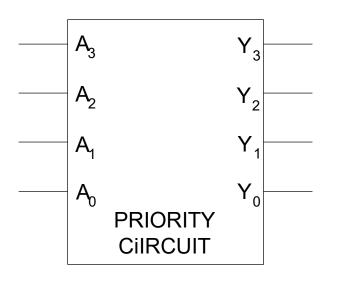
Example: Priority Circuit
 Output asserted
 corresponding to
 most significant
 TRUE input

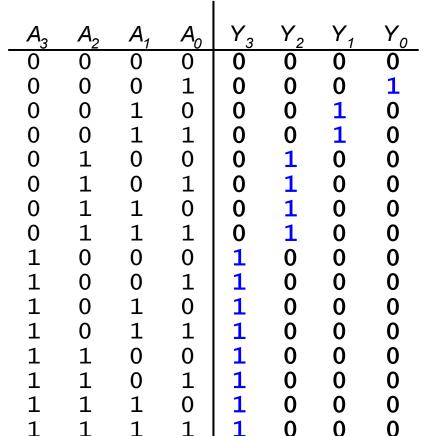




Multiple-Output Circuits

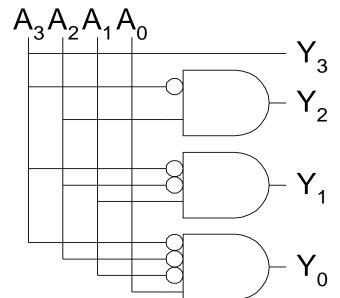
Example: Priority Circuit
 Output asserted
 corresponding to
 most significant
 TRUE input





Priority Circuit Hardware

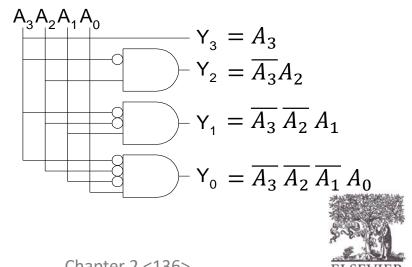
	A_{3}	A_2	A_1	A_{o}	Y ₃	Y ₂	Y ₁	Y ₀				
•	0	0	0	0	0	0	0	0		~ ^	· · ·	
	0	0	0	0 1	0	0	0	1	4	A_{3}	$\lambda_2 F$	ł
	0	0	1	0	0	0	1	0		5	_	
	0	0	1	1	0	0	1	0				
	0 0 0 0 0 0	1	0	1 0 1 0 1 0 1	0	0 1	1 1 0	0				╉
	0	1	0	1	0	1 1 1	0	0				
	0	1	1	0	0	1	0	0 0				
	0	1	1	1	0	1	0	0				
	1	0	0	0	1	0	0	0				1
	1	0	0	1	1	0	0	0				
	1	0	1	0 1	1	0	0	0 0				
	1	0	1	1	1	0 0	0 0 0	0				╉
	1	1	0	0	1	0	0	0			L	t
	1	1	0	1	1	0	0	0				
	1	1	1	0	1	0	0	0				
	1	1	1	1	1	0	0	0				



Don't Cares

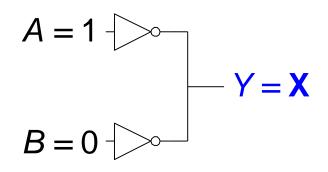
Simplify truth table by ignoring entries

Much easier to read off Boolean equations



Contention: X

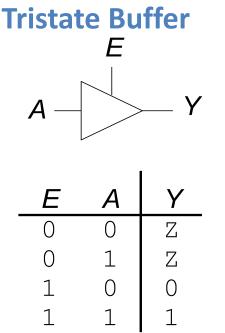
- Contention: circuit tries to drive output to 1 and 0
 - Actual value somewhere in between
 - Could be 0, 1, or in forbidden zone
 - Might change with voltage, temperature, time, noise
 - Often causes excessive power dissipation



- Warnings:
 - Contention usually indicates a **bug**.
 - X is used for "don't care" and contention look at the context to tell them apart

Floating: Z

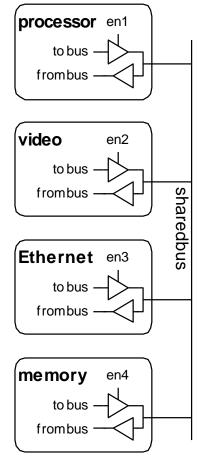
- Floating, high impedance, open, high Z
- Floating output might be 0, 1, or somewhere in between
 - A voltmeter won't indicate whether a node is floating



Note: tristate buffer has an enable bit (E) to turn on the gate

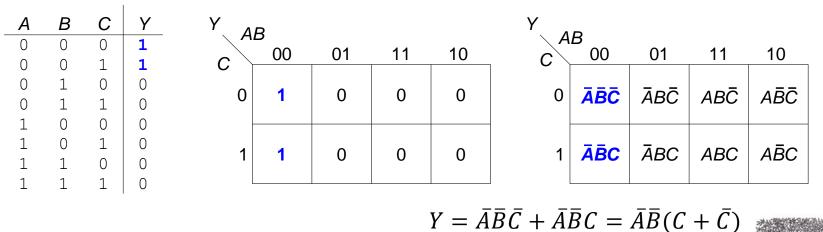
Tristate Busses

- Floating nodes are used in tristate busses
 - Many different drivers
 - Exactly one is active at once



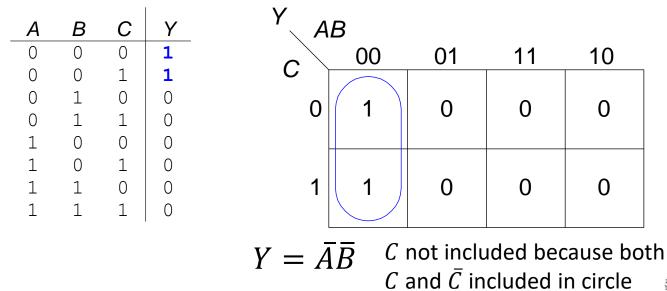
Karnaugh Maps (K-Maps)

- Boolean expressions can be minimized by combining terms
 - $PA + P\overline{A} = P$
- K-maps minimize equations graphically
 - Put terms to combine close to one another

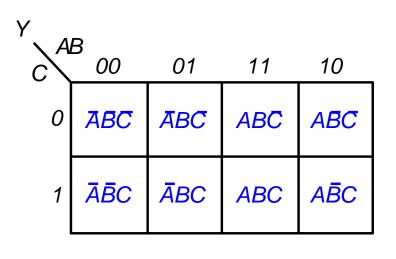


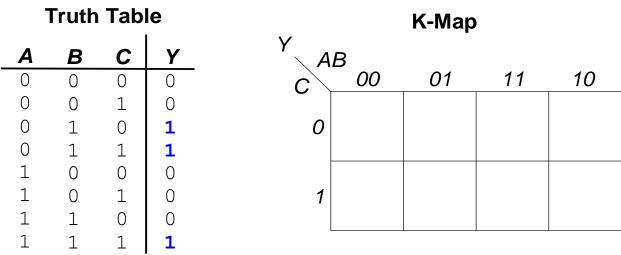
K-Map

- Circle 1's in adjacent squares
- In Boolean expression, include only literals whose true and complement form are *not* in the circle



3-Input K-Map





K-Map Definitions

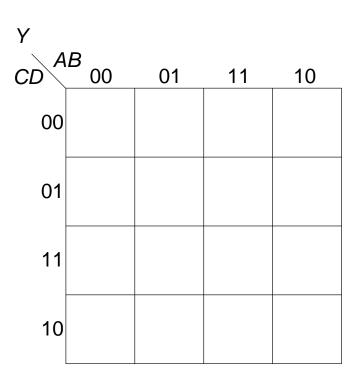
- **Complement:** variable with a bar over it $\bar{A}, \bar{B}, \bar{C}$
- Literal: variable or its complement
 - Ā, A, Ē, B, C, Ē
- Implicant: product of literals
 ABC, AC, BC
- **Prime implicant:** implicant corresponding to the largest circle in a K-map

K-Map Rules

- Every **1 must be circled** at least once
- Each circle must span a power of 2 (i.e. 1, 2, 4) squares in each direction
- Each circle must be as large as possible
- A circle may wrap around the edges
- A "don't care" (X) is circled only if it helps minimize the equation

4-Input K-Map

A	В	С	D	Y
			0	1
0	0 0	0	1	0
0	0	1	1 0	1
0		0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	1	1
0	1	0	0	0
0	0 1 1 1	0	1 0 1 0	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	1 0 0 0 1	1	1 0 1 0 1 0	0
1	1	0	0	0
1	1	0		0
0 0 0 0 0 0 0 1 1 1 1 1 1 1	1	1 1	1 0	1 0 1 0 1 1 1 1 1 0 0 0 0 0 0
1	1	1	1	0



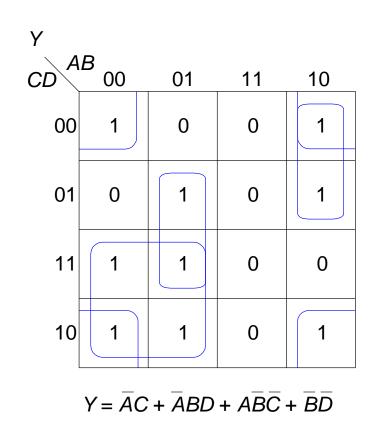
4-Input K-Map

A	В	С	D	Y
0	0		0	1
0	0	0 0	1	0
0	0 0 0	1	1 0	1
0	0	1	1	1
0	1	0	0	0
0	1 1 1 0 0 0	0	1 0 1 0	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1 0 1 0 1 0 1 0	0
1	1	0	0	0
1	1	0	1	0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1	1	1 0 0 1 1 0 0 1 1 0 0 1 1	0	1 0 1 0 1 1 1 1 1 0 0 0 0
1	1	1	1	0

Y				
CDA	B 00	01	11	10
00	1	0	0	1
01	0	1	0	1
11	1	1	0	0
10	1	1	0	1

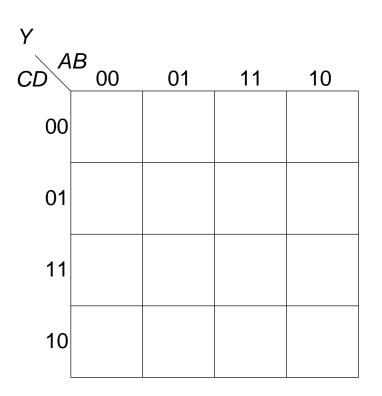
4-Input K-Map

^	~	~	~	
A	В	С	D	Y
0	0	0	0	1
0	0 0	0 0	1	1 0
0		1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
0 0 0 0 0 0 1 1 1 1 1 1	0	1 0 0 1 1 0 0 1 1 0	0 1 0 1 0 1 0 1 0 1 0 1 0	0
1	1	0	0	0
1	1	0		0
1 1	0 1 1 1 1 0 0 0 1 1 1 1 1	0 1 1	1 0	1 1 1 1 1 1 1 0 0 0 0 0 0
1	1	1	1	0



K-Maps with Don't Cares

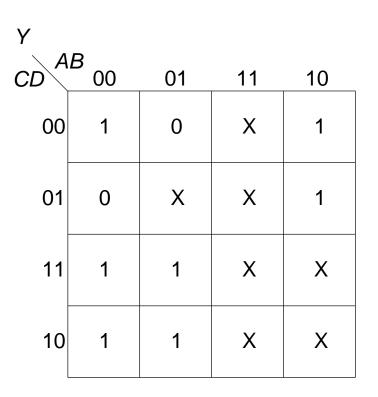
A	В	С	D	Y
0	0	0	0	1
	0	0	1	0
0 0 0 0 0 1 1 1 1 1 1 1	0	1	1 0	1
0	0	1	1 0	1 0
0		0	0	0
0	1 1	0	1	
0	1	1	1 0 1 0	X 1 1 1 X X X X X X X
0	1		1	1
1	0	1 0	0	1
1	0	0	1 0	1
1	0	1	0	Х
1	0	1 1 0	1	Х
1	1	0	1 0 1 0	Х
1	1	0	1	Х
1	1	1	0	X
1	1	1	1	X



K-Maps with Don't Cares

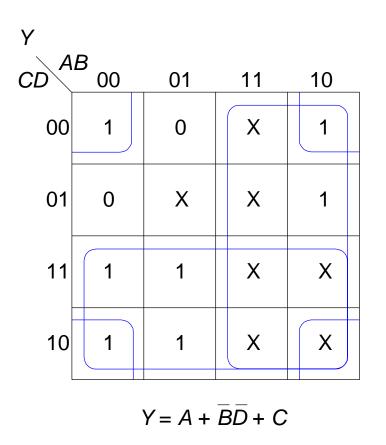
T.

Α	В	С	D	Y
0	0	0	0	1
0 0	0	0	1 0	1 0
0	0	1	0	1
0 0 0 0 1 1 1	0	1	1	1 0 X 1 1 1 X X X
0	1	1 0	1 0	0
0	1	0	1	Х
0	1	1	1 0 1 0	1
0	1	1	1	1
1	0	0	0	1
1	0	0		1
1	0	1	1 0	Х
1	0	1	1	Х
1 1	1	0	1 0	Х
1	1	0	1 0	Х
1	1	1	0	X X X
1	1	1	1	Х



K-Maps with Don't Cares

				I
Α	В	С	D	Y
0	0	0	0	1
0	0	0	1	1 0
0	0	1	1 0 1 0	
0	0	1 0	1	1
0	1	0	0	0
0	1	0		1 1 0 X 1 1 1 1 X X X X X
0	1	1	0	1
0	1	1 1	1	1
1	0	0	0	1
1		0	1	1
1	0		0	Х
1	0 0 0 1	1 1 0	1	Х
1	1	0	0	Х
1	1	0	1	Х
0 0 0 0 0 1 1 1 1 1 1 1	1	1	1 0 1 0 1 0 1 0 1 0	Х
1	1	1	1	Х



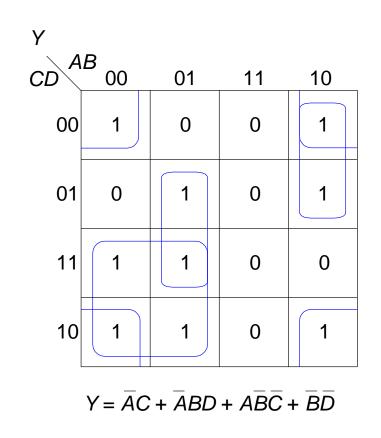
4-Input K-Map: POS & SOP Form

A	В	С	D	Y
0	0	0	0	1
0	0	0	1	0
0	0	1	1 0	1
0	0	1	1	1
0	1	0	1 0	0
0	0 0 1 1 1 1 0 0 0 0 1 1 1	0	1	1
0	1	1	1 0 1 0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1	1	0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 1 0 1 0	1 0 1 0 1 1 1 1 1 0 0 0 0
1	1	1	1	0

Y	_			
CD A	B 00	01	11	10
00	1	0	0	1
01	0	1	0	1
11	1	1	0	0
10	1	1	0	1

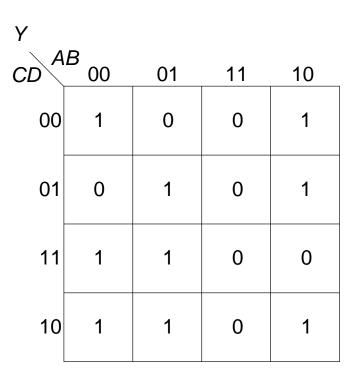
4-Input K-Map: POS Form

A	В	С	D	Y
0	0		0	1
0	0	0 0	1	0
0	0		1 0	1
0	0	1 1 0	1	1
0	1	0	1 0	0
0	1	0		1
0	1	0 1 1 0	1 0 1 0	1
0	1	1	1	1
1	0	0	0	1
1	0	0		1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
0 0 0 0 0 0 1 1 1 1 1 1 1 1	0 0 1 1 1 1 0 0 0 0 1 1 1 1	0 1 1 0 0 1 1	1 0 1 0 1 0	1 0 1 0 1 1 1 1 0 0 0 0 0 0
1	1	1	1	0



4-Input K-Map: POS Form

A	В	С	D	Y
0	0		0	1
0	0	0 0	1	0
0	0		1 0	1
0	0	1		1
0	1	1 1 0	1 0	0
0	1	0		1
0	1	0 1 1 0	1 0 1 0	1
0	1	1	1	1
1	0	0	0	1
1	0			1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1	0 0 1 1 1 1 0 0 0 1 1 1 1	0 1 1 0 0 1 1	1 0 1 0 1 0	1 0 1 0 1 1 1 1 0 0 0 0 0
1	1	1	0	0
1	1	1	1	0



Canonical POS Expansion

- "Add" literal/complement terms to reverse simplification (→expand literal)
- Example
 - Y = C
 - $Y = C + A\overline{A}$
 - $Y = (C + A) \cdot (C + \overline{A})$
 - $Y = [(C + A) + B\overline{B}](C + \overline{A})$
 - $Y = [(C + A + B)(C + A + \overline{B})](C + \overline{A})$

Combinational Building Blocks

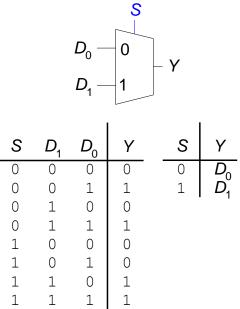
- Multiplexers
- Decoders

Multiplexer (Mux)

- Selects between one of *N* inputs to connect to output
 - log₂N-bit required to select input control input S
- Example:

2:1 Mux (2 inputs to 1 output)

- N = 2
- $\log_2 2 = 1$ control bit required



S

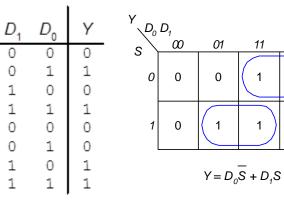
0

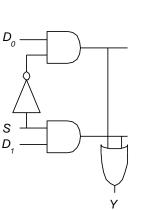
0

1 1 1

Multiplexer Implementations

- Logic gates
 - Sum-of-products form





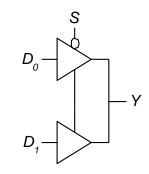
11

1

10

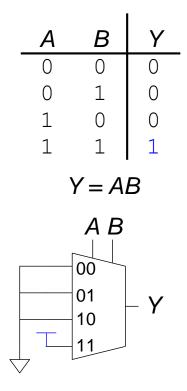
0

- Tristates
 - For an N-input mux, use N tristates
 - Turn on exactly one to ٠ select the appropriate input



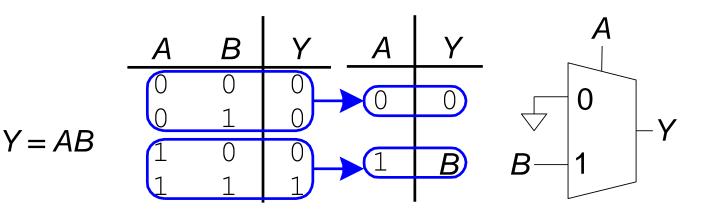
Logic using Multiplexers

- Using the mux as a lookup table
 - Zero outputs tied to GND
 - One output tied to VDD



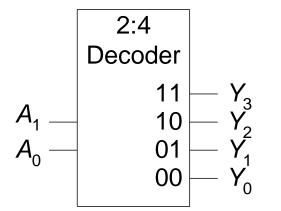
Logic using Multiplexers

• Reducing the size of the mux



Decoders

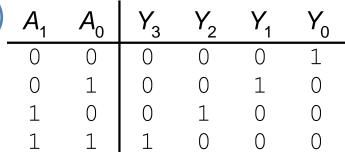
- *N* inputs, 2^{*N*} outputs
- One-hot outputs: only one output HIGH at once



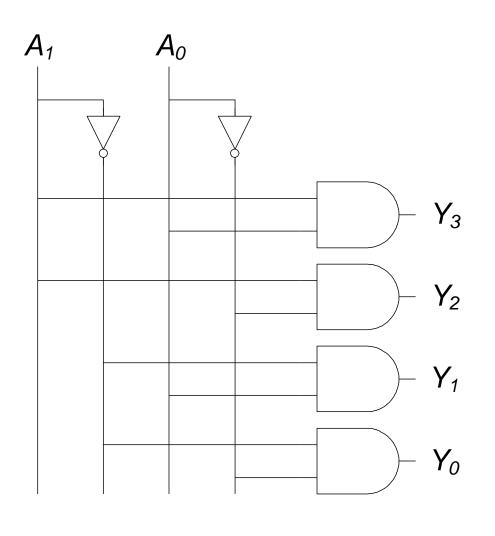
• Example

2:4 Decoder (2 inputs to 4 outputs)

• A_i decimal value selects the corresponding output

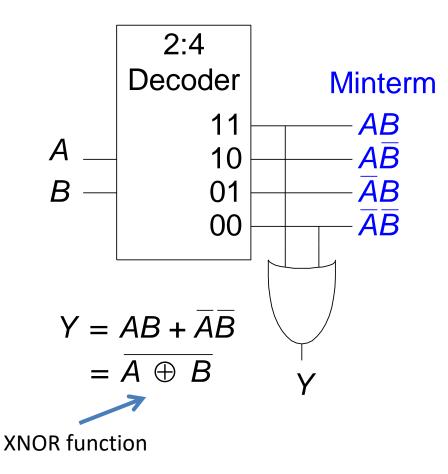


Decoder Implementation



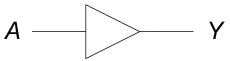
Logic Using Decoders

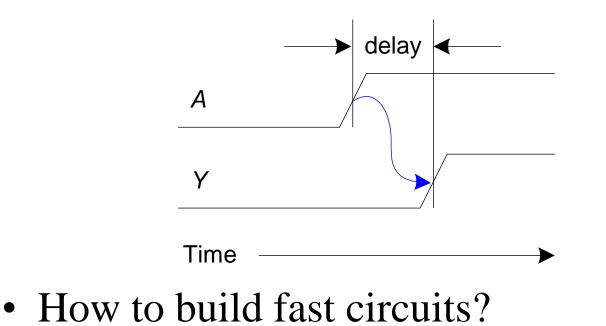
• OR minterms



Timing

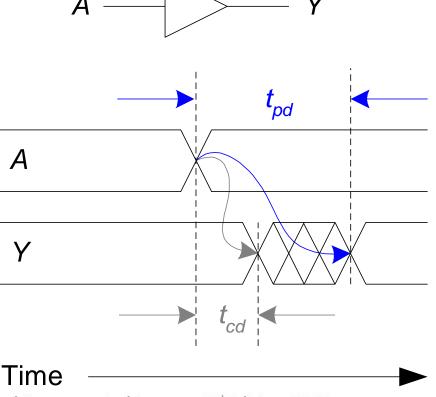
• Delay between input change and output changing





Propagation & Contamination Delay

- Propagation delay: t_{pd} = max delay from input to final output
- Contamination delay: t_{cd} = min delay from input to initial output change



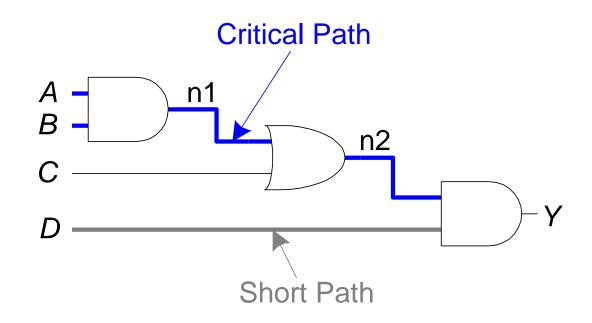
Note: Timing diagram shows a signal with a high and low and transition time as an 'X'.

Cross hatch indicates unknown/changing values

Propagation & Contamination Delay

- Delay is caused by
 - Capacitance and resistance in a circuit
 - Speed of light limitation
- Reasons why t_{pd} and t_{cd} may be different:
 - Different rising and falling delays
 - Multiple inputs and outputs, some of which are faster than others
 - Circuits slow down when hot and speed up when cold

Critical (Long) & Short Paths



Critical (Long) Path: $t_{pd} = 2t_{pd_AND} + t_{pd_OR}$ **Short Path:** $t_{cd} = t_{cd_AND}$

© *Digital Design and Computer Architecture*, 2nd Edition, 2012

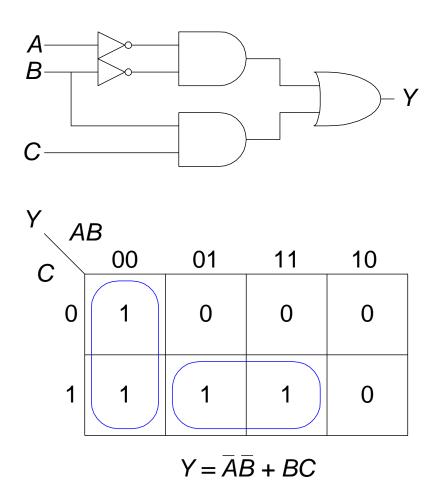
Chapter 2 <166>

Glitches

• When a single input change causes an output to change multiple times

Glitch Example

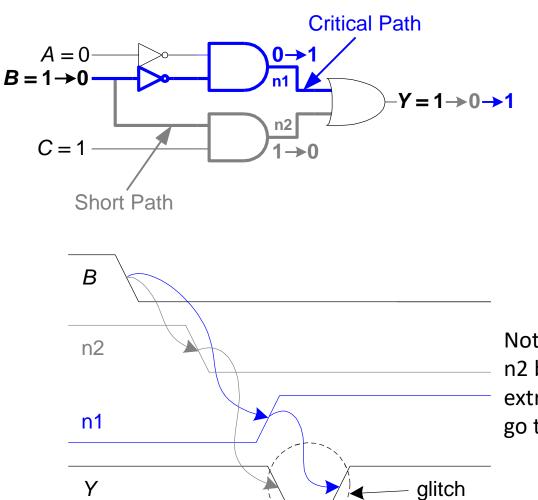
• What happens when A = 0, C = 1, B falls?



© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 2 <168>

Glitch Example (cont.)

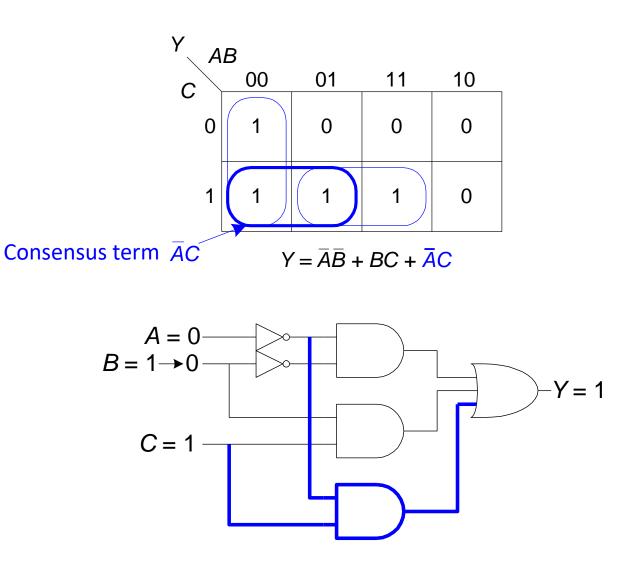


Note: n1 is slower than n2 because of the extra inverter for B to go through

© Digital Design and Computer Architecture, 2nd Edition, 2012

Time

Fixing the Glitch



Why Understand Glitches?

- Glitches shouldn't cause problems because of synchronous design conventions (see Chapter 3)
- It's important to **recognize** a glitch: in simulations or on oscilloscope
- Can't get rid of all glitches simultaneous transitions on multiple inputs can also cause glitches

