
http://www.egr.unlv.edu/~b1morris/cpe300/

CPE300: Digital System

Architecture and Design
Fall 2011

MW 17:30-18:45 CBC C316

Simple RISC Computer

09122011

Outline

• Recap

• Instruction Sets

• x-Address Machines

• Addressing Modes

• Simple RISC Computer

2

Three Important Views of Computer

• Assembly/Machine Language Programmer

▫ Concerned with behavior and performance of
machine when programmed at lowest level
(machine language)

• Computer Architect

▫ Concerned with design and performance at (sub)
system levels

• Logic Designer

▫ Concerned with design at the digital logic level

3

Instruction Set Architecture (ISA)

• Instruction set: the collection of all machine
operations.

• Programmer sees set of instructions, along with
the machine resources manipulated by them.

• ISA includes

▫ instruction set,

▫ memory, and

▫ programmer accessible registers of the system.

4

ISA Components

• Storage cells
▫ General and special purpose registers in the CPU
▫ Storage associated with I/O devices

• The Machine Instruction Set
▫ The instruction set is the entire repertoire of machine

operations
▫ Makes use of storage cells, formats, and results of the

fetch/execute cycle

• The Instruction Format
▫ Size and meaning of fields within the instruction

• The nature of the Fetch/Execute cycle
▫ Things that are done before the operation code is

known

5

3 Classes of Instructions

• Data movement instructions
▫ Move data from a memory location or register to

another memory location or register without
changing its form (load/store)

• Arithmetic and logic (ALU) instructions
▫ Changes the form of one or more operands to

produce a result stored in another location (add,
sub, mult)

• Branch instructions (control flow instructions)
▫ Any instruction that alters the normal flow of

control from executing the next instruction in
sequence (un/conditional branches)

6

Registers for Control

• Program counter usually contains the address of,
or "points to" the next instruction

• Condition codes may control branch
• Branch targets may be contained in separate

registers

Processor State

C N V Z

Program Counter

Branch Targets

Condition Codes

•
•
•

Arithmetic Result
C – Carry
N – Negative
V – overflow
Z - zeros

HLL Conditionals

• Typically no machine instruction mapping

▫ Conditions computed by arithmetic instructions

▫ Conditional branch on result in Assembly

• Program counter is changed to execute only
instructions associated with true conditions

C Language Assembly Language

if NUM==5 CMP.W #5, NUM ;the comparison

then SET=7 BNE L1 ;conditional branch

MOV.W #7, SET ;action if true

L1 … ;action if false

Check CC Z-bit code (NUM – 5 == 0)

Machine Instruction Encoding

• Instruction set must be converted into machine
instructions

▫ Bit patterns that specify instruction fields (e.g.
opcode, operands, result, next instruction)

• Trade-off

▫ Number of bits for specification

▫ Size/flexibility of instructions

▫ Also would like entire encoding to fit into a single
word (RISC approach)

9

Hypothetical Machines

• Classify machine based on 2 operand (1 result)
arithmetic (ALU) instruction

• 5 items to specify
▫ Operation to perform
▫ Location of first operand
▫ Location of second operand
▫ Location to store result
▫ Location of next instruction to execute

• The key issue is “how many of these are specified
by memory addresses, as opposed to being
specified implicitly”

10

3,2,1,& 0 Address Instructions
• 3 address instruction

▫ Specifies memory addresses for both operands
and the result

▫ R Op1 op Op2
• 2 address instruction

▫ Overwrites one operand in memory with the result
▫ Op2 Op1 op Op2

• 1 address instruction
▫ Single accumulator register to hold one operand &

the result (no address needed)
▫ Acc Acc op Op1

• 0 address
▫ Uses a CPU register stack to hold both operands

and the result
▫ TOS TOS op SOS (TOS is Top Of Stack, SOS is

Second On Stack)

11

Example 2.1

• Evaluate a = (b+c)*d-e

• for 3- 2- 1- and 0-address machines

• What is size of program and amount of memory
traffic in bytes?

12

Instruction Format Reminder

• 3-Address

• 2-Address

• 1-Address

• 0-Address

13

Example 2.1

14

3-Address 2-Address 1-Address 0-Address

3-Address 2-Address 1-Address 0-Address

In
st

ru
ct

io
n

s

Instruction

Bytes size

Memory

Total

Fig. 2.8 General Register Machines

• Most common choice for general purpose
computers

• Registers specified by “small” address (3 to 6
bits for 8 to 64 registers)
▫ Close to CPU for speed and reuse for complex

operations

15

1-1/2 Address Instructions

• “Small” register address = half address

• 1-1/2 addresses

▫ Load/store have one long & one short address
▫ 2-operand arithmetic instruction has 3 half

addresses

16

Real Machines

• General registers offer greatest flexibility

▫ Possible because of low price of memory

• Most real machines have a mixture of 3, 2, 1, 0, 1-1/2
address instructions

▫ A distinction can be made on whether arithmetic
instructions use data from memory

• Load-store machine

▫ Registers used for operands and results of ALU
instructions

▫ Only load and store instructions reference memory

• Other machines have a mix of register-memory and
memory-memory instructions

17

Instructions/Register Trade-Offs

• 3-address machines have shortest code but large
number of bits per instruction

• 0-address machines have longest code but small
number of bits per instruction

▫ Still require 1-address (push, pop) instructions

• General register machines use short internal register
addresses in place of long memory addresses

• Load-store machines only allow memory addresses
in data movement instructions (load, store)

• Register access is much faster than memory access

• Short instructions are faster

18

Addressing Modes
• Addressing mode is hardware support for a useful

way of determining a memory address
• Different addressing modes solve different HLL

problems
▫ Some addresses may be known at compile time, e.g.

global vars.
▫ Others may not be known until run time, e.g. pointers
▫ Addresses may have to be computed

 Record (struct) components:
 variable base(full address) + const.(small)

 Array components:
 const. base(full address) + index var.(small)

• Possible to store constant values without using
another memory cell by storing them with or
adjacent to the instruction itself.

19

HLL Examples of Structured Addresses

• C language: Rec -> Count
▫ Rec is a pointer to a record: full address variable
▫ count is a field name: fixed byte offset, say 24

• C language: v[i]
▫ v is fixed base address of array: full address

constant
▫ i is name of variable index: no larger than array

size
• Variables must be contained in registers or

memory cells
• Small constants can be contained in the

instruction
• Result: need for “address arithmetic.”

▫ E.g. Address of Rec -> Count is address of
Rec + offset of Count.

20

Rec

Count

v

v[i]

Fig 2.9 Common Addressing Modes a-d

21

Two Memory Accesses!

Fig 2.9 Common Addressing Modes e-g

22

Simple RISC Computer (SRC)

• 32 general purpose registers (32 bits wide)

• 32 bit program counter (PC) and instruction
register (IR)

• 232 bytes of memory address space

• Use C-style array referencing for addresses

23

SRC Memory

• 232 bytes of memory address space

• Access is 32 bit words

▫ 4 bytes make up word, requires 4 addresses

▫ Lower address contains most significant bits
(msb) – highest least significant bits (lsb)

24

1000

W0 1001

W1 1002

W2 1003

W4 1004

1005

Bits 31 23 15 7 0

Address 1001 1002 1003 1004

Value W0 W1 W2 W3

SRC Basic Instruction Formats

• There are three basic instruction format types

• The number of register specific fields and length
of the constant field vary

• Other formats result from unused fields or parts

25

26

Notice the unused space

Trade-off between
- Fixed instruction size
- Wasted memory space

Ch3 -
single instruction
per clock cycle

SRC Characteristics
• (=) Load-store design - only memory access through load/store

instructions

• (–) Operations on 32-bit words only (no byte or half-word
operations)

• (=) Only a few addressing modes are supported

• (=) ALU instructions are 3-registertype

• (–) Branch instructions can branch unconditionally or conditionally
on whether the value in a specified register is = 0, <> 0, >= 0, or <
0.

• (–) Branch-and-link instructions are similar, but leave the value of
current PC in any register, useful for subroutine return.

• (–) Can only branch to an address in a register, not to a direct
address.

• (=) All instructions are 32-bits (1-word) long.

27

(=) – Similar to commercial RISC machines
(–) – Less powerful than commercial RISC machines

SRC Assembly Language

• Full Instruction listing available in Appendix B.5

• Form of line of SRC assembly code

Label: opcode operands ;comments

• Label: = assembly defined symbol
▫ Could be constant, label, etc. – very useful but not

always present

• Opcode = machine instruction or pseudo-op
• Operands = registers and constants

▫ Comma separated
▫ Values assumed to be decimal unless indicated (B, 0x)

28

SRC Load/Store Instructions

• Load/store design provides only access to
memory

• Address can be constant, constant+register, or
constant+PC

• Memory contents or address itself can be loaded

29

I n s t r u c t i o n o p r a r b c 2 M e a n i n g A d d r e s s i n g M o d e
l d r 1 , 3 2 1 1 0 3 2 R [1] M [3 2] D i r e c t

l d r 2 2 , 2 4 (r 4) 1 2 2 4 2 4 R [2 2] M [2 4 + R [4]] D i s p l a c e m e n t

s t r 4 , 0 (r 9) 3 4 9 0 M [R [9]] R [4] R e g i s t e r i n d i r e c t

l a r 7 , 3 2 5 7 0 3 2 R [7] 3 2 I m m e d i a t e

l d r r 1 2 , - 4 8 2 1 2 – - 4 8 R [1 2] M [P C - 4 8] R e l a t i v e

l a r r 3 , 0 6 3 – 0 R [3] P C R e g i s t e r (!)

Note: use of la to load constant

SRC ALU Instructions

• Note:

▫ No multiply instruction (can be done based on addition)

▫ Immediate subtract not needed since constant in addi may be negative
(take care of sign bit)

30

Format Example Meaning
neg ra, rc neg r1, r2 ;Negate (r1 = -r2)
not ra, rc not r2, r3 ;Not (r2 = r3´)
add ra, rb, rc add r2, r3, r4 ;2’s complement addition
sub ra, rb, rc ;2’s complement subtraction
and ra, rb, rc ;Logical and
or ra, rb, rc ;Logical or
addi ra, rb, c2 addi r1, r3, 1 ;Immediate 2’s complement add
andi ra, rb, c2 ;Immediate logical and
ori ra, rb, c2 ;Immediate logical or

SRC Branch Instruction

• Only 2 branch opcodes

• c3<2..0>, the 3 lsbs of c3, that define the branch condition

31

br rb, rc, c3<2..0> ;branch to R[rb] if R[rc] meets

;the condition defined by c3<2…0>

brl ra, rb, rc, c3<2..0> ;R[ra] PC, branch as above

lsbs condition Assy language form Example
000 never brlnv brlnv r6
001 always br, brl br r5, brl r5
010 if rc = 0 brzr, brlzr brzr r2, r4
011 if rc 0 brnz, brlnz
100 if rc ≥ 0 brpl, brlpl
101 if rc < 0 brmi, brlmi

• Note: branch target address is always in register R[rb]

▫ Must be placed in register explicitly by a previous instruction

Branch Instruction Examples

32

Ass’y
lang.

Example instr. Meaning op ra rb rc c3

2..0

Branch
Cond’n.

brlnv brlnv r6 R[6] PC 9 6 — — 000 never

br br r4 PC R[4] 8 — 4 — 001 always

brl brl r6,r4 R[6] PC;

PC R[4]

9 6 4 — 001 always

brzr brzr r5,r1 if (R[1]=0)

PC R[5]

8 — 5 1 010 zero

brlzr brlzr r7,r5,r1 R[7] PC; 9 7 5 1 010 zero

brnz brnz r1, r0 if (R[0]0) PC R[1] 8 — 1 0 011 nonzero

brlnz brlnz r2,r1,r0 R[2] PC;

if (R[0]0) PC R[1]

9 2 1 0 011 nonzero

brpl brpl r3, r2 if (R[2]•0) PC R[3] 8 — 3 2 100 plus

brlpl brlpl r4,r3,r2 R[4] PC;

if (R[2]•0) PC R[3]

9 4 3 2 plus

brmi brmi r0, r1 if (R[1]<0) PC R[0] 8 — 0 1 101 minus

brlmi brlmi r3,r0,r1 R[3] PC;

if (r1<0) PC R[0]

9 3 0 1 minus

Unconditional Branch Example

• C code
▫ goto Label3

• SRC

33

lar r0, Label3 ;load branch target address into register r0

br r0 ;branch

…

Label3 … ;branch address

Conditional Branch Example

• C definition
#define Cost 125

if(X<0) x = -x;

• SRC assembly
 .org 0

Cost: .equ 125 ;define symbolic constant

 .org 1000 ;next word loaded at address 100010

X: .dw 1 ;reserve 1 word for variable X

 .org 5000 ;program will be loaded at 500010

 lar r0, Over ;load address of false jump locations

 ld r1, X ;get value of X into r1

 brpl r0, r1 ;branch to r0 if r1 >= 0

 neg r1, r1 ;negate r1 value

Over: …

34

Pseudo-Operations

• Not part of ISA but assembly specific

▫ Known as assembler directives

▫ No machine code generated – for use by
assembler, linker, loader

• Pseudo-ops
▫ .org = origin

▫ .equ = equate

▫ .dx = define (word, half-word, byte)

35

Synthetic Instructions

• Single instruction (not in machine language)
that assembler accepts and converts to single
instruction in machine language
▫ CLR R0 andi r0, r0, 0

▫ MOVE D0, D1 or r1, r0, r0

 (Other instructions possible besides and and or)

• Only synthetic instructions in SRC are
conditional branches
▫ brzr r1, r2 br r1, r2, 010

36

if R[2] = 0

Miscellaneous Instructions

• nop – no operation

▫ Place holder or time waster

▫ Essential for pipelined implementations

• stop

▫ Halts program execution, sets Run to zeros

▫ Useful for debugging purposes

37

Register Transfer Notation (RTN)

• Provides a formal means of describing machine
structure and function
▫ Mix natural language and mathematical expressions

• Does not replace hardware description languages.
▫ Formal description and design of electronic circuits

(digital logic) – operation, organization, etc.

• Abstract RTN
▫ Describes what a machine does without the how

• Concrete RTN
▫ Describe a particular hardware implementation (how

it is done)

• Meta-language = language to describe machine
language

38

RTN Symbol Definitions (Appendix B.4)
 Register transfer: register on LHS stores value from RHS

[] Word index: selects word or range from named memory

<> Bit index: selects bit or bit range from named memory

n..m Index range: from left index n to right index m; can be decreasing

 If-then: true condition of left yields value and/or action on right

:= Definition: text substitution with dummy variables

Concatenation: bits on right appended to bits on left

: Parallel separator: actions or evaluations carried out simultaneously

; Sequential separator: RHS evaluated and/or performed after LHS

@ Replication: LHS repetitions of RHS are concatenated

{} Operation modifier: information about preceding operation, e.g., arithmetic type

() Operation or value grouping

= ≠ < ≤ ≥ > Comparison operators: produce binary logical values

+ - Arithmetic operators

 Logical operators: and, or, not, xor, equivalence

39

Specification Language Notes
• They allow the description of what without having to specify
how.

• They allow precise and unambiguous specifications, unlike
natural language.

• They reduce errors:
▫ errors due to misinterpretation of imprecise specifications written in

natural language
▫ errors due to confusion in design and implementation - “human

error.”

• Now the designer must debug the specification!
• Specifications can be automatically checked and processed by

tools.
▫ An RTN specification could be input to a simulator generator that

would produce a simulator for the specified machine.
▫ An RTN specification could be input to a compiler generator that

would generate a compiler for the language, whose output could be
run on the simulator.

40

Logic Circuits in ISA

• Logic circuits

▫ Gates (AND, OR, NOT) for Boolean expressions

▫ Flip-flops for state variables

• Computer design

▫ Circuit components support data transmission
and storage as well

41

Logic Circuits for Register Transfer

• RTN statement A B

42

Multi-Bit Register Transfer

• Implementing A<m..1> B<m..1>

43

Logic Gates and Data Transmission

• Logic gates can control transmission of data

44

2-Way Multiplexer

• Data from multiple sources can be selected for
transmission

45

m-Bit Multiplexer

• Multiplexer gate signals Gi may be produced by
a binary to one-out-of n decoder

▫ How many gates with how many inputs?

▫ What is relationship between k and n?

46

Separating Merged Data

• Merged data can be separated by gating at
appropriate time

▫ Can be strobed into a flip-flop when valid

47

Multiplexed Transfers using Gates and Strobes

• Selected gate and strobe determine which
Register is transferred to where.

▫ AC, and BC can occur together, but not AC,
and BD

48

Open-Collector Bus

• Bus is a shared datapath (as in previous slides)

• Multiplexer is difficult to wire

▫ Or-gate has large number of inputs (m x #gated
inputs)

• Open-collector NAND gate to the rescue

49

Wired AND Connection

• Connect outputs of 2 OC NAND gates

▫ Only get high value when both gates are open

50

Wired-OR Bus

• Convert AND to OR using DeMorgan’s Law

• Single pull-up resistor for whole bus

• OR distributed over the entire connection

51

Tri-State Gate

• Controlled gating

▫ Only one gate active at a time

▫ Undefined output when not active

52

Tri-State Bus

• Can make any register transfer R[i] R[j]

• Only single gate may be active at a time

▫ Gi ≠ Gj

53

Chapter 2 Summary

• Classes of computer ISAs

• Memory addressing modes

• SRC: a complete example ISA

• RTN as a description method for ISAs

• RTN description of addressing modes

• Implementation of RTN operations with digital
logic circuits

• Gates, strobes, and multiplexers

54

