
http://www.egr.unlv.edu/~b1morris/cpe300/

CPE300: Digital System

Architecture and Design
Fall 2011

MW 17:30-18:45 CBC C316

Layered View of the Computer

Outline

• Recap

• Assembly/Machine Programmer View

• Computer Architect View

• Digital Logic Designer View

2

The General Purpose Machine

• Computers are more than just the personal
computers we commonly use

• All around and in everything

• Different varieties for given applications

▫ Supercomputers, automobiles, thermostats, toys,
etc.

3

5 Classical Computer Components

• Control – the “brain”

• Datapath – the “brawn”

• Memory – where programs and data live when
running

• Input

▫ E.g. keyboard, mouse, disk

• Output

▫ E.g. disk, display, printer

4

Processor

Devices

Machine Structures

• Coordination of many levels of abstraction

I/O system Processor

Compiler

Operating

System

(Windows 7)

Application (ex: browser)

Digital Design

Circuit Design

Instruction Set
 Architecture

Datapath & Control

Transistors

Memory
Hardware

Software Assembler

Slide from UC Berkeley CS61C

5

Software Engineer

Hardware Engineer

Computer Architect

lw $t0, 0($2)
lw $t1, 4($2)
sw $t1, 0($2)
sw $t0, 4($2)

High Level Language
Program (e.g., C)

Assembly Language
Program (e.g., MIPS)

Machine Language
Program (MIPS)

Hardware Architecture Description
(e.g., block diagrams)

Compiler

Assembler

Machine
Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

0000 1001 1100 0110 1010 1111 0101 1000

1010 1111 0101 1000 0000 1001 1100 0110

1100 0110 1010 1111 0101 1000 0000 1001

0101 1000 0000 1001 1100 0110 1010 1111

Logic Circuit Description
(Circuit Schematic Diagrams)

Architecture
Implementation

Anything can be represented
as a number,

i.e., data or instructions

6

Levels of Representation/Interpretation

Slide from UC Berkeley CS61C

Three Important Views of Computer

• Assembly/Machine Language Programmer

▫ Concerned with behavior and performance of
machine when programmed at lowest level
(machine language)

• Computer Architect

▫ Concerned with design and performance at (sub)
system levels

• Logic Designer

▫ Concerned with design at the digital logic level

7

Assembly/Machine Layer

8

I/O system Processor

Compiler

Operating

System

Application

Digital Design

Circuit Design

Instruction Set Architecture (ISA)

Datapath & Control

Transistors

Memory
Hardware

Software Assembler Assembly/Machine
Language
Programmer View

Machine/Assembly Programmer’s View

• Machine language

▫ Set of fundamental instructions the machine can
execute

▫ Expressed as patterns of 0’s and 1’s

• Assembly language

▫ Alpha numeric equivalent of machine language

▫ Human oriented mnemonics (human readable)

9

Machine and Assembly Language

• Assembler:

▫ Computer program that transliterates (one-to-one
mapping) assembly to machine language

▫ Computer’s native language is assembly/machine
language

▫ “Programmer”, as used in this course, means
assembly/machine language programmer

10

Table 1.2 Two Motorola MC68000 instructions

MC68000 Assembly Language Machine Language

0011 101 000 000 100

ADDI.W #9, D2 00000001 10 111 100
0000 0000 0000 1001

MOVE.W D4, D5

Instruction (Dis)Assembly

• How to convert between assembly and machine
languages?
▫ See “Programmers Reference Manual”

• Specify instruction fields
▫ Opcode – operation code (what to do)
▫ Operands – elements opcode will operate on
▫ Each instruction has a different definition but

there is structure

• Assembly/machine code is unique to the

particular machine program runs on
▫ Cannot port between machines like HLL (C) code

11

Assembly Example

• Reference manual excerpt

12

MC68000 Assembly Language Machine Language

MOVE.W D4,D5 0011 101 000 000 100

Assembly Example - Opcode

• Opcode for MOVE

• 2 MSB (bits [15, 14]) default to 0

13

MC68000 Assembly Language Machine Language

MOVE.W D4,D5 0011 101 000 000 100

Assembly Example - Opcode

• Bits [13, 12] indicate data size

▫ Move.W for a word 11

14

MC68000 Assembly Language Machine Language

MOVE.W D4,D5 0011 101 000 000 100

Assembly Example – Source Operand

• Source operand (bits [5, 0])

▫ Mode = 000

▫ Register number = 4 = 100B

15

MC68000 Assembly Language Machine Language

MOVE.W D4,D5 0011 101 000 000 100

Assembly Example – Destination Operand

• Source operand (bits [5, 0])

▫ Mode = 000

▫ Register number = 5 = 101B

16

MC68000 Assembly Language Machine Language

MOVE.W D4,D5 0011 101 000 000 100

Stored Program Concept

• Big idea – Everything is data!

▫ Bits are just bits – up to computer to decide how
to interpret

▫ Basic operating principle of every computer

17

The stored program concept says that the program is stored with

data in the computer’s memory. The computer is able to

manipulate it as data—for example, to load it from disk, move it

in memory, and store it back on disk.

Fetch-Execute Cycle
• Instruction fetched from

memory

▫ Stored in instruction
register (IR)

• Instruction decoded
through control unit and
executed

• Next instruction is
available in program
counter (PC) register

▫ PC must be incremented
based on instruction size

▫ 2 byte instructions here
so PC incremented by 2

18

Instruction Set Architecture (ISA)

• Instruction set: the collection of all machine
operations.

• Programmer sees set of instructions, along with
the machine resources manipulated by them.

• ISA includes
▫ instruction set,
▫ memory, and
▫ programmer accessible registers of the system.

• There may be temporary or scratch-pad memory
used to implement some function is not part of
ISA.
▫ “Non Programmer Accessible.”

19

Programmer Models of 4 Commercial Machines

20

RISC vs. CISC Machines
• Complex instruction set computers (CISC)

▫ Primary goal to minimize number of assembly line for a task

 Processor understands many operations

▫ Operates directly on computer memory banks

▫ Assembler compiler has little work for translation from HLL

▫ Shorter code requires less memory

▫ Hardware emphasis

• Reduced instruction set computers (RISC)

▫ Use simple instructions that complete within a clock cycle

▫ Typically longer code (e.g. load, operation, store)

▫ Approximately same speed as CISC

▫ Require less hardware (transistors) to implement

 Use space for more registers

▫ Pipelining is possible

▫ Software emphasis

21

Machine, Processor, and Memory State

• The Machine State: contents of all registers in
system, accessible to programmer or not

• The Processor State: registers internal to the
CPU

• The Memory State: contents of registers in the
memory system

• Maintaining or restoring the machine and
processor state is important to many operations,
especially procedure calls and interrupts

22

Data Type: HLL vs. Machine Language

• HLL’s provide type checking
▫ Verifies proper use of variables at compile time
▫ Allows compiler to determine memory

requirements
▫ Helps detect bad programming practices

• Most machines have no type checking
▫ The machine sees only strings of bits
▫ Instructions interpret the strings as a type: usually

limited to signed or unsigned integers and FP #s
▫ A given 32 bit word might be an instruction, an

integer, a FP #, or four ASCII characters

• (Data is data!)

23

Instruction Classes

• 3 classes of machine instructions

▫ Data movement

▫ Arithmetic and logic

▫ Control flow

• The compiler writer must develop mapping for
each language-machine pair

24

Users of Assembly Language

• The machine designer
▫ must implement and trade-off instruction

functionality

• The compiler writer
▫ must generate machine language from a HLL

• The writer of time or space critical code
▫ Performance goals may force program specific

optimizations of the assembly language

• Special purpose or imbedded processor
programmers
▫ Special functions and heavy dependence on

unique I/O devices can make HLL’s useless

25

Computer Architect Layer

26

I/O system Processor

Compiler

Operating

System

Application

Digital Design

Circuit Design

Instruction Set Architecture (ISA)

Datapath & Control

Transistors

Memory
Hardware

Software Assembler

Computer Architect
View

Computer Architect View

• Architect is concerned with design & performance

• Designs the ISA for optimum programming utility
and optimum performance of implementation

• Designs the hardware for best implementation of
the instructions

▫ CPU, memory, peripheral devices

• Uses performance measurement tools, such as
benchmark programs, to see that goals are met

• Balances performance of building blocks such as
CPU, memory, I/O devices, and interconnections

• Meets performance goals at lowest cost

27

Shared Interconnections Via Buses

• Interconnections are very important to
computer

• Most connections are shared

• A bus is a time-shared connection or multiplexer

• A bus provides a data path and control

• Buses may be serial, parallel, or a combination

▫ Serial buses transmit one bit at a time

▫ Parallel buses transmit many bits simultaneously
on many wires

28

Example 1 or 2 Bus Architectures

• (a) Single shared bus
of n lines
▫ Simple connection
▫ Only one system

active at a time

• (b) 2-bus system
▫ Separates/isolates

memory and I/O
▫ Activity can be

present in both buses
concurrently
 Speedup because I/O

is typically slow

29

Memory System

• Modern computers have a hierarchy of
memories

▫ Allow tradeoffs of speed/cost/volatility/size, etc

30

+ distance

+ cost

registers

+ speed

Logic Designer Layer

31

I/O system Processor

Compiler

Operating

System

Application

Digital Design

Circuit Design

Instruction Set Architecture (ISA)

Datapath & Control

Transistors

Memory
Hardware

Software Assembler

Computer System
Logic Designer View

Logic Designer View

• Designs the machine at the logic gate level

• The design determines whether the architect
meets cost and performance goals

• Architect and logic designer can often be the
same person/team

32

Implementation Domains

• An implementation domain is the collection of
devices, logic levels, etc. which the designer uses.

• Domain is usually abstracted

• Possible implementation domains

▫ VLSI on silicon

▫ TTL or ECL chips

▫ Gallium Arsenide chips

▫ PLA’s or sea-of-gates arrays

▫ Fluidic logic or optical switches

33

Implementation Domain Examples
• 2 to 1 multiplexer in three different implementation domains

▫ Generic logic gates (abstract domain)

▫ National Semiconductor FAST Advanced Schottky TTL (vlsi on
Si)

▫ Fiber optic directional coupler switch (optical signals in LiNbO3)

34

Classical vs. Computer Logic Design

• Computer design is complex

▫ Traditional FSM techniques can be used “in the
small”

• There is a natural separation between data and
control

▫ Data path: storage cells, arithmetic, and their
connections

▫ Control path: logic that manages data path
information flow

• Well defined “building” blocks are used repeatedly

▫ Multiplexers, decoders, adders, etc

35

Logic Designer CPU

• Cares about registers, ALU, and buses

• Most importantly, concerned with control via PC

36

D Q
3232

PCout

PCinCK

PC

A BusB Bus

Logic Designer

(Fig 1.8):

31 0

PC Programmer:

Concluding Remarks

• 3 different views of machine structure and function
• Machine/assembly language view: registers,

memory cells, instructions.
▫ PC, IR,
▫ Fetch-execute cycle
▫ Programs can be manipulated as data
▫ No, or almost no data typing at machine level

• Architect views the entire system
▫ Concerned with price/performance, system balance

• Logic designer sees system as collection of
functional logic blocks.
▫ Must consider implementation domain
▫ Tradeoffs: speed, power, gate fanin, fanout

37

