

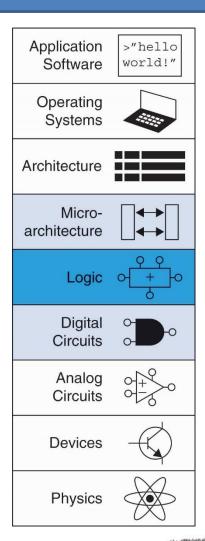
Chapter 5

Digital Design and Computer Architecture, 2nd Edition

David Money Harris and Sarah L. Harris

Chapter 5 :: Topics

- Introduction
- Arithmetic Circuits
- Number Systems
- Sequential Building Blocks
- Memory Arrays
- Logic Arrays

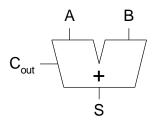


Introduction

- Digital building blocks:
 - Gates, multiplexers, decoders, registers, arithmetic circuits, counters, memory arrays, logic arrays
- Building blocks demonstrate hierarchy, modularity, and regularity:
 - Hierarchy of simpler components
 - Well-defined interfaces and functions
 - Regular structure easily extends to different sizes
- You can use these building blocks to build a processor (see Chapter 7, CpE 300)

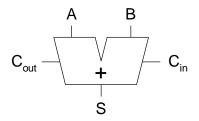
Review: 1-Bit Adders

Half Adder



Α	В	C _{out}	S
0	0		
0	1		
1	0		
1	1		

Full Adder

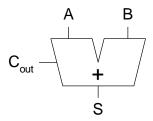


C_{in}	Α	В	C _{out}	S
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

$$S = C_{out} =$$

Review: 1-Bit Adders

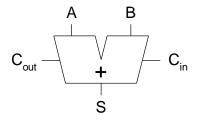
Half Adder



Α	В	C _{out}	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$S = C_{out} =$$

Full Adder

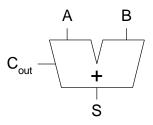


C_{in}	Α	В	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = C_{out} =$$

Review: 1-Bit Adders

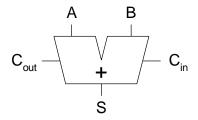
Half Adder



Α	В	C _{out}	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$\begin{array}{ll} \mathsf{S} &= \mathsf{A} \oplus \mathsf{B} \\ \mathsf{C}_{\mathsf{out}} &= \mathsf{A} \mathsf{B} \end{array}$$

Full Adder



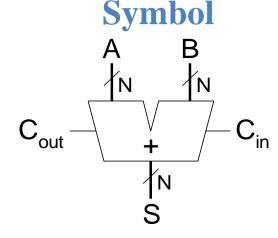
C_{in}	Α	В	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = AB + AC_{in} + BC_{in}$$

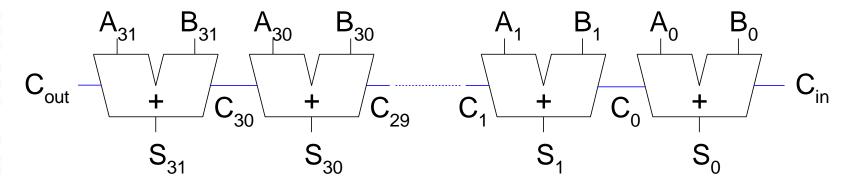
Multibit Adders (CPAs)

- Types of carry propagate adders (CPAs):
 - Ripple-carry (slow)
 - Carry-lookahead (fast)
 - Prefix (faster) see book
- Carry-lookahead and prefix adders faster for large adders but require more hardware



Ripple-Carry Adder

- Chain 1-bit adders together
- Carry ripples through entire chain
- Disadvantage: slow



Ripple-Carry Adder Delay

$$t_{\text{ripple}} = Nt_{FA}$$

where t_{FA} is the delay of a 1-bit full adder

Some definitions:

Column i produces a carry out by either generating a carry out
 or propagating a carry in to the carry out

Some definitions:

- Column i produces a carry out by either generating a carry out
 or propagating a carry in to the carry out
- Generate (G_i) and propagate (P_i) signals for each column:
 - **Generate:** Column i will generate a carry out if A_i AND B_i are both 1.

$$G_i = A_i B_i$$

Some definitions:

- Column i produces a carry out by either generating a carry out
 or propagating a carry in to the carry out
- Generate (G_i) and propagate (P_i) signals for each column:
 - Generate: Column i will generate a carry out if A_i AND B_i are both 1.

$$G_i = A_i B_i$$

• **Propagate:** Column i will propagate a carry in to the carry out if A_i OR B_i is 1.

$$\boldsymbol{P}_i = \boldsymbol{A}_i + \boldsymbol{B}_i$$

Some definitions:

- Column i produces a carry out by either generating a carry out
 or propagating a carry in to the carry out
- Generate (G_i) and propagate (P_i) signals for each column:
 - Generate: Column i will generate a carry out if A_i AND B_i are both 1.

$$G_i = A_i B_i$$

• **Propagate:** Column i will propagate a carry in to the carry out if A_i OR B_i is 1.

$$\boldsymbol{P}_i = \boldsymbol{A}_i + \boldsymbol{B}_i$$

• Carry out: The carry out of column $i(C_i)$ is:

$$C_i = G_i + P_i C_{i-1}$$

Some definitions:

- Column i produces a carry out by either generating a carry out
 or propagating a carry in to the carry out
- Generate (G_i) and propagate (P_i) signals for each column:
 - Generate: Column i will generate a carry out if A_i AND B_i are both 1.

$$G_i = A_i B_i$$

• **Propagate:** Column i will propagate a carry in to the carry out if A_i OR B_i is 1.

$$\boldsymbol{P}_i = \boldsymbol{A}_i + \boldsymbol{B}_i$$

• Carry out: The carry out of column $i(C_i)$ is:

$$C_i = G_i + P_i C_{i-1} = A_i B_i + (A_i + B_i) C_{i-1}$$

Compute carry out (C_{out}) for k-bit blocks using generate and propagate signals

• Example: 4-bit blocks:

• Example: 4-bit blocks:

Propagate: $P_{3:0} = P_3 P_2 P_1 P_0$

• All columns must propagate

Generate:
$$G_{3:0} = G_3 + P_3 (G_2 + P_2 (G_1 + P_1 G_0))$$

 Most significant bit generates or lower bit propagates a generated carry

• Example: 4-bit blocks:

Propagate:
$$P_{3:0} = P_3 P_2 P_1 P_0$$

• All columns must propagate

Generate:
$$G_{3:0} = G_3 + P_3 (G_2 + P_2 (G_1 + P_1 G_0))$$

- Most significant bit generates or lower bit propagates a generated carry
- Generally,

$$P_{i:j} = P_{i}P_{i-1}P_{i-2}P_{j}$$

$$G_{i:j} = G_{i} + P_{i} (G_{i-1} + P_{i-1} (G_{i-2} + P_{i-2}G_{j}))$$

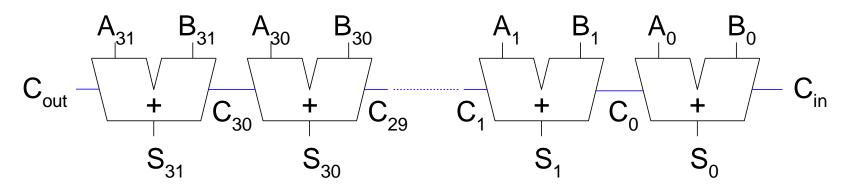
$$C_{i} = G_{i:j} + P_{i:j} C_{j-1}$$

Carry-Lookahead Addition

- Step 1: Compute G_i and P_i for all columns
- Step 2: Compute G and P for k-bit blocks
- Step 3: C_{in} propagates through each k-bit propagate/generate block

Ripple-Carry Adder

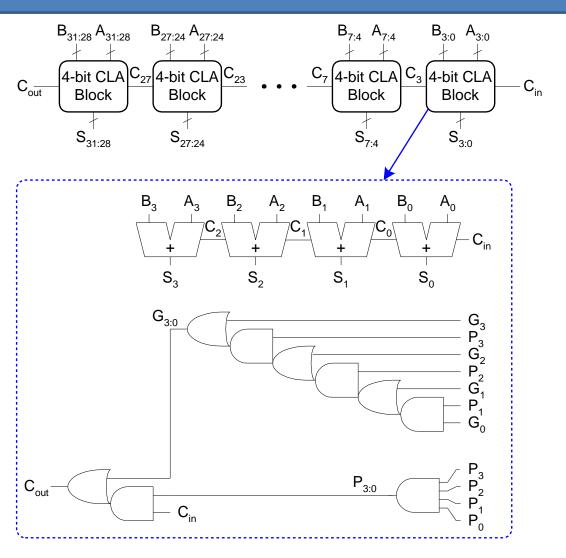
- Chain 1-bit adders together
- Carry ripples through entire chain
- Disadvantage: slow



$$t_{\text{ripple}} = Nt_{FA}$$

DILDING

32-bit CLA with 4-bit Blocks



Carry-Lookahead Adder Delay

For *N*-bit CLA with *k*-bit blocks:

$$t_{CLA} = t_{pg} + t_{pg_block} + (N/k - 1)t_{AND_OR} + kt_{FA}$$

 $-t_{pg}$: delay to generate all P_i , G_i

 $-t_{pg_block}$: delay to generate all $P_{i:j}$, $G_{i:j}$

 $-\ t_{\rm AND_OR}$: delay from $C_{\rm in}$ to $C_{\rm out}$ of final AND/OR gate in k-bit CLA block

An N-bit carry-lookahead adder is generally much faster than a ripple-carry adder for N > 16

Adder Delay Comparisons

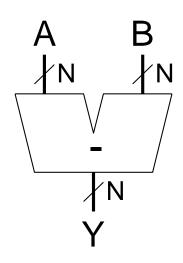
Compare delay of 32-bit ripple-carry and carry-lookahead adders

- CLA has 4-bit blocks
- 2-input gate delay = 100 ps; full adder delay = 300 ps
- Ripple
 - $t_{ripple} = Nt_{FA} = 32(300) = 9.6 \text{ ns}$
- Carry-lookahead
 - $t_{CLA} = t_{pg} + t_{pg_block} + (N/k 1)t_{AND_OR} + k t_{FA}$
 - $t_{CLA} = 100 + 600 + 7(200) + 4(300) = 3.3 \text{ ns}$

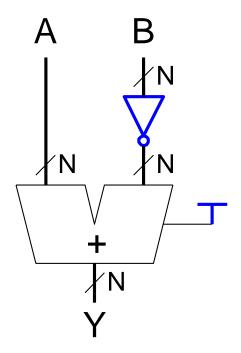
AND/OR 6 Gates 2 Gates for for
$$G_{3:0}$$
 $C_{in} \rightarrow C_{out}$

Subtracter

Symbol

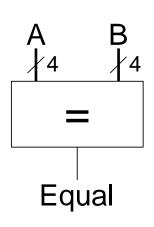


Implementation

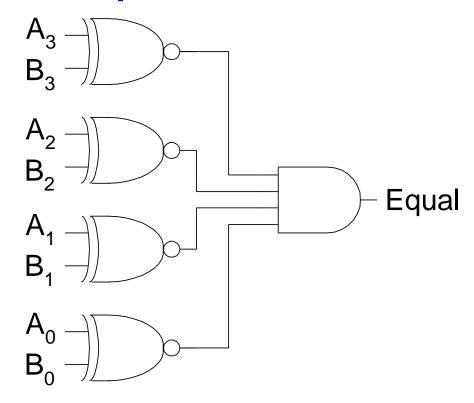


Comparator: Equality

Symbol



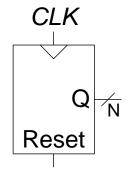
Implementation



Counters

- Increments on each clock edge
- Used to cycle through numbers. For example,
 - -000,001,010,011,100,101,110,111,000,001...
- Example uses:
 - Digital clock displays
 - Program counter: keeps track of current instruction executing

Symbol

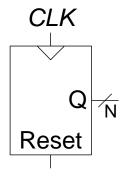


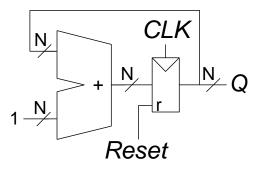
Counters

- Increments on each clock edge
- Used to cycle through numbers. For example,
 - -000,001,010,011,100,101,110,111,000,001...
- Example uses:
 - Digital clock displays
 - Program counter: keeps track of current instruction executing

Symbol

Implementation

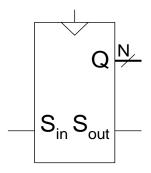




Shift Registers

- Shift a new bit in on each clock edge
- Shift a bit out on each clock edge
- Serial-to-parallel converter: converts serial input (S_{in}) to parallel output $(Q_{0:N-1})$

Symbol:



Shift Registers

- Shift a new bit in on each clock edge
- Shift a bit out on each clock edge
- Serial-to-parallel converter: converts serial input (S_{in}) to parallel output $(Q_{0:N-1})$

Symbol:

Implementation:

