
http://www.egr.unlv.edu/~b1morris/cpe300/

CPE300: Digital System

Architecture and Design
Fall 2011

MW 17:30-18:45 CBC C316

CISC: Motorola MC68000

09262011

Outline

• Recap

• CISC vs. RISC

• Motorola MC68000

2

Machine Representation

• Computers manipulate bits

▫ Bits must represent “things”

 Instructions, numbers, characters, etc.

 Must tell machine what the bits mean

• Given N bits

▫ 2N different things can be represented

3

Positional Notation for Numbers

• Base (radix) B number B symbols per digit

▫ Base 10 (Decimal): 0, 1, 2, 3, 4, 5, 6 , 7, 8, 9

▫ Base 2 (binary) 0, 1

• Number representation

▫ d31d30…d2d1d0 is 32 digit number

▫ Value = d31B31 + d30B30 + … + d1B1 + d0B0

4

Two’s Complement

• Unbalanced representation

▫ Leading zeros for positive

 2N-1 non-negatives

▫ Leading ones for negative number

 2N-1 negative number

▫ One zero representation

• First bit is sign-bit (must indicate width)

▫ Value = d31-231 + d30230 + … + d121 + d020

5

Negative value for sign bit

Two’s Complement Notes

• Negation shortcut

▫ Invert bits and add 1

 𝑥 + 1 = −𝑥

• Sign extension

▫ Replicate sign bit (msb) of smaller container to fill
new bits in larger container

• Overflow

▫ Not enough bits to represent a number

▫ Indicated by V flag in condition code

6

Machine Performance

• What is machine performance?

• How can performance be measured?

• Response time

▫ How long to complete a task

• Throughput

▫ Total work completed per unit time

▫ E.g. task/per hour

• Program execution time is best measure of
performance

7

Relative Performance

• Performance𝑥 =
1

Execution time𝑥

• Speedup = 𝑛 =
Performance𝑥
Performance𝑦

=
Execution time𝑦
Execution time𝑥

8

Performance Summary

• CPU Time = #Instructions × CPI × clock cycle time

• T := CPU time

• IC := instruction count

▫ Number of instruction in a program

• CPI := clock cycles/instruction

▫ Average clock cycles per instruction – depends on
instruction calculate by instruction mix

• τ := duration of clock period

▫ Specified in time or in rate (Hz)

9

Execution time T ICCPI

RISC vs. CISC Designs

• CISC: Complex Instruction Set Computer
▫ Many complex instructions and addressing modes
▫ Some instructions take many steps to execute
▫ Not always easy to find best instruction for a task

• RISC: Reduced Instruction Set Computer
▫ Few, simple instructions, addressing modes
▫ Usually one word per instruction
▫ May take several instructions to accomplish what

CISC can do in one
▫ Complex address calculations may take several

instructions
▫ Usually has load-store, general register ISA

10

Memory Bottleneck

• Memory no longer expensive

• Design for speed

11

Parameter 1981 (8086) 2004 (Pentium P4)
Improvement
factor

Clock Frequency 4.7 MHz 4 GHz ~1000

Clock Period 212 ns 200 ps ~1000

Memory Cycle Time 100 ns 70 ns 1.4

Clocks per Memory
Cycle

.47 280 ~ -500

Dealing with Memory Bottleneck

• Employ one or more levels of cache memory.

▫ Prefetch instructions and data into I-cache and D-
cache.

▫ Out of order execution.

▫ Speculative execution.

• One word per instruction (RISC)

• Simple addressing modes (RISC)

• Load-Store architecture (RISC)

• Lots of general purpose registers (RISC)

12

RISC Design Characteristics

• Simple instructions can be done in few clocks

▫ Simplicity may even allow a shorter clock period

• A pipelined design can allow an instruction to
complete in every clock period

• Fixed length instructions simplify fetch & decode

• The rules may allow starting next instruction
without necessary results of the previous

▫ Unconditionally executing the instruction after a
branch

▫ Starting next instruction before register load is
complete

13

More on RISC
• Prefetch instructions

▫ Get instruction/data/location before needed in pipeline
• Pipelining

▫ Beginning execution of an instruction before the previous
instruction(s) have completed. (Chapter 5.)

• Superscalar operation
▫ Issuing more than one instruction simultaneously.
▫ Instruction-level parallelism (Chapter 5.)

• Out-of-order execution
• Delayed loads, stores, and branches

▫ Operands may not be available when an instruction
attempts to access them.

• Register Windows
▫ ability to switch to a different set of CPU registers with a

single command. Alleviates procedure call/return overhead.
Discussed with SPARC (Chapter 3)

14

Developing and ISA (Table 3.1)
• Memories: structure of data storage in the computer

▫ Processor-state registers
▫ Main memory organization

• Formats and interpretation: meaning of register fields
▫ Data types
▫ Instruction format
▫ Instruction address interpretation

• Instruction interpretation: things done for all
instructions
▫ Fetch-execute cycle
▫ Exception handing

• Instruction execution: behavior of individual
instructions
▫ Grouping of instructions into classes
▫ Actions performed by individual instructions

15

The Motorola MC6800

• Introduced in 1979
▫ Computers

 Apple Lisa 2, Apple Macintosh 128, Atari 520STfm and
1040STfm, Commodore Amiga 500 and 1000

▫ Still in use today (now Freescale Semiconductor)

• Very early 32-bit microprocessor
▫ Most operations on 32-bit internal data
▫ Some operations may use different number of bits
▫ External datapaths may not all be 32 bits wide

 24-bit address bus for MC68000

• Complex instruction set computer
▫ Large instruction set
▫ 14 addressing modes

16

chip

die

New Concepts from MC68000

• Effective address (EA)

▫ Addressing modes

• Subroutines

▫ E.g. function calls

• Starting a program

▫ Assemble, link, load, and run times

• Exceptions

▫ Interruption of normal sequential instruction
execution

• Memory-mapped I/O

▫ Part of CPU memory reserved for I/O

17

MC68000 Programmer’s Model

18

Features of Processor State

• Distinction between 32-bit data registers and 32-bit
address registers

• 16 bit instruction register

▫ Variable length instructions handled 16 bits at a time

• Stack pointer registers

▫ User stack pointer is one of the address registers

▫ System stack pointer is a separate single register

 Why a separate system stack?

• Condition code register: System & User bytes

▫ Arithmetic status (N, Z, V, C, X) is in user status byte

▫ System status has Supervisor & Trace mode flags and
the Interrupt Mask

19

RTN Processor State
• Registers

▫ D[0..7]<31..0>: General purpose data registers;
▫ A[0..7]<31..0>: Address registers;

• PC<23..0>: Program counter (original MC68000)
• IR<15..0>: Instruction register;
• Stack pointers

▫ SP := A[7]: User stack pointer, also called USP;
▫ A7´<31..0>: System stack pointer;
▫ SSP := A7´: System stack pointer;

• Status<15..0>: System status byte and user status byte;
• User byte (condition codes)

▫ C := Status<0>: Carry flag
▫ V := Status<1>: oVerflow flag;
▫ Z := Status<2>: Zero flag
▫ N := Status<3>: Negative flags;
▫ X := Status<4>: Extend flag;

• System byte
▫ INT<2..0> := Status<10..8>: Interrupt mask;
▫ S := Status<13>: Supervisor state flag;
▫ T := Status<15>: Trace mode flag;

20

Main Memory

• Main memory:
▫ Mb[0..224-1]<7..0>: memory as bytes

▫ Mw[ad]<15..0> := Mb[ad]#Mb[ad+1]: memory as words

▫ Ml[ad]<31..0> := Mw[ad]#Mw[ad+2]: memory as longwords

• Word and longword forms are big-endian

▫ Lowest numbered byte contains most significant bit of
word

• Hard word alignment constraints
▫ Not described in the RTN
▫ Word addresses must in end in on binary 0
▫ Longword addresses end in two binary 0

 What are differences between soft alignment?

21

Operand Types

• One instruction may operate on several types
(CISC design)

 MOVE.B bytes

 MOVE.W word

 MOVE.L longwords

▫ Default is word operands

▫ Operand length encoded in instruction

• Bits to encode operand type vary with
instruction

▫ Assumption for RTN description
 d :=datalen(IR):

▫ Function returns 1, 2, 4 for operand length

22

Instruction Formats

• Instructions accessed in 16-bit words

• Variable number of words in an instruction

23

Addressing Modes

• General address of operand specified by 6-bit field

▫ Access paths to memory and registers

▫ See Table 3.2 for details

• 6-bit effective address

▫ Mode field provides access paths to operands

• Not all operands/results can be specified by general
address - some must be in registers

• Exception

▫ Destination of MOVE instruction has mode and reg
fields reversed

24

5 4 3 2 1 0

Mode Reg

Table 3.2: MC68000 Addressing Modes

Name Mode Reg Assembler Syntax Extra Words Description

Data register direct 0 0-7 Dn 0 Dn

Address register direct 1 0-7 An 0 An

Address register indirect 2 0-7 An) 0 M[An]

Autoincrement 3 0-7 (An)+ 0 M[An];AnAn+d

Autodecrement 4 0-7 -(An) 0 AnAn-d;M[An]

Based 5 0-7 disp16(An) 1 M[An+disp16]

Based indexed short 6 0-7 disp8(An,XnLo) 1 M[An+XnLo+disp8]

Based indexec long 6 0-7 disp8(An,Xn) 1 M[An+Xn+disp8]

Absolute short 7 0 Addr16 1 M[addr16]

Absolute long 7 1 Addr32 2 M[addr32]

Relative 7 2 disp16(PC) 1 M[PC+disp16]

Relative indexed short 7 3 disp8(PC,XnLo) 1 M[PC+XnLo+disp8]

Relative indexed long 7 3 disp8(PC,Xn) 1 M[PC+Xn+disp8]

Immediate 7 4 #data 1-2 No location, data

25

5 4 3 2 1 0

Mode Reg

RTN Description of Addressing

• Addressing modes interpret many items

▫ Instruction in the IR register

▫ Following 16-bit word: Mw[PC]

▫ D and A registers in CPU

• Many addressing modes calculate an effective
memory address

• Some modes designate a register

• Some modes result in constant operand

• Restrictions exist for some modes

26

RTN Formatting for EA Calculation
• XR[0..15]<31..0> :=

 D[0..7]<31..0>#A[0..7]<31..0>:

• xr<3..0> := Mw[PC]<15..12>:

• wl := Mw[PC]<11>:

• dsp8<7..0> := Mw[PC]<7..0>:

• index := ((wl=0) XR[xr]<15..0>:

 (wl=1) XR[xr]<31..0>):

• Index register can be D or A

• Index number for index mode

• Short /long index flag

• Displacement for index mode

• Short

• Long index value

27

• 4-bit field specifies index register

• Either 16 or 32 bit s of index register may be used

• Low order 8-bits are used as offset

15 14 13 12 11 10 9 8 7 0

d/a Index reg w/l 0 0 0 disp8

0: index is in data registers
1: index is in address registers

0: 16-bit index
1: 32-bit index

Calculating EA

• md and rg are 3-bit mode and reg fields

• ea is effective address

• Define effective address based on mode and
register fields
▫ ea(md, rg) := (

 (md=2) A[rg<2..0>]

 (md=3) (A[rg]; A[rg] A[rg] + d):

 …

28

Addressing Mode Highlights

• Modes 0-6 use a register to calculate a memory
address

▫ Based modes (5-6) require an extra word (16-bits)
to specify address

• Mode 7 does not use a register
▫ Functionality is expanded by repurposing reg

field

▫ All variants require extra words to complete the
instruction and specify the memory address

29

Mode 0 and 1: Register Direct

• Mode 1 = data register

• Mode 2 = address register

• Register itself provides place to store result or
location of operand

▫ No memory address in this mode

30

D0

Dat a regist er direct

0 00 Reg

Data

Regist ers

...

D7

A0

...

A7

. . . 0 01 Reg. . .

Address regiser direct

Operand Operand

Address

Regist ers

Ex: MOVE D6, ... Ex: MOVE A6, ...

Mode 2: Address Register Indirect

• Modes 3 and 4 are the same
▫ Autoincrement (3) – register incremented after

obtained
▫ Autodecrement (4) – register decremented before

address obtained

31

Address regist er indirect

0 10 Reg

68 000

Regist ers

A0

...

A7

. . .

Operand

Main

memory

Address

Ex: MOVE (A6), ...

Mode 6: Based Indexed

32

• Three items added to get address
• Mode 5 (based) is same only does not contain

register index

Mode 6: Based indexed addressing

1 1 0 Reg

68 0 00

Regist ers

A0

...

A7

. . .

Operand

Main

memory

Base address

Ex: MOVE.W LDISP (A6, D4), ...

+

disp8 = ldispd/a Index reg w/l 0 0 0

•
•
•

•
•
•

D0-D7
A0-A7

Index (16 or 32)

0: index is in data reg.
1: index is in address reg.

0 = 16 bit index
1 = 32 bit index

15 14 13 12 11 10 9 8 7 0

Mode 7-0 and 7-1: Absolute Addressing

• Mode 7-0 – 16-bit addresses

• Mode 7-1 – 32-bit addresses

33

Absolut e short addressing

1 1 1 0 0 0. . .

Operand

Main

memory

Ex: MOVE.B PRINTERPORT.W, ...

15 0

addr16
(Sign extend to 32-bits)

Absolut e long addressing

1 1 1 0 0 1. . .

15 0

addr32Hi

addr32Lo
Concat.

Ex: MOVE.W INTVECT.L, ...

Mode 7-3: Relative Indexed

• Same as indexed mode but uses PC rather than
an A register as base address

34

R e l a t i v e i n d e x e d a d d r e s s i n g

1 1 1 0 1 1

P r o g r a m c o u n t e r

. . .

Operand

M a i n

m e m o r y

E x : M O V E . W L D I S P (P C , D 4) , . . .

+

d i s p 8 = l d i s p d / a I n d e x r e g w / l 0 0 0

D0-D7
A0-A7

I n d e x (1 6 o r 3 2)

0: index is in data reg.
1: index is in address reg.

0 = 16 bit index
1 = 32 bit index

1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 0

Mode 7-4: Immediate

• Access to constants stored as part of the
program

▫ Constant stored immediately after the instruction
word

▫ Data length specified by oopcode field, not the
md/reg field

35

Remember big endianess

Result Operand Addressing

• Not all addressing modes can be used for results
▫ md=7 and rg=2 or 3 not allowed

▫ Lead to self-modifying code

▫ Register immediate is legal for results

36

Instruction Interpretation

• Instructions fetched 16-bits at a time

▫ PC advanced by 2 as 16-bit word is fetched

▫ Addressing mode may cause advance of 2 or 4
more words

• Instruction_interpretation := (

 Run ((IR<15..0> Mw[PC]<15..0>:

 PC PC + 2);

 instruction_execution);):

37

Data Movement Instructions

• Unlike SRC, instruction fields are not
standardized
▫ Locations and sizes depend on instruction
▫ Allows more instructions to be defined in small

word size

• Condition codes can be set during move
▫ Negative and zero

• tmp<31..0>:

• move (:= op<3..2> := 0) (

 tmp opnd(md1, rg1);

 (Z (tmp=0): N (tmp<0): V 0: C 0):

 rslt(md2, rg2) tmp

):

38

Integer ALU Instructions

• 2-operand instructions must specify destination

▫ One operand is EA

▫ Second operand is Dn (data register direct)

▫ 3-bit mode field specifies destination as EA or Dn
and operands as byes, word, or long

39

Byte Word Long Destination

000 001 010 Dn

100 101 110 EA

Example: Subtract
sub (:= op=9) (

 (md2<2>=0) D[rg2] D[rg2] - opnd(md1, rg1):

 (md2>2>=1) (memval(md1, rg1)

 (tmp ea(md1, rg1);

 M[tmp] M[tmp] - D[rg2]):

 ¬memval(md1, rg1)

 rslt(md1, rg1) rslt(md1, rg1)-D[rg2])

):

• SUB EA, Dn 1001 rrr mmm aaaaaa

40

opcode Dn mode EA

Arithmetic Shift and Rotates

• ww is word size

• Condition codes

▫ N = msb of result

▫ Z = set by result

▫ C = last bit shifted
out

41

Program Control Instructions

• Conditional branches

▫ Use condition code bits (C, N, V, Z)

▫ E.g. BVS = branch if overflow set

• Bcc = branch

• DBcc = decrement and branch

• Scc = sets result byte to outcome of test

42

Name Meaning Code Logic Name Meaning Code Logic

T True 0000 1 F False 0001 0

CC Carry clear 0100 𝐶 LS Low or same 0011 𝐶 + 𝑍

CS Carry set 0101 𝐶 LT Less than 1101 𝑁 ∙ 𝑉 + 𝑁 ∙ 𝑉

EQ Equal 0111 𝑍 MI Minus 1011 𝑁

GE Greater or equal 1100 𝑁 ∙ 𝑉 + 𝑁 ∙ 𝑉

NE Not equal 0110 𝑍

GT Greater than 11100 𝑁 ∙ 𝑉 ∙ 𝑍 + 𝑁 ∙ 𝑉 ∙ 𝑍 PL Plus 1010 𝑁

HI High 0100 𝐶 ∙ 𝑍 VC Overflow clear 1000 𝑉

LE Less or equal 1111 𝑁 ∙ 𝑉 + 𝑁 ∙ 𝑉 + 𝑍 VS Overflow set 1001 𝑉

More Program Control

• Unconditional branches

▫ Map to C goto statement
 BRA, JMP

▫ Sub-routine varieties store PC on stack
 BSR, JSR

• Sub-routine return instructions

▫ Linage uses stack for return address

▫ RTR, RTS

43

Starting a Program
• Assembler

▫ Convert assembly language text to (binary) machine
language
 Addresses translated using a symbol table
 Addresses adjusted to allow room for blocks of reserved

memory (e.g. an array definition)

• Linker
▫ Separately assembled modules combined and absolute

addresses assigned
• Loader

▫ Move binary words into memory
• Run time

▫ PC set to started address of loaded module.
▫ OS usually makes a jump or procedure call to the

address

44

Pseudo Operations
• Operation performed by assembler at assembly time not by CPU at

run time
• EQU - defines constant symbol

▫ PI: EQU 3.14

▫ Substitution made at assemble time
• DS.(B, W, L) – defines block of storage

▫ A label is associated with first word of block
▫ Line: DS.B 132

▫ Program loader (part of OS) accomplishes this
• # indicates value of symbol rather than location addressed by

symbol
▫ MOVE.L #1000, D0 ; moves 1000 to D0
▫ MOVE.L 1000, D0 ; moves value addr. 1000 to D0
▫ Assembler detects difference

• ORG – defines memory address where following code will be stored
▫ Start: ORG $4000 ; next instruction/data at addr. 0x4000

• Character constants in single quotes
▫ ‘X’

45

Example: Clearing Block of Memory
MAIN …

 MOVE.L #ARRAY, A0 ;Base of array

 MOVE.W #COUNT, D0 ;Number of words to clear

 JSR CLEARW ;Make the call

 …

CLEARW BRA LOOPE ;Branch for init. Decr.

LOOPS CLR.W (A0)+ ;Autoincrement by 2 .

LOOPE DBF D0, LOOPS ;Dec.D0,fall through if -1

 RTS ;Finished

• Subroutine expects block base in A0, count in D0

• Linkage uses stack pointer

▫ A7 cannot be used for anything else

46

Exceptions

• Changes sequential instruction execution
▫ Next instruction fetch not from PC location
▫ Exception vector

 Address supplying the next instruction

• Arise from instruction execution, hardware
faults, external conditions
▫ Interrupts – externally generated exceptions
▫ ALU overflow, power failure, completion of I/O

operation, out of range memory access, etc.

• Trace bit = 1 causes exception after every
instruction
▫ Used for debugging

47

Exception Handling Steps
1. Status change

▫ Temporary copy of status register made
▫ Supervisor mode bit S is set and trace bit T is reset

2. Exception vector address obtained
▫ Small address made by shift 8-bit vector number left 2
▫ Contents of longword at vector address is new address of

next instruction
▫ Exception handler or interrupt service routine starts at

this address
3. Old PC and Status register are pushed onto supervisor

stack, A7’= SSP
4. PC loaded from exception vector address
5. Return from handler is done by RTE

▫ Works like RTR except Status register is restored rather
than CCs

48

Exception Priority

• Method to determine which exception vector to
use when multiple exceptions occur at once

• 7 levels of priority in MC68000

▫ Status Register contains current priority

• Exceptions with priority ≤ current priority are
ignored

• Exceptions are sensed before fetching next
instruction

49

Memory-Mapped I/O
• Part of CPU memory is

devoted/reserved for I/O
▫ No separate I/O space

▫ Not popular for machines
having limited address bits

• Single bus needed for memory
and I/O
▫ Less packaging pins

• Size of I/O and memory spaces
independent
▫ Many or few I/O devices may

be installed

▫ Much or little memory may
be installed

• Spaces are separated by
putting I/O at the top end of
address space

0xFFFFFF

I/O Space …

0xFF800

0xFF7FFF

Memory Space
…

…

0x000000

50

24-bit address space with top
32K reserved for I/O

Notice top 32K can be
addressed by a negative 16-bit
value

