
http://www.egr.unlv.edu/~b1morris/cpe300/

CPE300: Digital System

Architecture and Design
Fall 2011

MW 17:30-18:45 CBC C316

Number Representation

09212011

Outline

• Recap Logic Circuits for Register Transfer

• Machine Number Representation

• Performance Measurement

• CISC vs. RISC

2

Logic Circuits in ISA

• Circuit components support data transmission
and storage as well

▫ Flip-flops for registers (machine state)

▫ Logic gates for control

3

Multi-Bit Register Transfer

• Implementing A<m..1> B<m..1>

• Strobe signal to store (latch) value in register

4

m-Bit Multiplexer

• Multiplexer gate signals Gi may be produced by
a binary to one-out-of n decoder

▫ How many gates with how many inputs?

▫ What is relationship between k and n?

5

Multiplexed Transfers using Gates and Strobes

• Selected gate and strobe determine which
Register is transferred to where.

▫ AC, and BC can occur together, but not AC,
and BD

6

Wired-OR Bus

• Bus is a shared datapath

▫ Open collector gates driving bus

▫ OR distributed over the entire connection

▫ Single pull-up resistor for whole bus

7

Tri-State Gate

• Controlled gating

▫ Only one gate active at a time

▫ Undefined output when not active

8

Tri-State Bus

• Can make any register transfer R[i] R[j]

• Only single gate may be active at a time
▫ Gi ≠ Gj= 1

9

Heuring’s Rules of Buses

• Only one thing on bus during a clock cycle

▫ Gate-strobe paradigm

• Bus contents disappear at end of clock cycle

▫ Bus items are not stored unless strobed into a
register

• Clock period must be long enough to ensure
valid signals everywhere along bus

• What are contents of tri-state bus when enable
signal is low?

▫ Hi-Z – in disconnected “floating” state

10

Example: Registers + ALU with Single Bus

11

ALU-type units are
combinational logic
– have no memory

Example

Abstract RTN
R[3] R[1]+R[2];

Concrete RTN
Y R[2];

Z R[1] + Y;

R[3] A;

Control Sequence
R[2]out, Yin;

R[1]out, Zin;

Zout, R[3]in;

Note: 3 concrete steps to describe single abstract RTN step

Signal Timing

• Distinction between gating and strobing signal

• How is minimum clock period determined?

12

Example notes

• R[i]or Y can get the contents of anything but Y

• Result cannot be on bus containing operand

▫ Arithmetic units have result registers

• Only one of two operands can be on the bus at a
time

▫ Adder has register for one operand

13

RTN and Implementation

• Abstract RTN

▫ Describes what machine does
▫ R[3] R[1] + R[2];

• Concrete RTN

▫ Describes how it is accomplished given particular
hardware implementation

▫ Y R[2]; Z R[1] + Y; R[3] Z;

• Control Sequence

▫ Control signal assertion sequence to produce
result

▫ R[2]out, Yin; R[1]out, Zin; Zout, R[3]in

14

Chapter 2 Summary

• Classes of computer ISAs

• Memory addressing modes

• SRC: a complete example ISA

• RTN as a description method for ISAs

• RTN description of addressing modes

• Implementation of RTN operations with digital
logic circuits

• Gates, strobes, and multiplexers

15

Machine Representation

• Computers manipulate bits

▫ Bits must represent “things”

 Instructions, numbers, characters, etc.

 Must tell machine what the bits mean

• Given N bits

▫ 2N different things can be represented

16

Positional Notation for Numbers
• Base (radix) B number B symbols per digit

▫ Base 10 (Decimal): 0, 1, 2, 3, 4, 5, 6 , 7, 8, 9
▫ Base 2 (binary) 0, 1

• Number representation
▫ d31d30…d2d1d0 is 32 digit number
▫ Value = d31B31 + d30B30 + … + d1B1 + d0B0

• Examples

▫ (Decimal): 90
 = 9101 + 0100

▫ (Binary): 1011010
 = 126 + 025 + 124 + 123 + 022 + 121 + 020
 = 64 + 16 + 8 + 2
 = 90

▫ 7 binary digits needed for 2 digit decimal number

17

Hexadecimal Number: Base 16

• More human readable than binary

• Base with easy conversion to binary

▫ Any multiple of 2 base could work (e.g. octal)

• Hexadecimal digits

▫ 1 hex digit represents 16 decimal values or 4
binary digits

▫ Will use 0x to indicate hex digit

18

Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

hex 0 1 2 3 4 5 6 7 8 9 A B C D E F

Hex/Binary Conversion

• Examples
▫ 1010 1100 0101 (binary)

 = 0xAC5

▫ 10111 (binary)

 = 0001 0111 (binary)

 = 0x17

▫ 0x3F9

 = 0011 1111 1001 (binary)

 = 11 1111 1001 (binary)

19

Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

hex 0 1 2 3 4 5 6 7 8 9 A B C D E F

Signed Numbers

• N bits represents 2N values

• Unsigned integers
▫ Range [0, 232-1]

• How can negative values be indicated?

▫ Use a sign-bit

▫ Boolean indicator bit (flag)

20

Sign and Magnitude

• 16-bit numbers
▫ +1 (decimal) = 0000 0000 0000 0001 = 0x0001

▫ -1 (decimal) = 1000 0000 0000 0000 = 0x8001

• Problems

▫ Two zeros
 0x0000

 0x8000

▫ Complicated arithmetic

 Special steps needed to handle when signs are same
or different (must check sign bit)

21

Ones Complement

• Complement the bits of a number

▫ +1 (decimal) = 0000 0000 0000 0001 = 0x0001

▫ -1 (decimal) = 1111 1111 1111 1110 = 0xFFFE

• Positive number have leading zeros

• Negative number have leading ones

• Arithmetic not too difficult

• Still have two zeros

22

Two’s Complement

• Subtract large number from a smaller one

▫ Borrow from leading zeros

▫ Result has leading ones

• Unbalanced representation

▫ Leading zeros for positive

 2N-1 non-negatives

▫ Leading ones for negative number

 2N-1 negative number

▫ One zero representation

• First bit is sign-bit (must indicate width)

▫ Value = d31-231 + d30230 + … + d121 + d020

23

Binary Decimal

… 0011 3

… 0100 4

… 1111 -1

Negative value for sign bit

Two’s Complement Negation

• Shortcut = invert bits and add 1

▫ Number + complement = 0xF..F = -1

 𝑥 + 𝑥 = −1

 𝑥 + 1 = −𝑥

• Example

▫
𝑥 1111 1110
𝑥 0000 0001

𝑥 + 1 0000 0010

24

Two’s Complement Sign Extension

• Machine’s have fixed width (e.g. 32-bits)

▫ Real numbers have infinite width (invisible
extension)

 Positive has infinite 0’s

 Negative has infinite 1’s

• Replicate sign bit (msb) of smaller container to
fill new bits in larger container

• Example

▫ 1111 1111 1111 1110
1111 1111 1111 1111 1111 1111 1111 1110

25

Overflow

• Fixed bit width limits number representation

• Occurs if result of arithmetic operation cannot
be represented by hardware bits

• Example

▫ 8-bit: 127 + 127

• Sometimes called the V flag in condition code

26

Binary Decimal

0111 1111 127

0111 1111 127

1111 1110 -2 (254)

Chapter 3

• 3.1 Machine characteristics and performance

• 3.2 RISC vs. CISC

• 3.3 A CISC microprocessor

▫ The Motorola MC68000

• 3.4 A RISC architecture

▫ The SPARC

27

Machine Performance

• What is machine performance?

• How can performance be measured?

• Response time

▫ How long to complete a task

• Throughput

▫ Total work completed per unit time

▫ E.g. task/per hour

28

Some Performance Metrics
• MIPS: Millions of Instructions Per Second

▫ MIPS =
Instruction Count
Execution Time

▫ Pitfalls
 Differences in ISA between machines (different instruction counts

on different machines)
 Differences in complexity between instructions
 Different values for a single computer (two different programs)

• MFLOPS: Million Floating Point OPs Per Second
▫ Other instructions counted as overhead for the floating point
▫ Used by supercomputing community

• Whetstones: Synthetic benchmark
▫ A program made-up to test specific performance features

• Dhrystones: Synthetic competitor for Whetstone
▫ Made up to “correct” Whetstone’s emphasis on floating point

• System Performance Evaluation Cooperative (SPEC)
▫ Selection of “real” programs for benchmark
▫ Taken from the C/Unix world

29

Relative Performance

• Performance𝑥 =
1

Execution time𝑥

• Speedup = 𝑛 =
Performance𝑥
Performance𝑦

=
Execution time𝑦
Execution time𝑥

• Example

▫ Compare driving speeds. 34 mph old route and 46
mph on new

 𝑛 =
speed𝑛𝑒𝑤

speed𝑜𝑙𝑑
=

46

34
= 1.35

▫ Compare based on driving time. 96 minutes old
route and 71 minutes on new

 𝑛 =
time𝑜𝑙𝑑
time𝑛𝑒𝑤

=
96

71
= 1.35

30

Measuring Performance

• Program execution time is best measure of
performance

• Wall clock time/response time/elapsed time

▫ Total time to complete a task (including disk
access, memory access, I/O, etc.)

• CPU (execution) time

▫ Time spent just on CPU computation

▫ User CPU time – time spent on program

▫ System CPU time – time spent in OS

31

CPU Clocking

• Operation of digital hardware governed by a
constant-rate clock

▫ Clock cycles/ticks/periods

• Clock period: duration of a clock cycle

▫ e.g., 250ps = 0.25ns = 250×10–12 sec

• Clock frequency (rate): cycles per second

▫ e.g., 4.0GHz = 4000MHz = 4.0×109 Hz

32

CPU Time

• For a given program
▫ CPU Time = CPU clock cycles × clock cycle time

▫ CPU Time =
CPU clock cycles

Clock Rate

• Performance improvements

▫ Reduce number of clock cycles

▫ Increase clock rate

▫ Hardware designer must trade off between clock
cycle count and clock rate

33

CPU Clock Cycles

• Cycles related to number of instructions

▫ CPU clock cycles = # Instructions × CPI

▫ CPU Time = #Instructions × CPI × clock cycle time

▫ CPU Time =
Instructions × CPI

Clock Rate

• Clock cycles per instruction (CPI)

▫ Average number of clock cycles per instruction
(given a program or program fragment)

▫ Determined by CPU hardware

▫ Different CPI for different instructions

 Average CPI affected by instruction mix

34

CPI Example
• Computer A: Cycle Time = 250ps, CPI = 2.0
• Computer B: Cycle Time = 500ps, CPI = 1.2

▫ Same ISA
• Which is faster, and by how much?
• Computer A:

▫ CPU time = I 2.0 250 ps = I 500 ps

• Computer B:
▫ CPU time = I 1.2 500 ps = I 600 ps

• Speedup

▫ 𝑛 =
time𝑠𝑙𝑜𝑤
time𝑓𝑎𝑠𝑡

=
𝐼×600

𝐼×500
= 1.2

▫ Computer A is 1.2 times faster, 20% speedup

35

A faster

CPI Details

• Different instruction classes may have different
cycle time

• Weighted average CPI

36

n

1i

ii)Count nInstructio(CPICycles Clock

n

1i

i
i

Count nInstructio

Count nInstructio
CPI

Count nInstructio

Cycles Clock
CPI

Relative frequency
of instruction class

Performance Summary

• CPU Time = #Instructions × CPI × clock cycle time

• T := CPU time

• IC := instruction count

• CPI := clock cycles/instruction

• τ := duration of clock period

37

Execution time T ICCPI

Example 3.1

• System clock of computer increased in frequency
from 700 MHz to 1.2 GHz.

• What is speedup? (assume no other factors)

• Speedup

• 𝑛 =
time𝑜𝑙𝑑
time𝑛𝑒𝑤

=
(𝐼𝐶×𝐶𝑃𝐼×𝜏)𝑜𝑙𝑑

(𝐼𝐶×𝐶𝑃𝐼×𝜏)𝑛𝑒𝑤
=

1/700

1/1200
= 1.71

• IC and CPI do not change because only clock was
adjusted

38

RISC vs. CISC Designs

• CISC: Complex Instruction Set Computer
▫ Many complex instructions and addressing modes
▫ Some instructions take many steps to execute
▫ Not always easy to find best instruction for a task

• RISC: Reduced Instruction Set Computer
▫ Few, simple instructions, addressing modes
▫ Usually one word per instruction
▫ May take several instructions to accomplish what

CISC can do in one
▫ Complex address calculations may take several

instructions
▫ Usually has load-store, general register ISA

39

Memory Bottleneck

• Memory no longer expensive

• Design for speed

40

Parameter 1981 (8086) 2004 (Pentium P4)
Improvement
factor

Clock Frequency 4.7 MHz 4 GHz ~1000

Clock Period 212 ns 200 ps ~1000

Memory Cycle Time 100 ns 70 ns 1.4

Clocks per Memory
Cycle

.47 280 ~ -500

Dealing with Memory Bottleneck

• Employ one or more levels of cache memory.

▫ Prefetch instructions and data into I-cache and D-
cache.

▫ Out of order execution.

▫ Speculative execution.

• One word per instruction (RISC)

• Simple addressing modes (RISC)

• Load-Store architecture (RISC)

• Lots of general purpose registers (RISC)

41

RISC Design Characteristics

• Simple instructions can be done in few clocks

▫ Simplicity may even allow a shorter clock period

• A pipelined design can allow an instruction to
complete in every clock period

• Fixed length instructions simplify fetch & decode

• The rules may allow starting next instruction
without necessary results of the previous

▫ Unconditionally executing the instruction after a
branch

▫ Starting next instruction before register load is
complete

42

More on RISC
• Prefetch instructions

▫ Get instruction/data/location before needed in pipeline
• Pipelining

▫ Beginning execution of an instruction before the previous
instruction(s) have completed. (Chapter 5.)

• Superscalar operation
▫ Issuing more than one instruction simultaneously.
▫ Instruction-level parallelism (Chapter 5.)

• Out-of-order execution
• Delayed loads, stores, and branches

▫ Operands may not be available when an instruction
attempts to access them.

• Register Windows
▫ ability to switch to a different set of CPU registers with a

single command. Alleviates procedure call/return overhead.
Discussed with SPARC (Chapter 3)

43

