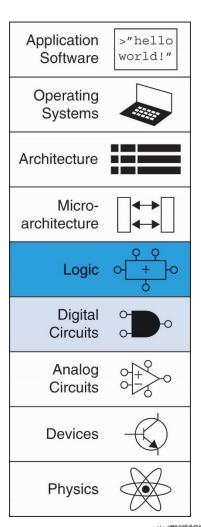


Chapter 3

Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu http://www.ee.unlv.edu/~b1morris/cpe100/

CPE100: Digital Logic Design I


Sequential Logic Design

Chapter 3 :: Topics

- Introduction
- Latches and Flip-Flops
- Synchronous Logic Design
- Finite State Machines
- Timing of Sequential Logic
- Parallelism

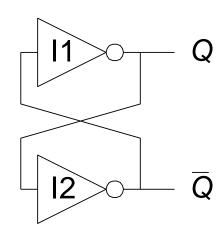
Introduction

- Previously, Combinational Logic design had outputs only depend on current value of inputs
- Outputs of sequential logic depend on current and prior input values – it has memory.
- Some definitions:
 - State: all the information about a circuit necessary to explain its future behavior
 - Latches and flip-flops: state elements that store one bit of state
 - Synchronous sequential circuits: combinational logic followed by a bank of flip-flops

Sequential Circuits

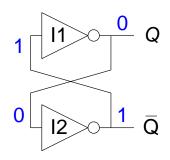
- Give sequence to events (i.e. a notion of time)
- Have memory (short-term)
- Use feedback from output to input to store information
 - Need to "remember" past output

State Elements


- The state of a circuit influences its future behavior
- State elements store state
 - Bistable circuit
 - SR Latch
 - D Latch
 - D Flip-flop

Bistable Circuit

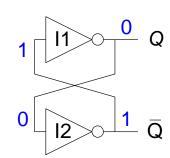
- Fundamental building block of other state elements
- Two outputs: Q, \overline{Q} (state)
- No inputs

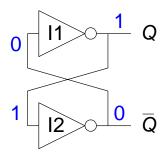


Redrawn circuit to emphasize symmetry

Bistable Circuit Analysis

- Consider the two possible cases:
 - Q = 0: then $\overline{Q} = 1$, Q = 0 (consistent)

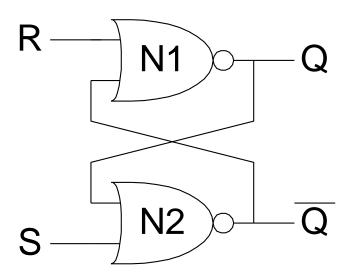



Bistable Circuit Analysis

Consider the two possible cases:

•
$$Q = 0$$
:
then $\overline{Q} = 1$, $Q = 0$ (consistent)

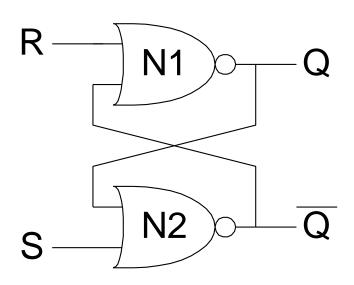
•
$$Q = 1$$
:
then $\overline{Q} = 0$, $Q = 1$ (consistent)



- Stores 1 bit of state in the state variable, Q (or \overline{Q})
- But there are no inputs to control the state

SR (Set/Reset) Latch

- SR Latch
 - S set Q = 1
 - R reset Q = 0

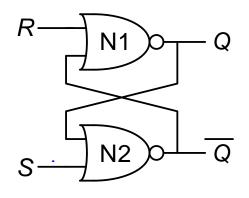


SR (Set/Reset) Latch

SR Latch

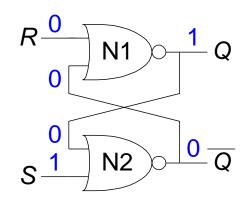
• Consider the four possible cases:

•
$$S = 1, R = 0$$


•
$$S = 0, R = 1$$

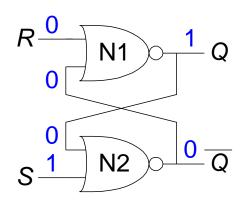
•
$$S = 0, R = 0$$

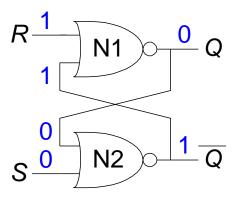
•
$$S = 1, R = 1$$



• S = 1, R = 0: then Q = 1 and $\overline{Q} = 0$

• S = 1, R = 0: then Q = 1 and $\overline{Q} = 0$

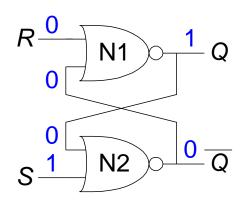


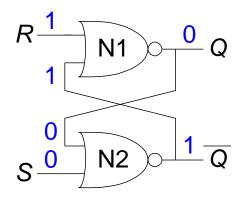

CENTIA

SR Latch Analysis

• S = 1, R = 0: then Q = 1 and $\overline{Q} = 0$

• S = 0, R = 1: then Q = 0 and $\overline{Q} = 1$

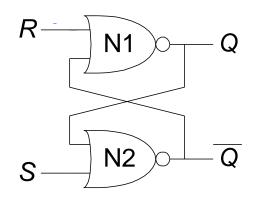



VENTIA

SR Latch Analysis

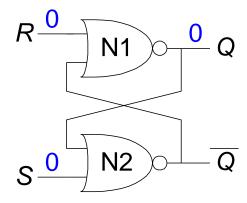
• S = 1, R = 0: then Q = 1 and $\overline{Q} = 0$ Set the output

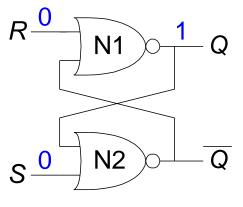
• S = 0, R = 1: then Q = 0 and $\overline{Q} = 1$ Reset the output



• S = 0, R = 0:

then
$$Q = Q_{prev}$$

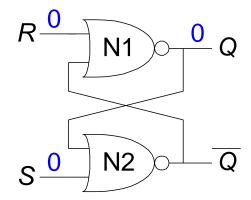


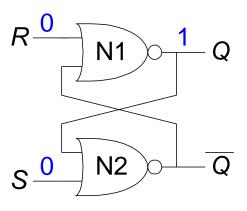

• S = 0, R = 0:

then
$$Q = Q_{prev}$$

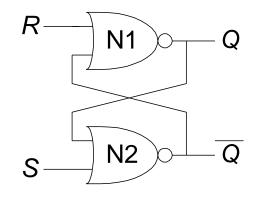
$$Q_{prev} = 0$$

$$Q_{prev} = 1$$



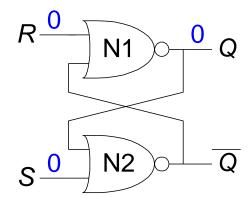

• S = 0, R = 0:

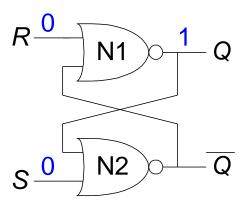
$$Q_{prev} = 0$$


$$Q_{prev} = 1$$

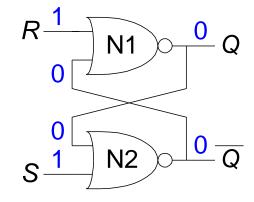
then $Q = Q_{prev}$

• S = 1, R = 1: then $Q = 0, \bar{Q} = 0$



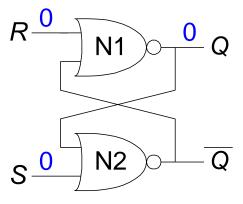

• S = 0, R = 0:

$$Q_{prev} = 0$$

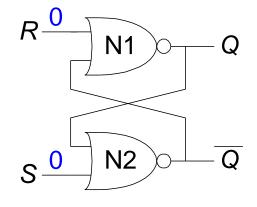

$$Q_{prev} = 1$$

then $Q = Q_{prev}$

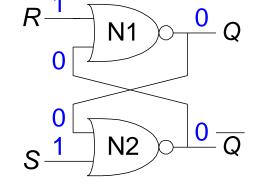
• S = 1, R = 1: then $Q = 0, \bar{Q} = 0$



• S = 0, R = 0:

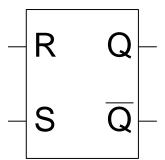

then
$$Q = Q_{prev}$$

Memory!


$$Q_{prev} = 0$$

$$Q_{prev} = 1$$

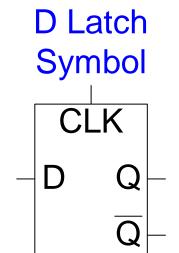
•
$$S = 1, R = 1$$
:
then $Q = 0, \overline{Q} = 0$
Invalid State

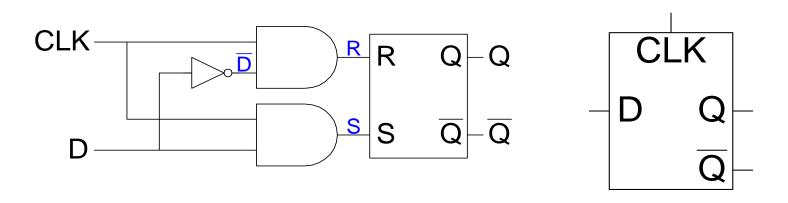


 $Q \neq NOT Q$

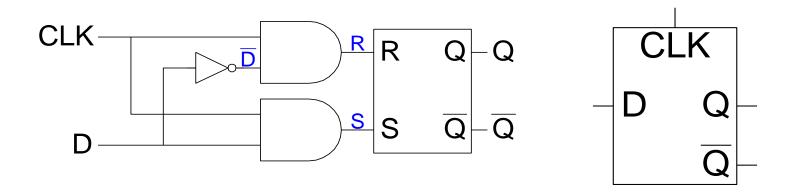
SR Latch Symbol

- SR stands for Set/Reset Latch
 - Stores one bit of state (Q)
- Control what value is being stored with *S*, *R* inputs
 - Set: Make the output 1 (S = 1, R = 0, Q = 1)
 - **Reset:** Make the output 0 (S = 0, R = 1, Q = 0)


SR Latch Symbol


D Latch

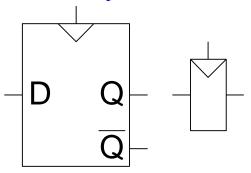
- Two inputs: CLK, D
 - *CLK*: controls *when* the output changes
 - **D** (the data input): controls what the output changes to
- Function
 - When *CLK* = 1,
 D passes through to Q (transparent)
 - When CLK = 0,
 Q holds its previous value (opaque)
- Avoids invalid case when $Q \neq \text{NOT } \overline{Q}$


D Latch Internal Circuit

CLK	D	D	S	R	Q	Q
0	X					
1	0					
1	1					

D Latch Internal Circuit

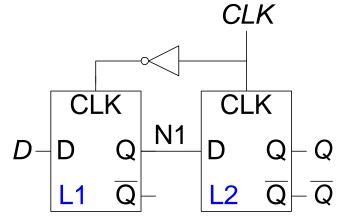
CLK	D	D	S	R	Q	Q
0	X	X	0	0	Q_{pre}	$\overline{\mathcal{Q}_{prev}}$
1	0	1	0	1	0	1
1	1	0	1	0	1	0



VENTIA

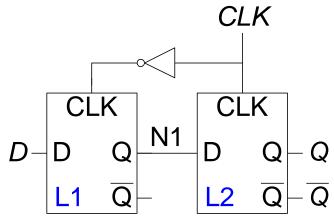
D Flip-Flop

- Inputs: CLK, D
- Function
 - Samples D on rising edge of CLK
 - When *CLK* rises from 0 to 1, *D* passes through to *Q*
 - Otherwise, Q holds its previous value
 - Q changes only on rising edge of CLK
- Called edge-triggered
- Activated on the clock edge


D Flip-Flop Symbols

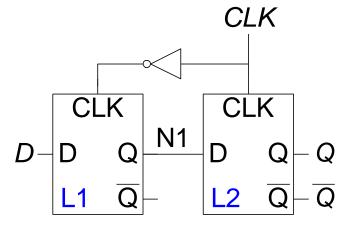
D Flip-Flop Internal Circuit

- Two back-to-back latches (L1 and L2) controlled by complementary clocks
- When CLK = 0
 - L1 is transparent
 - L2 is opaque
 - D passes through to N1



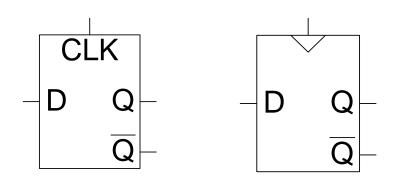
D Flip-Flop Internal Circuit

- Two back-to-back latches (L1 and L2) controlled by complementary clocks
- When CLK = 0
 - L1 is transparent
 - L2 is opaque
 - − *D* passes through to N1
- When CLK = 1
 - L2 is transparent
 - L1 is opaque
 - − N1 passes through to *Q*



VENTIAL

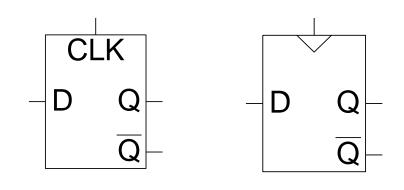
D Flip-Flop Internal Circuit

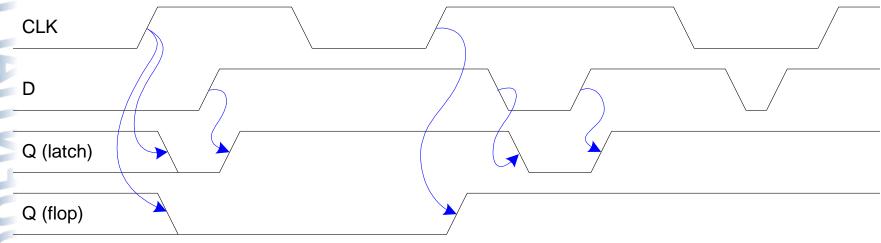

- Two back-to-back latches (L1 and L2) controlled by complementary clocks
- When CLK = 0
 - L1 is transparent
 - L2 is opaque
 - D passes through to N1
- When CLK = 1
 - L2 is transparent
 - L1 is opaque
 - − N1 passes through to *Q*
- Thus, on the edge of the clock (when *CLK* rises from $0\rightarrow 1$)
 - -D passes through to Q

D

D Latch vs. D Flip-Flop

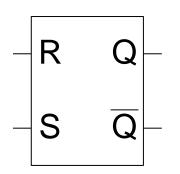
CLK


Q (latch)

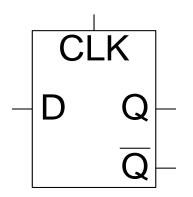

Q (flop)

D

D Latch vs. D Flip-Flop

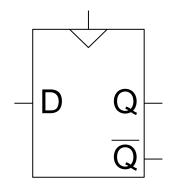


Review


SR Latch

S = 1, R = 0: Q = 1

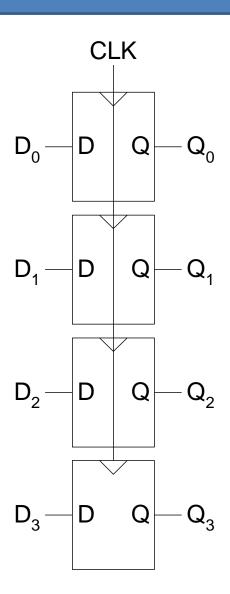
$$S = 0, R = 1: Q = 0$$

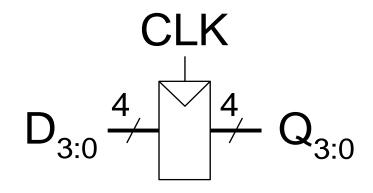

D Latch

$$CLK = 1: Q = D$$

$$\mathbf{CLK} = \mathbf{0}$$
: $\mathbf{Q} = \mathbf{Q}_{\text{prev}}$

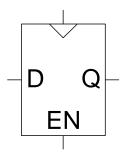
D Flip-flop




$$CLK = 0 \rightarrow 1: Q = D$$

$$\mathbf{CLK} = \mathbf{0}$$
: $\mathbf{Q} = \mathbf{Q}_{prev}$ Otherwise: $\mathbf{Q} = \mathbf{Q}_{prev}$

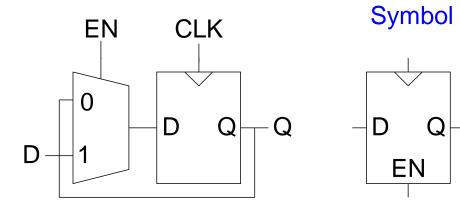
Registers



Enabled Flip-Flops

- Inputs: CLK, D, EN
 - The enable input (EN) controls when new data (D) is stored
- Function
 - EN = 1: D passes through to Q on the clock edge
 - EN = 0: the flip-flop retains its previous state

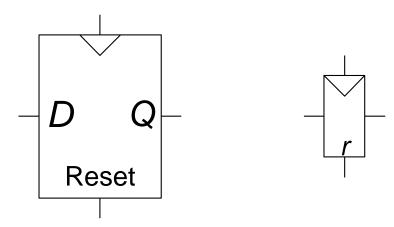
Symbol



Enabled Flip-Flops

- Inputs: CLK, D, EN
 - The enable input (EN) controls when new data (D) is stored
- Function
 - EN = 1: D passes through to Q on the clock edge
 - EN = 0: the flip-flop retains its previous state

Internal Circuit

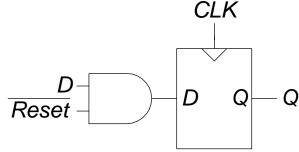


Resettable Flip-Flops

- Inputs: CLK, D, Reset
- Function:
 - Reset = 1: Q is forced to 0
 - Reset = 0: flip-flop behaves as ordinary D flip-flop

Symbols

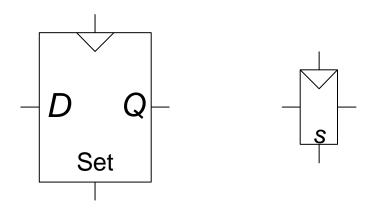
Resettable Flip-Flops


- Two types:
 - Synchronous: resets at the clock edge only
 - **Asynchronous:** resets immediately when Reset = 1
- Asynchronously resettable flip-flop requires changing the internal circuitry of the flip-flop
- Synchronously resettable flip-flop?

Resettable Flip-Flops

- Two types:
 - Synchronous: resets at the clock edge only
 - **Asynchronous:** resets immediately when Reset = 1
- Asynchronously resettable flip-flop requires changing the internal circuitry of the flip-flop
- Synchronously resettable flip-flop?

Internal Circuit


Settable Flip-Flops

Inputs: *CLK*, *D*, *Set*

Function:

- Set = 1: Q is set to 1
- *Set* = **0**: the flip-flop behaves as ordinary D flip-flop

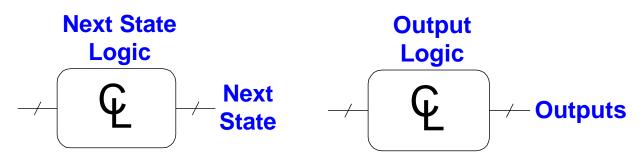
Symbols

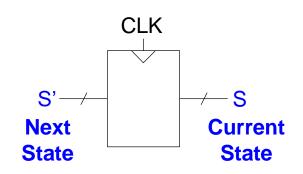
Synchronous Sequential Logic Design

- Registers inserted between combinational logic
- Registers contain **state** of the system
- State changes at clock edge: system
 synchronized to the clock

Synchronous Sequential Logic Design

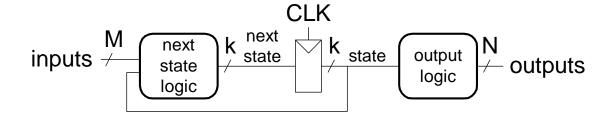
- **Rules** of synchronous sequential circuit composition:
 - Every circuit element is either a register or a combinational circuit
 - At least one circuit element is a register
 - All registers receive the same clock signal
 - Every cyclic path contains at least one register

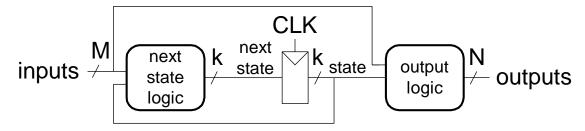

Synchronous Sequential Logic Design


- **Rules** of synchronous sequential circuit composition:
 - Every circuit element is either a register or a combinational circuit
 - At least one circuit element is a register
 - All registers receive the same clock signal
 - Every cyclic path contains at least one register
- Two common synchronous sequential circuits
 - Finite State Machines (FSMs)
 - Pipelines

Finite State Machine (FSM)

- Consists of:
 - -State register
 - Stores current state
 - Loads next state at clock edge
 - Combinational logic
 - Computes the next state
 - Computes the outputs

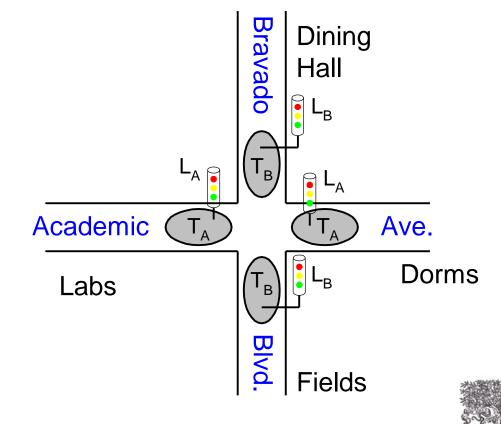



Finite State Machines (FSMs)

- Next state determined by current state and inputs
- Two types of finite state machines differ in output logic:
 - Moore FSM: outputs depend only on current state
 - Mealy FSM: outputs depend on current state and inputs

Moore FSM

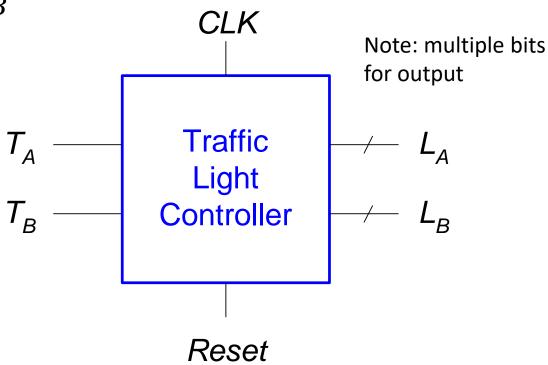
Mealy FSM



- 1. Identify inputs and outputs
- 2. Sketch state transition diagram
- 3. Write state transition table
- 4. Select state encodings
- 5. Rewrite state transition table with state encodings
- 6. Write output table
- 7. Write Boolean equations for next state and output logic
- 8. Sketch the circuit schematic

FSM Example

- Traffic light controller
 - Traffic sensors: T_A , T_B (TRUE when there's traffic)
 - Lights: L_A , L_B

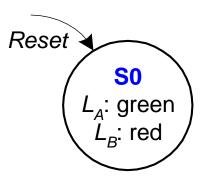

- 1. Identify inputs and outputs
- 2. Sketch state transition diagram
- 3. Write state transition table
- 4. Select state encodings
- 5. Rewrite state transition table with state encodings
- 6. Write output table
- 7. Write Boolean equations for next state and output logic
- 8. Sketch the circuit schematic

FSM Black Box

• Inputs: CLK, Reset, T_A , T_B

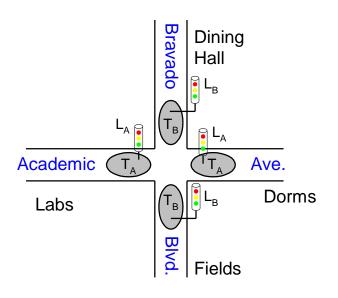
• Outputs: L_A , L_B

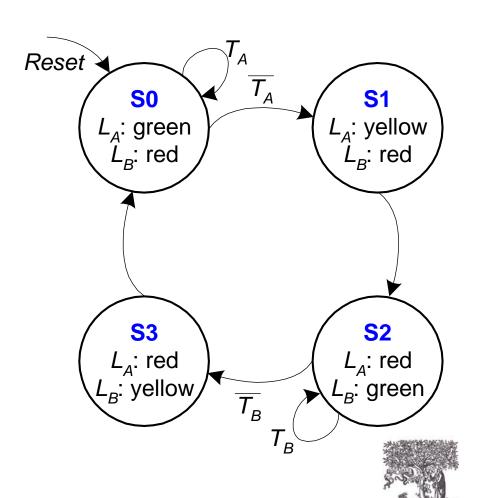
- 1. Identify inputs and outputs
- 2. Sketch state transition diagram
- 3. Write state transition table
- 4. Select state encodings
- 5. Rewrite state transition table with state encodings
- 6. Write output table
- 7. Write Boolean equations for next state and output logic
- 8. Sketch the circuit schematic



FSM State Transition Diagram

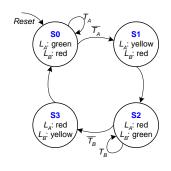
- Moore FSM: outputs labeled in each state
- States: Circles
- Transitions: Arcs





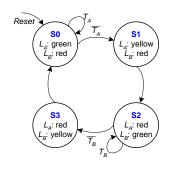
FSM State Transition Diagram

- Moore FSM: outputs labeled in each state
- States: Circles
- Transitions: Arcs


- 1. Identify inputs and outputs
- 2. Sketch state transition diagram
- 3. Write state transition table
- 4. Select state encodings
- 5. Rewrite state transition table with state encodings
- 6. Write output table
- 7. Write Boolean equations for next state and output logic
- 8. Sketch the circuit schematic

FSM State Transition Table

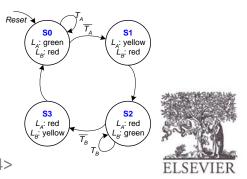
Current State	Inputs		Next State
S	T_A	T_B	S'
S0	0	X	
S0	1	X	
S 1	X	X	
S2	X	0	
S2	X	1	
S 3	X	X	



FSM State Transition Table

Current State	Inputs		Next State
S	T_A	T_{B}	S'
S0	0	X	S 1
S0	1	X	S0
S 1	X	X	S2
S2	X	0	S3
S2	X	1	S2
S 3	X	X	S0

- 1. Identify inputs and outputs
- 2. Sketch state transition diagram
- 3. Write state transition table
- 4. Select state encodings
- 5. Rewrite state transition table with state encodings
- 6. Write output table
- 7. Write Boolean equations for next state and output logic
- 8. Sketch the circuit schematic


EQUENTIAL LOGIC

FSM Encoded State Transition Table

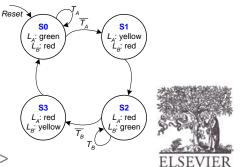
Current State		Inputs		Next State	
S_1	S_0	T_{A}	T_B	S'_1	S'_0
0	0	0	X		
0	0	1	X		
0	1	X	X		
1	0	X	0		
1	0	X	1		
1	1	X	X		

State	Encoding
S0	00
S 1	01
S2	10
S3	11

Two bits required for 4 states

DESIGN PESIGN EQUENTIAL LOGIC

FSM Encoded State Transition Table


Current State		Inputs		Next State	
S_1	S_0	T_A	T_B	S'_1	S'_0
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

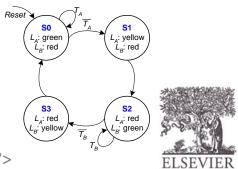
State	Encoding
S0	00
S 1	01
S2	10
S3	11

Two bits required for 4 states

$$S'_{1} = S_{1} \oplus S_{0}$$

$$S'_{0} = \overline{S_{1}} \overline{S_{0}} \overline{T_{A}} + S_{1} \overline{S_{0}} \overline{T_{B}}$$

- 1. Identify inputs and outputs
- 2. Sketch state transition diagram
- 3. Write state transition table
- 4. Select state encodings
- 5. Rewrite state transition table with state encodings
- 6. Write output table
- 7. Write Boolean equations for next state and output logic
- 8. Sketch the circuit schematic



FSM Output Table

Current State		Outputs			
S_1	S_0	L_{A1}	$L_{\!A0}$	L_{B1}	L_{B0}
0	0				
0	1				
1	0				
1	1				

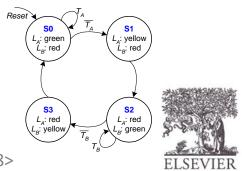
Output	Encoding
green	00
yellow	01
red	10

Two bits required for 3 outputs

FSM Output Table

Current State		Outputs			
S_1	S_0	L_{A1}	$L_{\!A0}$	L_{B1}	L_{B0}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

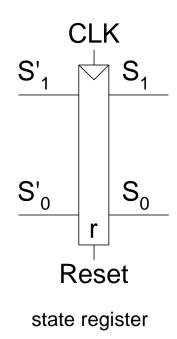
Output	Encoding	
green	00	
yellow	01	
red	10	


Two bits required for 3 outputs

$$L_{A1} = S_1$$

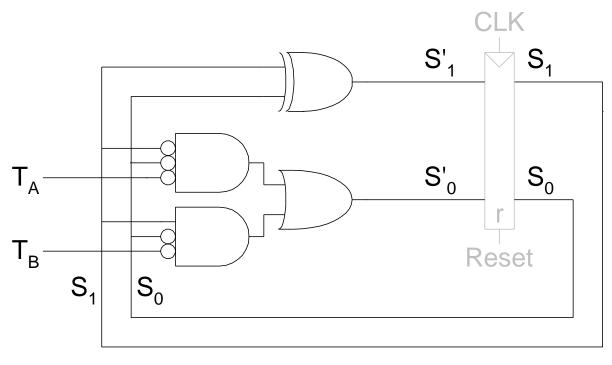
$$L_{A0} = \overline{S_1}S_0$$

$$L_{B1} = \overline{S_1}$$


$$L_{B0} = S_1S_0$$

- 1. Identify inputs and outputs
- 2. Sketch state transition diagram
- 3. Write state transition table
- 4. Select state encodings
- 5. Rewrite state transition table with state encodings
- 6. Write output table
- 7. Write Boolean equations for next state and output logic
- 8. Sketch the circuit schematic

FSM Schematic: State Register


$$S'_1 = \underline{S_1} \oplus \underline{S_0}$$
 $L_{A1} = \underline{S_1}$ $L_{B1} = \overline{S_1}$ $L_{B1} = \overline{S_1}$ $S'_0 = \overline{S_1} \overline{S_0} \overline{T_A} + S_1 \overline{S_0} \overline{T_B}$ $L_{A0} = \overline{S_1} S_0$ $L_{B0} = S_1 S_0$

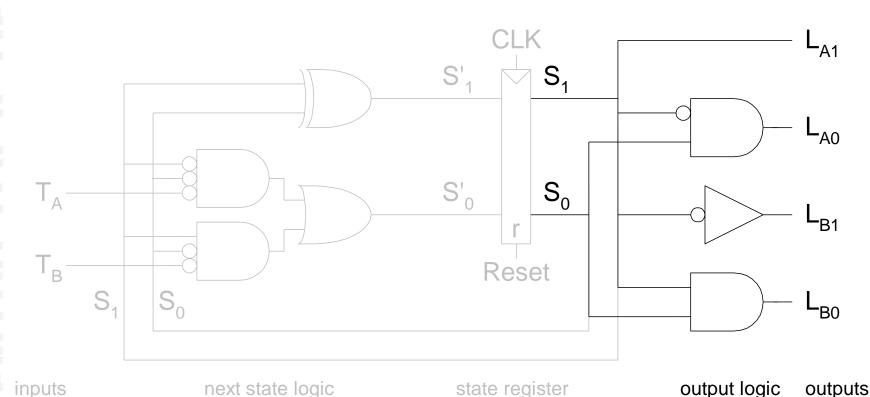
$$L_{A1} = \frac{S_1}{S_1}$$
$$L_{A0} = \frac{S_1}{S_1} S_0$$

$$L_{B1} = S_1$$
$$L_{B0} = S_1 S_0$$

FSM Schematic: Next State Logic

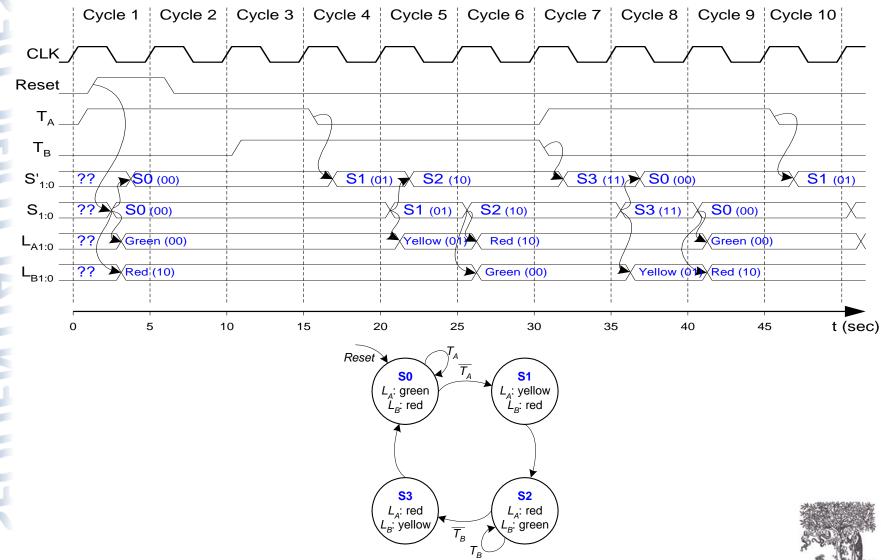
inputs

next state logic


state register

$$S'_{1} = \underline{S}_{1} \oplus \underline{S}_{0}$$

$$S'_{0} = \overline{S}_{1} \overline{S}_{0} \overline{T}_{A} + S_{1} \overline{S}_{0} \overline{T}_{B}$$


FSM Schematic: Output Logic

 $L_{A1} = S_1$ $L_{B1} = \overline{S_1}$ $L_{A0} = \overline{S_1}S_0$ $L_{B0} = S_1S_0$

FSM Timing Diagram

FSM State Encoding

- Binary encoding:
 - i.e., for four states, 00, 01, 10, 11
- One-hot encoding
 - One state bit per state
 - Only one state bit HIGH at once
 - i.e., for 4 states, 0001, 0010, 0100, 1000
 - Requires more flip-flops
 - Often next state and output logic is simpler

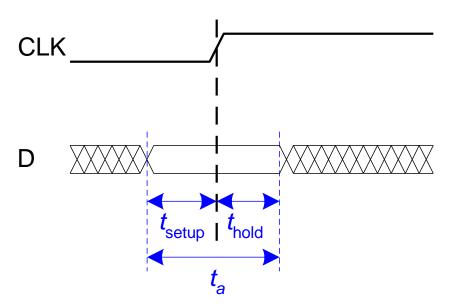
- 1. Identify inputs and outputs
- 2. Sketch state transition diagram
- 3. Write state transition table
- 4. Select state encodings
- 5. Rewrite state transition table with state encodings
- 6. Write output table
- 7. Write Boolean equations for next state and output logic
- 8. Sketch the circuit schematic

FSM Problems

- 1. Design a circuit to detect 3 or more 1's in a row in a bit stream
- 2. Vending machine: Release an item after receiving 15 cents
 - Single coin slot but tells if you put in dime or nickel
 - No change given

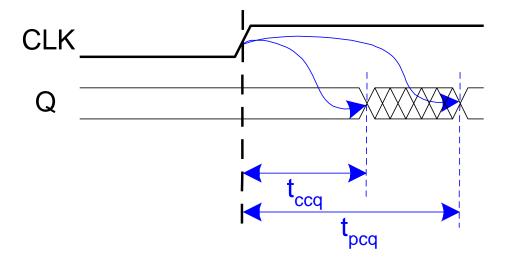
- 1. Identify inputs and outputs
- 2. Sketch state transition diagram
- 3. Write state transition table
- 4. Select state encodings
- 5. Rewrite state transition table with state encodings

- 6. Write output table
- 7. Write Boolean equations for next state and output logic
- 8. Sketch the circuit schematic


Timing

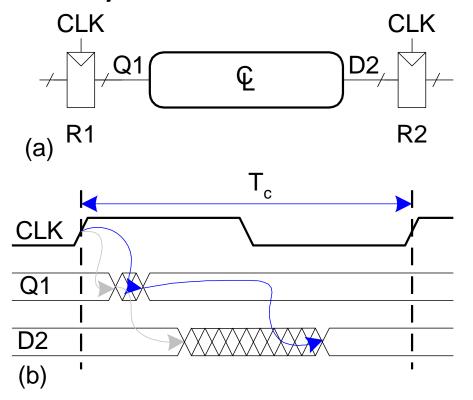
- Flip-flop samples D at clock edge
- D must be stable when sampled
 - Similar to a photograph, D must be stable around clock edge
 - Moving right before or after shutter click results in blurry photo
- If not, metastability can occur

Input Timing Constraints


- Setup time: t_{setup} = time before clock edge data must be stable (i.e. not changing)
- Hold time: t_{hold} = time after clock edge data must be stable
- Aperture time: t_a = time *around* clock edge data must be stable ($t_a = t_{\text{setup}} + t_{\text{hold}}$)

Output Timing Constraints

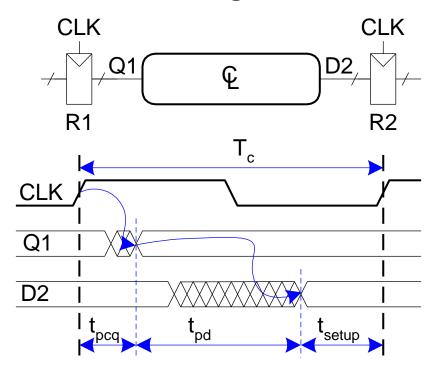
- Propagation delay: t_{pcq} = time after clock edge that the output Q is guaranteed to be stable (i.e., to stop changing)
- Contamination delay: t_{ccq} = time after clock edge that Q might be unstable (i.e., start changing)


Dynamic Discipline

- Synchronous sequential circuit inputs must be stable during aperture (setup and hold) time around clock edge
 - Specifically, inputs must be stable:
 - at least t_{setup} before the clock edge
 - at least until t_{hold} after the clock edge

- Previously, static discipline:
 - With logically valid inputs, every circuit element must produce logically valid outputs

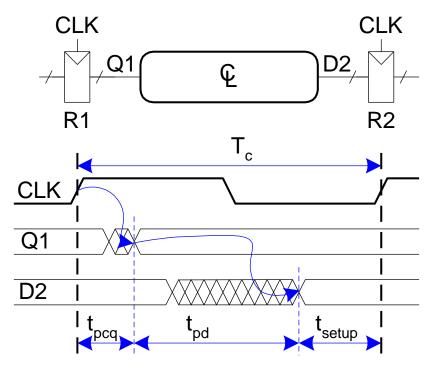
Dynamic Discipline


 The delay between registers has a minimum and maximum delay, dependent on the delays of the circuit elements



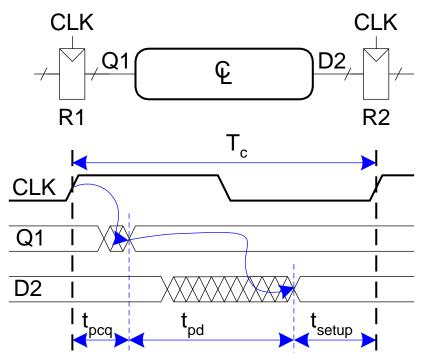
Setup Time Constraint

- Depends on the maximum delay from register R1 through combinational logic to R2
- The input to register R2 must be stable at least $t_{\rm setup}$ before clock edge



Setup Time Constraint

- Depends on the maximum delay from register R1 through combinational logic to R2
- The input to register R2 must be stable at least $t_{\rm setup}$ before clock edge

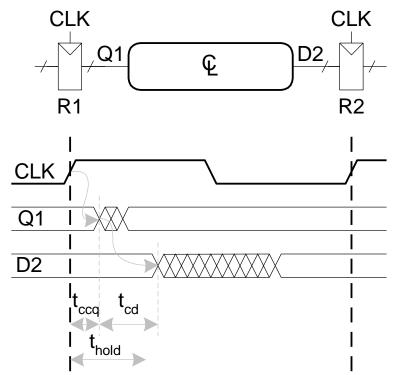

$$T_c \ge t_{pcq} + t_{pd} + t_{\text{setup}}$$

$$t_{pd} \le$$

Setup Time Constraint

- Depends on the maximum delay from register R1 through combinational logic to R2
- The input to register R2 must be stable at least $t_{\rm setup}$ before clock edge

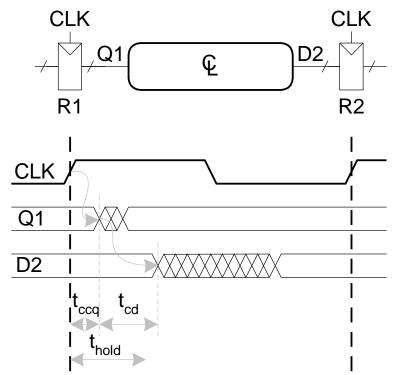
$$T_c \ge t_{pcq} + t_{pd} + t_{\text{setup}}$$


$$t_{pd} \le T_c - (t_{pcq} + t_{\text{setup}})$$

 $(t_{pcq} + t_{setup})$: sequencing overhead

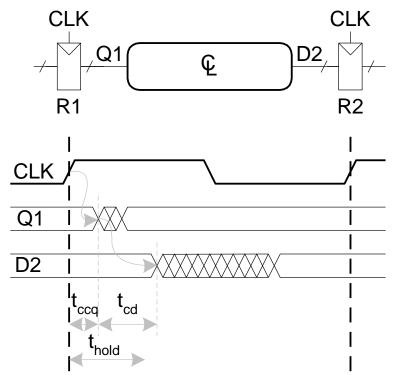
Hold Time Constraint

- Depends on the minimum delay from register R1 through the combinational logic to R2
- The input to register R1 must be stable for at least $t_{\rm hold}$ after the clock edge

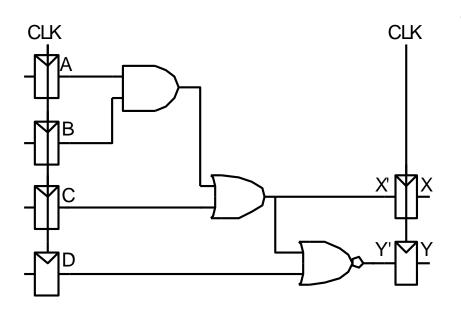


Hold Time Constraint

- Depends on the minimum delay from register R1 through the combinational logic to R2
- The input to register R1 must be stable for at least $t_{\rm hold}$ after the clock edge



$$t_{
m hold} < t_{ccq} + t_{cd}$$
 $t_{cd} >$


Hold Time Constraint

- Depends on the minimum delay from register R1 through the combinational logic to R2
- The input to register R2 must be stable for at least t_{hold} after the clock edge

$$t_{\text{hold}} < t_{ccq} + t_{cd}$$
 $t_{cd} > t_{\text{hold}} - t_{ccq}$

Timing Characteristics

$$t_{ccq}$$
 = 30 ps

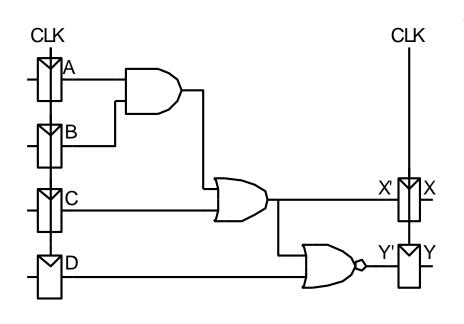
$$t_{pcq}$$
 = 50 ps

$$t_{\text{setup}} = 60 \text{ ps}$$

$$t_{\text{hold}} = 70 \text{ ps}$$

$$t_{pd} =$$

$$t_{cd} =$$


Setup time constraint:

$$T_c \ge t_{pcq} + t_{pd} + t_{setup}$$

$$f_c =$$

$$t_{ccq} + t_{cd} > t_{hold}$$
?

Timing Characteristics

$$t_{ccq}$$
 = 30 ps

$$t_{pcq} = 50 \text{ ps}$$

$$t_{\text{setup}} = 60 \text{ ps}$$

$$t_{\text{hold}}$$
 = 70 ps

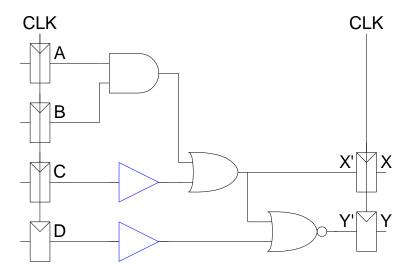
$$t_{pd}$$
 = 3 x 35 ps = 105 ps

$$t_{cd} = 25 \text{ ps}$$

Setup time constraint:

$$T_c \ge t_{pcq} + t_{pd} + t_{setup}$$

$$T_c \ge (50 + 105 + 60) \text{ ps} = 215 \text{ ps}$$


$$f_c = 1/T_c = 4.65 \text{ GHz}$$

$$t_{cca} + t_{cd} > t_{hold}$$
?

$$(30 + 25) ps > 70 ps ? No!$$

Add buffers to the short paths:

$$t_{pd} =$$

$$t_{cd} =$$

Setup time constraint:

$$T_c \ge$$

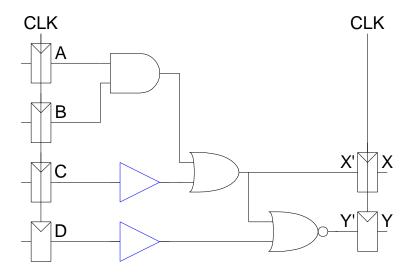
$$f_c =$$

Timing Characteristics

$$t_{cca}$$
 = 30 ps

$$t_{pcq} = 50 \text{ ps}$$

$$t_{\text{setup}} = 60 \text{ ps}$$


$$t_{\text{hold}} = 70 \text{ ps}$$

$$\begin{bmatrix} t_{pd} & = 35 \text{ ps} \\ t_{cd} & = 25 \text{ ps} \end{bmatrix}$$

$$t_{ccq} + t_{cd} > t_{hold}$$
?

Add buffers to the short paths:

$$t_{pd}$$
 = 3 x 35 ps = 105 ps

$$t_{cd}$$
 = 2 x 25 ps = 50 ps

Setup time constraint:

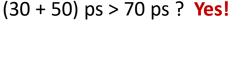
$$T_c \ge t_{pcq} + t_{pd} + t_{setup}$$

 $T_c \ge (50 + 105 + 60) \text{ ps} = 215 \text{ ps}$

$$f_c = 1/T_c = 4.65 \text{ GHz}$$

Timing Characteristics

$$t_{cca} = 30 \text{ ps}$$


$$t_{pcq} = 50 \text{ ps}$$

$$t_{\text{setup}} = 60 \text{ ps}$$

$$t_{\text{hold}} = 70 \text{ ps}$$

$$\begin{bmatrix} t_{pd} & = 35 \text{ ps} \\ t_{cd} & = 25 \text{ ps} \end{bmatrix}$$

$$t_{\text{ccq}} + t_{cd} > t_{\text{hold}}$$
?

Parallelism

Two types of parallelism:

- Spatial parallelism
 - duplicate hardware performs multiple tasks at once
- Temporal parallelism
 - task is broken into multiple stages
 - also called pipelining
 - for example, an assembly line

Parallelism Definitions

- Token: Group of inputs processed to produce group of outputs
- Latency: Time for one token to pass from start to end
- Throughput: Number of tokens produced per unit time

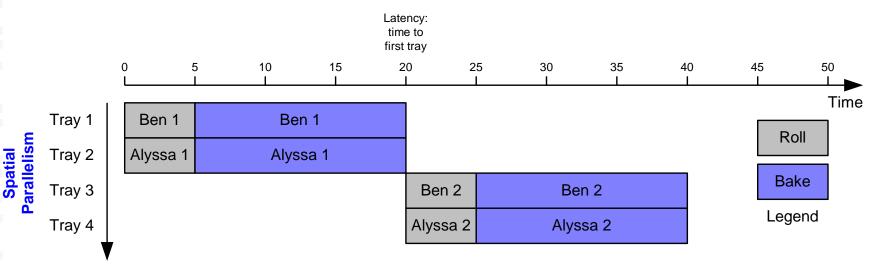
Parallelism increases throughput

- Ben Bitdiddle bakes cookies to celebrate traffic light controller installation
- 5 minutes to roll cookies
- 15 minutes to bake
- What is the latency and throughput without parallelism?

- Ben Bitdiddle bakes cookies to celebrate traffic light controller installation
- 5 minutes to roll cookies
- 15 minutes to bake
- What is the latency and throughput without parallelism?

Latency = 5 + 15 = 20 minutes = 1/3 hour

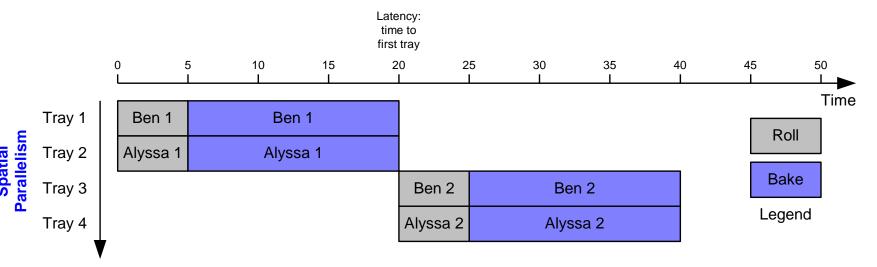
Throughput = 1 tray/ 1/3 hour = 3 trays/hour



- What is the latency and throughput if Ben uses parallelism?
 - Spatial parallelism: Ben asks Allysa P. Hacker to help, using her own oven
 - Temporal parallelism:
 - two stages: rolling and baking
 - He uses two trays
 - While first batch is baking, he rolls the second batch, etc.

QUENTIAL

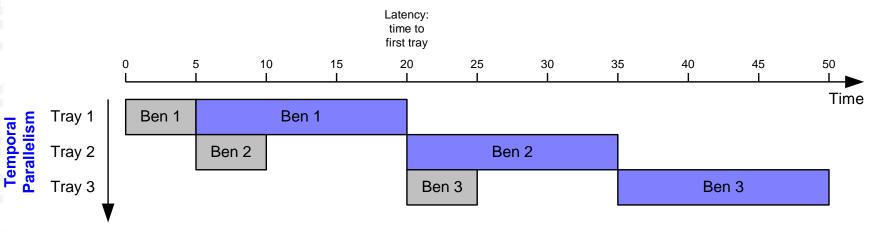
Spatial Parallelism



Latency = ?
Throughput = ?

VENTIAL

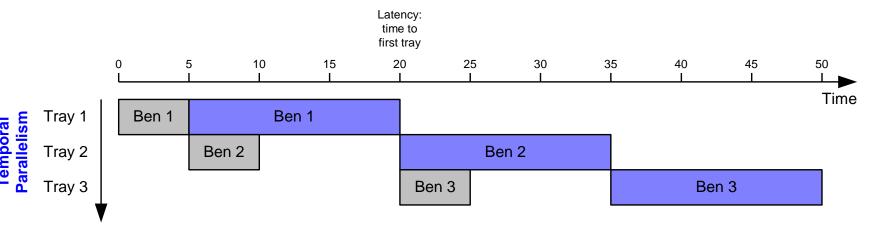
Spatial Parallelism



Latency =
$$5 + 15 = 20$$
 minutes = $1/3$ hour

Throughput = 2 trays/ 1/3 hour = 6 trays/hour

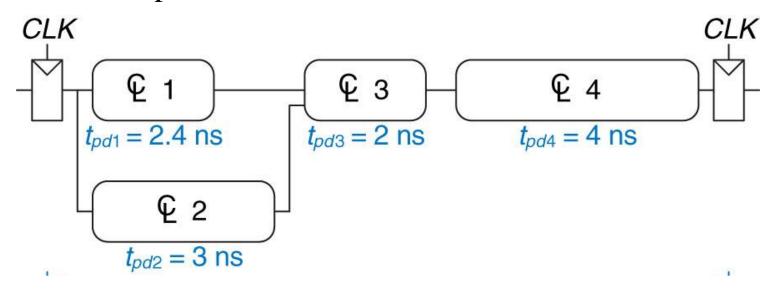
Temporal Parallelism


Latency = ?

Throughput = ?

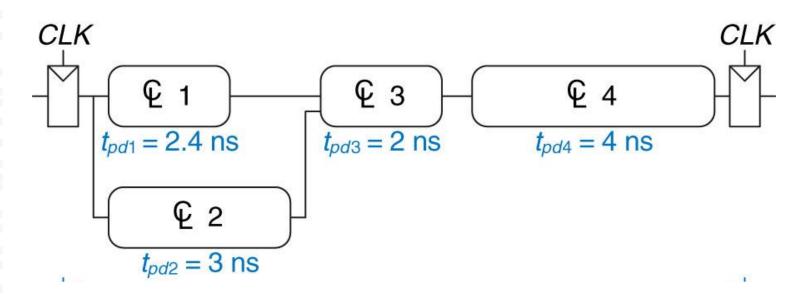
VENTIAL

Temporal Parallelism

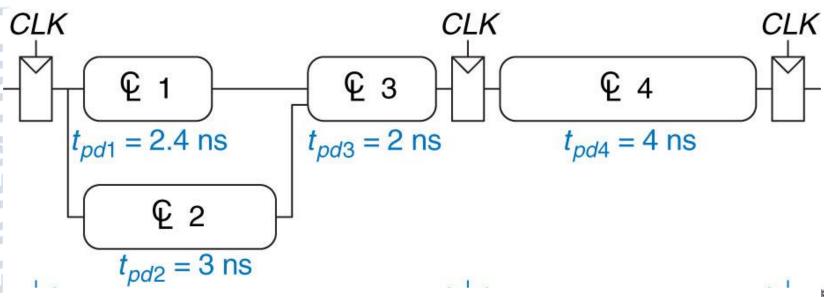

Latency = 5 + 15 = 20 minutes = 1/3 hour

 \rightarrow true latency = 30 minutes (with 10 minutes idle)

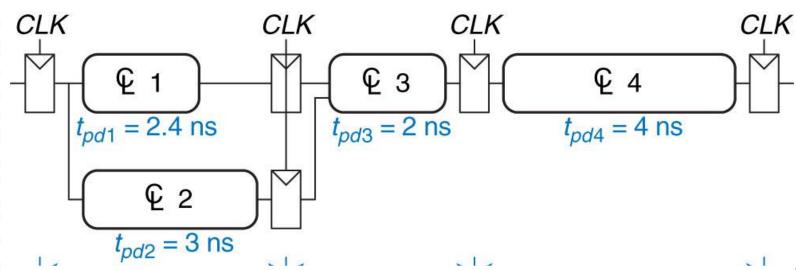
Throughput = 1 trays/ 1/4 hour = 4 trays/hour


Using both spatial and temporal techniques, the throughput would be **8 trays/hour**

- Circuit with no parallelism
- Registers have:
 - Propagation clock-to-Q = 0.3 ns
 - Setup time = 0.2 ns



- Circuit with no parallelism
- Find critical path
- Compute minimum cycle time, latency, and throughput



- Circuit with parallelism: 2 stages
- Find critical path
- Compute minimum cycle time, latency, and throughput

- Circuit with parallelism: 3 stages
- Find critical path
- Compute minimum cycle time, latency, and throughput

