
http://www.egr.unlv.edu/~b1morris/cpe300/

CPE300: Digital System

Architecture and Design
Fall 2011

MW 17:30-18:45 CBC C316

RISC: The SPARC

09282011

Outline

• Recap

• Finish Motorola MC68000

• The SPARC Architecture

2

RISC vs. CISC Designs

• CISC: Complex Instruction Set Computer
▫ Many complex instructions and addressing modes
▫ Some instructions take many steps to execute
▫ Not always easy to find best instruction for a task

• RISC: Reduced Instruction Set Computer
▫ Few, simple instructions, addressing modes
▫ Usually one word per instruction
▫ May take several instructions to accomplish what

CISC can do in one
▫ Complex address calculations may take several

instructions
▫ Usually has load-store, general register ISA

3

Developing and ISA (Table 3.1)
• Memories: structure of data storage in the computer

▫ Processor-state registers
▫ Main memory organization

• Formats and interpretation: meaning of register fields
▫ Data types
▫ Instruction format
▫ Instruction address interpretation

• Instruction interpretation: things done for all
instructions
▫ Fetch-execute cycle
▫ Exception handing

• Instruction execution: behavior of individual
instructions
▫ Grouping of instructions into classes
▫ Actions performed by individual instructions

4

New Concepts from MC68000

• Variable length instructions
▫ Large instruction set

• Operation on many different types
▫ Must specify byte, word, longword

• Effective address (EA) calculation
▫ 14 Addressing modes

• Subroutines
▫ E.g. function calls

• Exceptions
▫ Interruption of normal sequential instruction

execution

• Memory-mapped I/O
▫ Part of CPU memory reserved for I/O

5

MC68000 Programmer’s Model

6

Features of Processor State

• Distinction between 32-bit data registers and 32-bit
address registers

• 16 bit instruction register

▫ Variable length instructions handled 16 bits at a time

• Stack pointer registers

▫ User stack pointer is one of the address registers

▫ System stack pointer is a separate single register

 Why a separate system stack?

• Condition code register: System & User bytes

▫ Arithmetic status (N, Z, V, C, X) is in user status byte

▫ System status has Supervisor & Trace mode flags and
the Interrupt Mask

7

Main Memory

• Main memory:
▫ Mb[0..224-1]<7..0>: memory as bytes

▫ Mw[ad]<15..0> := Mb[ad]#Mb[ad+1]: memory as words

▫ Ml[ad]<31..0> := Mw[ad]#Mw[ad+2]: memory as longwords

• Word and longword forms are big-endian

▫ Lowest numbered byte contains most significant bit of
word

• Hard word alignment constraints
▫ Not described in the RTN
▫ Word addresses must in end in on binary 0
▫ Longword addresses end in two binary 0

 What are differences between soft alignment?

8

Instruction Formats

• Instructions accessed in 16-bit words

• Variable number of words in an instruction

9

Addressing Modes

• General address of operand specified by 6-bit field

▫ Access paths to memory and registers

▫ See Table 3.2 for details

• 6-bit effective address

▫ Mode field provides access paths to operands

• Not all operands/results can be specified by general
address - some must be in registers

• Exception

▫ Destination of MOVE instruction has mode and reg
fields reversed

10

5 4 3 2 1 0

Mode Reg

Table 3.2: MC68000 Addressing Modes

Name Mode Reg Assembler Syntax Extra Words Description

Data register direct 0 0-7 Dn 0 Dn

Address register direct 1 0-7 An 0 An

Address register indirect 2 0-7 An) 0 M[An]

Autoincrement 3 0-7 (An)+ 0 M[An];AnAn+d

Autodecrement 4 0-7 -(An) 0 AnAn-d;M[An]

Based 5 0-7 disp16(An) 1 M[An+disp16]

Based indexed short 6 0-7 disp8(An,XnLo) 1 M[An+XnLo+disp8]

Based indexec long 6 0-7 disp8(An,Xn) 1 M[An+Xn+disp8]

Absolute short 7 0 Addr16 1 M[addr16]

Absolute long 7 1 Addr32 2 M[addr32]

Relative 7 2 disp16(PC) 1 M[PC+disp16]

Relative indexed short 7 3 disp8(PC,XnLo) 1 M[PC+XnLo+disp8]

Relative indexed long 7 3 disp8(PC,Xn) 1 M[PC+Xn+disp8]

Immediate 7 4 #data 1-2 No location, data

11

5 4 3 2 1 0

Mode Reg

RTN Formatting for EA Calculation
• XR[0..15]<31..0> :=

 D[0..7]<31..0>#A[0..7]<31..0>:

• xr<3..0> := Mw[PC]<15..12>:

• wl := Mw[PC]<11>:

• dsp8<7..0> := Mw[PC]<7..0>:

• index := ((wl=0) XR[xr]<15..0>:

 (wl=1) XR[xr]<31..0>):

• Index register can be D or A

• Index number for index mode

• Short /long index flag

• Displacement for index mode

• Short

• Long index value

12

• 4-bit field specifies index register

• Either 16 or 32 bit s of index register may be used

• Low order 8-bits are used as offset

15 14 13 12 11 10 9 8 7 0

d/a Index reg w/l 0 0 0 disp8

0: index is in data registers
1: index is in address registers

0: 16-bit index
1: 32-bit index

Addressing Mode Highlights

• Modes 0-6 use a register to calculate a memory
address

▫ Based modes (5-6) require an extra word (16-bits)
to specify address

• Mode 7 does not use a register
▫ Functionality is expanded by repurposing reg

field

▫ All variants require extra words to complete the
instruction and specify the memory address

13

MC68000 Instruction Types

• Instruction fields not standardized

▫ Maximize instructions in limited word size (bits)

▫ Operates on different types (B, W, L)

• Data movement instructions

▫ CC can be set during move

• ALU instructions

▫ 1 EA, 1 Dn operand

▫ Destination specified by 3-bit mode field

• Program control instructions

▫ Use 16 condition codes

▫ Has subroutine specific instructions

14

Starting a Program
• Assembler

▫ Convert assembly language text to (binary) machine
language
 Addresses translated using a symbol table
 Addresses adjusted to allow room for blocks of reserved

memory (e.g. an array definition)

• Linker
▫ Separately assembled modules combined and absolute

addresses assigned
• Loader

▫ Move binary words into memory
• Run time

▫ PC set to started address of loaded module.
▫ OS usually makes a jump or procedure call to the

address

15

Pseudo Operations
• Operation performed by assembler at assembly time not by CPU at

run time
• EQU - defines constant symbol

▫ PI: EQU 3.14

▫ Substitution made at assemble time
• DS.(B, W, L) – defines block of storage

▫ A label is associated with first word of block
▫ Line: DS.B 132

▫ Program loader (part of OS) accomplishes this
• # indicates value of symbol rather than location addressed by

symbol
▫ MOVE.L #1000, D0 ; moves 1000 to D0
▫ MOVE.L 1000, D0 ; moves value addr. 1000 to D0
▫ Assembler detects difference

• ORG – defines memory address where following code will be stored
▫ Start: ORG $4000 ; next instruction/data at addr. 0x4000

• Character constants in single quotes
▫ ‘X’

16

Example: Clearing Block of Memory
MAIN …

 MOVE.L #ARRAY, A0 ;Base of array

 MOVE.W #COUNT, D0 ;Number of words to clear

 JSR CLEARW ;Make the call

 …

CLEARW BRA LOOPE ;Branch for init. Decr.

LOOPS CLR.W (A0)+ ;Autoincrement by 2 .

LOOPE DBF D0, LOOPS ;Dec.D0,fall through if -1

 RTS ;Finished

• Subroutine expects block base in A0, count in D0

• Linkage uses stack pointer

▫ A7 cannot be used for anything else

17

Exceptions

• Changes sequential instruction execution
▫ Next instruction fetch not from PC location
▫ Exception vector

 Address supplying the next instruction

• Arise from instruction execution, hardware
faults, external conditions
▫ Interrupts – externally generated exceptions
▫ ALU overflow, power failure, completion of I/O

operation, out of range memory access, etc.

• Trace bit = 1 causes exception after every
instruction
▫ Used for debugging

18

Exception Handling Steps
1. Status change

▫ Temporary copy of status register made
▫ Supervisor mode bit S is set and trace bit T is reset

2. Exception vector address obtained
▫ Small address made by shift 8-bit vector number left 2
▫ Contents of longword at vector address is new address of

next instruction
▫ Exception handler or interrupt service routine starts at

this address
3. Old PC and Status register are pushed onto supervisor

stack, A7’= SSP
4. PC loaded from exception vector address
5. Return from handler is done by RTE

▫ Works like RTR except Status register is restored rather
than CCs

19

Exception Priority

• Method to determine which exception vector to
use when multiple exceptions occur at once

• 7 levels of priority in MC68000

▫ Status Register contains current priority

• Exceptions with priority ≤ current priority are
ignored

• Exceptions are sensed before fetching next
instruction

20

Memory-Mapped I/O
• Part of CPU memory is

devoted/reserved for I/O
▫ No separate I/O space

▫ Not popular for machines
having limited address bits

• Single bus needed for memory
and I/O
▫ Less packaging pins

• Size of I/O and memory spaces
independent
▫ Many or few I/O devices may

be installed

▫ Much or little memory may
be installed

• Spaces are separated by
putting I/O at the top end of
address space

0xFFFFFF

I/O Space …

0xFF800

0xFF7FFF

Memory Space
…

…

0x000000

21

24-bit address space with top
32K reserved for I/O

Notice top 32K can be
addressed by a negative 16-bit
value

Motorola MC68000 Highlights

• CISC – has many addressing modes and
instruction formats

▫ Pack as much functionality as possible into small
word size

• 16-bit instruction load

▫ Some instructions multiple words

• Interrupts and traps (a real machine)

• Memory mapped I/O

22

The SPARC Microprocessor
• Scalable Processor Architecture (SPARC)

▫ RISC microprocessor architecture
▫ Not a machine – specification for implementation

• General register, load/store architecture
• Only 2 addressing modes

▫ Reg + Reg
▫ Reg + 13-bit constant

• Only 69 basic instructions
▫ 32-bit instruction length
▫ Separate floating point handling

 3 processing units – integer unit, FP unit, coprocesser

• 4 stage pipeline in initial implementation
• Contains features not inherently RISC

▫ Register windows
 Separate, overlapping register sets for subroutines

▫ Big-endian memory organization

23

Developing and ISA (Table 3.1)
• Memories: structure of data storage in the computer

▫ Processor-state registers
▫ Main memory organization

• Formats and interpretation: meaning of register fields
▫ Data types
▫ Instruction format
▫ Instruction address interpretation

• Instruction interpretation: things done for all
instructions
▫ Fetch-execute cycle
▫ Exception handing

• Instruction execution: behavior of individual
instructions
▫ Grouping of instructions into classes
▫ Actions performed by individual instructions

24

SPARC Processor State
• 32-bit general registers

▫ Integer and floating point
separate

• Brach delays
▫ Requires 2 program

counters
• Processor-status register

(PSR)
▫ Condition codes

• Window-invalid mask
(WIM)
▫ Used for register windows

• Trap base register
▫ Traps and interrupts

25

Register Windows

• High percentage of memory traffic for saving and
restoring registers during procedure calls
▫ More registers = less memory traffic
▫ Reduce overhead of calls

• Only a small subset of registers is visible to the
programmer at a given time (within procedure)
▫ Dedicated but overlapping registers groups

 Global

 Input parameters

 Output parameters

 Local registers

▫ Overlap designed to prevent swapping of registers
 Output parameters in one window become input

parameters in the next

26

Register Windows Mechanism

27

Register Window Format
• 32 general addresses accessible at a time (integer

and address) from set of 120
▫ Global registers = g0..g7 are not part of a window

and always available
 g0 = 0, writes ignored, read returns zero

▫ 24 in a movable window from within 120
• During subroutine call

▫ r24..r31 before call become r8..r15 after
▫ r[8..15] are for incoming parameters
▫ r[24-31] for outgoing parameters
▫ r15 used for return address, available in r31 after a
save

• Current Window Pointer (CWP) locates available
registers within larger register space

• Overflow of register space causes a trap

28

Window Specifics

• CWP points to register currently called r8

▫ save moves CWP to former r24

▫ restore reverses process

• Parameters placed in r24..r31 by caller are
available in r8..r15 by callee

• Spill := attempt to save when all windows have

been used
▫ save traps to routine to store registers to memory

▫ Window wraps around like a circular buffer

 On overflow, first window is reused

29

Main Memory
• Main memory:

▫ Mb[0..232-1]<7..0>: memory as bytes
▫ Mh[ad]<15..0> := Mb[ad]#Mb[ad+1]: memory as halfwords
▫ Mw[ad]<31..0> := Mh[ad]#Mh[ad+2]: memory as words

• Word and halfword forms are big-endian

▫ Lowest numbered byte contains most significant bit of
word

• Hard word alignment constraints
▫ Not described in the RTN
▫ Word addresses must in end in binary 00

• Memory mapping unit (MMU) defined
▫ Allows multiple address spaces (Chapter 7)
▫ Will not discuss

30

Datatypes

• Integer instructions access many different types

▫ Bytes

▫ 16-bit halfwords

▫ 32-bit words

▫ 64-bit double words

• 32, 64, 128-bit floating point word sizes (more
bits needed for FP Chapter 6)

31

Instruction Formats

• Three basic formats with some small variations

▫ Support 55 basic integer and 15 FP instructions

32

Addressing Modes

• Only 2 modes for load/store
▫ Sum of two registers
▫ Sum of register and sign extended 13-bit constant

• Allows for a variety of addressing modes can be
synthesized
▫ Indexed

 Base in one register, index in another

▫ Register indirect
 g0 + rn ; r0 = 0

▫ Displacement
 rn + const. ; n≠0

▫ Absolute
 g0 + const.

 Can only reach the bottom or top 4K bytes of memory

33

Addressing Modes RTN

• Immediate operand indicator
▫ i:= IR<13>

• Address for load, store, and jump
• adr<31..0> := (i=0 r[rs1] + r[rs2]:

• i=1 r[rs1] + simm13<12..0> {sign ext.}):

▫ 4K offset for immediate

• Call relative address
• calladr<31..0> := PC<31..0> + disp30<29..0>#002:

▫ Reaches full 32-bit address space

• Branch Address
• bradr<31..0> := PC<31..0> + disp22<21..0>#002{sign ext.}:

▫ PC ±8M addresses

34

RTN for Instruction Interpretation
• Instruction_interpretation := (

 IR Mw[PC] ; instruction_execution;

 update_PC_and_nPC; instruction_interpretation):

• Notice execution occurs before PC updates

▫ 2 PC values to update because of delayed branch

• Interrupts not mentioned in this simple RTN
statement

35

Data Movement instructions

• Typically specified by both an op field and
secondary op3 field

• Supports byte, halfword, word, doubleword moves

▫ Loaded into lsb of register

▫ Top bits cleared or sign-extended based on unsigned
or signed load

▫ Even register is needed for destination of ldd

• Register moves possible with or with g0

• Loading a register with 32-bit constant takes 2
instructions
▫ SETHI #upper22, R17

▫ OR R17, #lower10, R17

36

ALU Instructions

• Instr. Format 3, op=10 (binary)

• CCs set based on S flag bit
▫ Bit 5 of op3 field

• Arithmetic

▫ Multiply and divide either as FP or in software

▫ Multi-step instructions placed in FPU

• Logical

▫ And, or, xor, and shifts defined

▫ Not synthesized using orn with g0

37

Branch and Control Instructions

• Implement several branch and procedure calls

• Conditional branches

▫ 4-bit condition field

▫ Branch target address is a word offset relative to PC
 bradr<31..0> := PC<31..0> + disp22<21..0>#002{sign ext.}:

• Delayed branching

▫ Instruction after branch executed prior to completion
of branch instruction

▫ Annul bit a allows programmer control of instruction

in branch-delay slot

 When branch is not taken:
 a=1 delay instruction annulled

 a=0 delay instruction executed

38

SPARC Assembly

• Format

• Label: instruction !comment

• Destination is always right most operand

• Register (denoted with %) aliasing
▫ %r8 - %r15 = %o0 - %o7

▫ %r16 - %r23 = %l0 - %l7

▫ %r24 - %r31 = %i0 - %i7

• Memory addresses enclosed in square brackets
[]

▫ Branch, jump, call addresses do not use [] but
typically a label

39

SPARC Example Code

• Program to add 2 integers

• r15 contains return address of progl
▫ Placed there by OS in this case

40

.begin

.org

progl: ldw [x], %r1 ! Load word from M[x] into register %r1

ldw [y], %r2 ! Load word from M[x] into register %r2

addcc %r1, %r2, %r3 ! %r3 %r1 + %r2 ; set CCs

st %r3, [z] ! store sum in M[z]

jmpl %r15, +8, %r0 ! Return to caller

nop ! branch delay slot

x: 15 ! Reserve storage for x, y, and z

y: 9

z: 0

.end

SPARC Pipelining

• Many aspects of the SPARC design are in support of
a pipelined implementation
▫ Simple addressing modes, simple instructions, delayed

branches, load/store architecture

• Simplest form of pipelining is fetch/execute
overlap—fetching next inst. while executing current
inst.

• Pipelining breaks inst. processing into steps
▫ A step of one instruction overlaps different steps for

others

• A new inst. is started (issued) before previously
issued instructions are complete

• Instructions guaranteed to complete in order

41

SPARC MB86900 Pipeline

• 4 stage pipeline

• Results written to registers in write stage

42

Pipeline Hazards

• Branch or jump change the PC as late as Exec. or
Write, but next inst. has already been fetched
▫ One solution is ‘Delayed Branch’
▫ One (maybe 2) instruction following branch is

always executed, regardless of whether branch is
taken

▫ SPARC has a delayed branch with one ‘delay slot”,
but also allows the delay slot instruction to be
annulled (have no effect on the machine state) if
the branch is not taken

• Registers to be written by one instruction may be
needed by another already in the pipeline, before
the update has happened (Data Hazard)

43

SPARC Highlights

• RISC machine has fewer simple instructions

▫ Multistep arithmetic operations happen in special
units

▫ Regular instruction formats and few addressing
modes simplify instruction decode

• Load/store machine with ALU only on registers

• Use of branch delays for pipelining

▫ No load delay

• Use of register windows

▫ Extend register space for fewer memory
operations

44

CISC vs. RISC Recap

• CISCs supply powerful instructions tailored to
commonly used operations, stack operations,
subroutine linkage, etc.

• RISCs require more instructions to do the same
job

• CISC instructions take varying lengths of time

• RISC instructions can all be executed in the
same, few cycle, pipeline

• RISCs should be able to finish (nearly) one
instruction per clock cycle

45

Chapter 3 Summary
• Machine price/performance are the driving forces.

▫ Performance can be measured in many ways: MIPS,
execution time, Whetstone, Dhrystone, SPEC
benchmarks.

• CISC machines have fewer instructions that do
more.
▫ Instruction word length may vary widely
▫ Addressing modes encourage memory traffic
▫ CISC instructions are hard to map onto modern

architectures
• RISC machines usually have

▫ One word per instruction
▫ Load/store memory access
▫ Simple instructions and addressing modes
▫ Result in allowing higher clock cycles, prefetching, etc

46

