
http://www.egr.unlv.edu/~b1morris/cpe300/

CPE300: Digital System

Architecture and Design
Fall 2011

MW 17:30-18:45 CBC C316

Arithmetic Unit

10032011

Outline

• Recap Chapter 3

• Number Systems

• Fixed Point Arithmetic

2

The Motorola MC68000

• Introduced in 1979
▫ Computers

 Apple Lisa 2, Apple Macintosh 128, Atari 520STfm and
1040STfm, Commodore Amiga 500 and 1000

▫ Still in use today (now Freescale Semiconductor)

• Very early 32-bit microprocessor
▫ Most operations on 32-bit internal data
▫ Some operations may use different number of bits
▫ External datapaths may not all be 32 bits wide

 24-bit address bus for MC68000

• Complex instruction set computer
▫ Large instruction set
▫ 14 addressing modes

3

chip

die

Motorola MC68000 Highlights

• CISC – has many addressing modes and
instruction formats

▫ Pack as much functionality as possible into small
word size

• 16-bit instruction load

▫ Some instructions multiple words

• Interrupts and traps (a real machine)

• Memory mapped I/O

4

New Concepts from MC68000

• Variable length instructions
▫ Large instruction set, variable format

• Operation on many different types
▫ Must specify byte, word, longword

• Effective address (EA) calculation
▫ 14 Addressing modes

• Subroutines
▫ E.g. function calls

• Exceptions
▫ Interruption of normal sequential instruction

execution

• Memory-mapped I/O
▫ Part of CPU memory reserved for I/O

5

MC68000 Programmer’s Model

6

Features of Processor State

• Distinction between 32-bit data registers and
32-bit address registers

• 16 bit instruction register
▫ Variable length instructions handled 16 bits at a

time

• Stack pointer registers
▫ User and system stack pointers

• Condition code register: System & User bytes
▫ Arithmetic status (N, Z, V, C, X) is in user status

byte
▫ System status has Supervisor & Trace mode flags

and the Interrupt Mask

7

Main Memory

• Main memory:
▫ Mb[0..224-1]<7..0>: memory as bytes

▫ Mw[ad]<15..0> := Mb[ad]#Mb[ad+1]: memory as words

▫ Ml[ad]<31..0> := Mw[ad]#Mw[ad+2]: memory as
longwords

• Word and longword forms are big-endian

▫ Lowest numbered byte contains most significant
bit of word

• Hard word alignment constraints
▫ Not described in the RTN
▫ Word addresses must in end in on binary 0
▫ Longword addresses end in two binary 0

8

Addressing Mode Highlights

• General address of operand specified by 6-bit
effective address field

• Modes 0-6 use a register to calculate a memory
address

▫ Based offset modes (5-6) require an extra word (16-
bits) to specify address

• Mode 7 does not use a register
▫ Functionality is expanded by repurposing reg field

▫ All variants require extra words to complete the
instruction and specify the memory address

9

5 4 3 2 1 0

Mode Reg

MC68000 Instruction Types

• Instruction fields not standardized

▫ Maximize instructions in limited word size (bits)

▫ Operates on different types (B, W, L)

• Data movement instructions

▫ CC can be set during move

• ALU instructions

▫ 1 EA, 1 Dn operand

▫ Destination specified by 3-bit mode field

• Program control instructions

▫ Use 16 condition codes

▫ Has subroutine specific instructions

10

Exceptions

• Changes sequential instruction execution

▫ Next instruction fetch not from PC location

▫ Exception vector

 Address supplying the next instruction

▫ 7 levels of priority

• Arise from instruction execution, hardware faults,
external conditions

▫ Interrupts – externally generated exceptions

▫ ALU overflow, power failure, completion of I/O
operation, out of range memory access, etc.

• Trace bit = 1 causes exception after every instruction

▫ Used for debugging

11

Memory-Mapped I/O
• Part of CPU memory is

devoted/reserved for I/O
▫ No separate I/O space

▫ Not popular for machines
having limited address bits

• Single bus needed for memory
and I/O
▫ Less packaging pins

• Size of I/O and memory spaces
independent
▫ Many or few I/O devices may

be installed

▫ Much or little memory may
be installed

• Spaces are separated by
putting I/O at the top end of
address space

0xFFFFFF

I/O Space …

0xFF800

0xFF7FFF

Memory Space
…

…

0x000000

12

24-bit address space with top
32K reserved for I/O

Notice top 32K can be
addressed by a negative 16-bit
value

The SPARC Microprocessor

• Scalable Processor Architecture (SPARC)
▫ RISC microprocessor architecture
▫ Not a machine – specification for implementation

• General register, load/store architecture
• Only 2 addressing modes

▫ Reg + Reg
▫ Reg + 13-bit constant

• Only 69 basic instructions
▫ 32-bit instruction length
▫ Separate floating point handling

 3 processing units – integer unit, FP unit,
coprocesser

13

SPARC Highlights

• RISC machine has fewer simple instructions

▫ Multistep arithmetic operations happen in special
units

▫ Regular instruction formats and few addressing
modes simplify instruction decode

• Load/store machine with ALU only on registers

• Use of branch delays for 4 stage pipeline

• Use of register windows

▫ Extend register space for fewer memory
operations

14

SPARC Processor State
• 32-bit general registers

▫ Integer and floating point
separate

• Brach delays
▫ Requires 2 program

counters
• Processor-status register

(PSR)
▫ Condition codes

• Window-invalid mask
(WIM)
▫ Used for register windows

• Trap base register
▫ Traps and interrupts

15

Register Windows

• High percentage of memory traffic for saving and
restoring registers during procedure calls
▫ More registers = less memory traffic
▫ Reduce overhead of calls

• Only a small subset of registers is visible to the
programmer at a given time (within procedure)
▫ Dedicated but overlapping registers groups

 Global

 Input parameters

 Output parameters

 Local registers

▫ Overlap designed to prevent swapping of registers
 Output parameters in one window become input

parameters in the next

16

Register Windows Mechanism

17

Window Specifics

• CWP points to register currently called r8

▫ save moves CWP to former r24

▫ restore reverses process

• Parameters placed in r24..r31 by caller are
available in r8..r15 by callee

• Spill := attempt to save when all windows have

been used
▫ save traps to routine to store registers to memory

▫ Window wraps around like a circular buffer

 On overflow, first window is reused

18

Main Memory

• Main memory:
▫ Mb[0..232-1]<7..0>: memory as bytes

▫ Mh[ad]<15..0> := Mb[ad]#Mb[ad+1]: memory as

halfwords

▫ Mw[ad]<31..0> := Mh[ad]#Mh[ad+2]: memory as words

• Word and halfword forms are big-endian

▫ Lowest numbered byte contains most significant
bit of word

• Hard word alignment constraints

▫ Not described in the RTN

▫ Word addresses must in end in binary 00

19

Addressing Modes

• Only 2 modes for load/store
▫ Sum of two registers
▫ Sum of register and sign extended 13-bit constant

• Allows for a variety of addressing modes can be
synthesized
▫ Indexed

 Base in one register, index in another

▫ Register indirect
 g0 + rn ; r0 = 0

▫ Displacement
 rn + const. ; n≠0

▫ Absolute
 g0 + const.

 Can only reach the bottom or top 4K bytes of memory

20

RTN for Instruction Interpretation
• Instruction_interpretation := (

 IR Mw[PC] ; instruction_execution;

 update_PC_and_nPC; instruction_interpretation):

• Notice execution occurs before PC updates

▫ 2 PC values to update because of delayed branch

• Interrupts not mentioned in this simple RTN
statement

21

SPARC MB86900 Pipeline

• 4 stage pipeline
▫ Results written to registers in write stage
▫ A new inst. is started (issued) before previously

issued instructions are complete
▫ Instructions guaranteed to complete in order

22

RISC vs. CISC Designs
• CISC: Complex Instruction Set Computer

▫ Many complex instructions and addressing modes
▫ Some instructions take many steps to execute

 Varying lengths of time
▫ Not always easy to find best instruction for a task

• RISC: Reduced Instruction Set Computer
▫ Pipeline friendly

 Few, simple instructions, addressing modes
 Usually one word per instruction
 May take several instructions to accomplish what CISC

can do in one
 Should be able to finish (nearly) one instruction per clock

cycle
▫ Complex address calculations may take several

instructions
▫ Usually has load-store, general register ISA

23

Problem Solving

• Homework problems

• 3.1

• 3.2

• 3.3

24

Chapter 6

• Number Systems and Radix Conversion

• Fixed-Point Arithmetic

• Seminumeric Aspects of ALU Design

• Floating-Point Arithmetic

25

Digital Number Systems

• Expanded generalization of lecture 07 topics

• Number systems have a base (radix) b

• Positional notation of an m digit base b number

▫ 𝑥 = 𝑥𝑚;1𝑥𝑚;2…𝑥1𝑥0

▫ Value 𝑥 = 𝑥𝑖𝑏
𝑖𝑚;1

𝑖<0

26

Range of Representation

• Largest number has all digits equal to largest
possible base 𝑏 digit, (𝑏 − 1)

• Max value in closed form for unsigned m digit
base b number

▫ 𝑥max = (𝑏 − 1)𝑏𝑖𝑚;1
𝑖<0

▫ 𝑥max = (𝑏 − 1) 𝑏𝑖 =𝑚;1
𝑖<0 (𝑏 − 1)

𝑏𝑚;1

𝑏;1

▫ 𝑥max = 𝑏
𝑚 − 1

• Sum of geometric series

▫ 𝑏𝑖 =𝑚;1
𝑖<0

𝑏𝑚;1

𝑏;1

27

Radix Conversion

• Conversion between different number systems
involves computation
▫ Base of calculation is c (10 typical for us humans)
▫ Other base is b

• Calculation based on division

▫ For integers a and d, exist integers q and r such
that

▫ 𝑎 = 𝑞 ∙ 𝑑 + 𝑟
 0 ≤ 𝑟 ≤ 𝑏 − 1

• Notation:

▫ 𝑞 = 𝑎/𝑑
▫ 𝑟 = 𝑎 mod 𝑏 (mod is remainder)

28

Digit Symbol Correspondence Between Bases

• Each base (b or c) has different symbols to
represent digits

• Lookup table given for correspondence between
symbols

▫ Provides mapping between base b and base c
symbols

▫ May be more than one digit required to represent
a larger base symbol

29

Base 12 0 1 2 3 4 5 6 7 8 9 A B

Base 3 0 1 2 10 11 12 20 21 22 100 101 102

Base Conversion 1
• Convert base b integer to

calculator base c

1. Start with base b

▫ 𝑥 = 𝑥𝑚;1𝑥𝑚;2…𝑥1𝑥0

2. Set 𝑥 = 0 in base c

3. Left to right, get next symbol
𝑥𝑖

4. Lookup base c number 𝐷𝑖
for symbol 𝑥𝑖

5. Calculate in base c

▫ 𝑥 = 𝑥 ∙ 𝑏 + 𝐷𝑖
6. Repeat step 3 until no more

digits

• Example:

• Convert 0x3AF to base 10

▫ 𝑥 = 0

▫ 𝑥 = 16 ∙ 𝑥 + 3 = 3

▫ 𝑥 = 16 ∙ 3 + 10 (= 𝐴) = 58

▫ 𝑥 = 16 ∙ 58 + 15 (= 𝐹) = 943

• 0x3AF = 94310

30

Base Conversion 2
• Convert calculator base c

integer to base b

1. Start with base c integer

▫ 𝑥 = 𝑥𝑚;1𝑥𝑚;2…𝑥1𝑥0

2. Initialize

▫ 𝑖 = 0

▫ 𝑣 = 𝑥

▫ Get digits right to left

3. Set

▫ 𝐷𝑖 = 𝑣 mod 𝑏

▫ 𝑣 = 𝑣/𝑏

▫ Lookup 𝐷𝑖 to get 𝑥𝑖
4. Set

▫ 𝑖 = 𝑖 + 1

▫ Repeat step 3 if 𝑣 ≠ 0

• Example:

• Convert 358710 to base 12

▫
3587

12
= 298 𝑟𝑒𝑚 = 11 𝑥0 = 𝐵

▫
298

12
= 24 𝑟𝑒𝑚 = 10 𝑥1 = 𝐴

▫
24

12
= 2 𝑟𝑒𝑚 = 0 𝑥2 = 0

▫
2

12
= 0 𝑟𝑒𝑚 = 2 𝑥3 = 2

• 3587=20AB12

31

Fractions and Fixed Point Numbers

• Base b fraction

▫ f= .f-1 f-2… f-m

▫ Value is integer f-1 f-2… f-m divided by 𝑏𝑚

• Mixed fixed point number

▫ 𝑥𝑛;1𝑥𝑛;2…𝑥1𝑥0. 𝑥;1𝑥;2…𝑥;𝑚

▫ Value of n+m digit integer

 𝑥𝑛;1𝑥𝑛;2…𝑥1𝑥0𝑥;1𝑥;2…𝑥;𝑚

▫ Divided by 𝑏𝑚

• Moving radix point one place left divides by b

▫ Right shift for fixed radix point position

• Moving radix point one place right multiplies by b

▫ Left Shift for fixed radix point position

32

Converting Fractions to Calculator Base

• Can use integer conversion
and divide result by 𝑏𝑚

• Alternative algorithm

1. Let base b number be

▫ 𝑓 =. 𝑓;1𝑓;2…𝑓;𝑚

2. Initialize

▫ 𝑓 = 0.0

▫ 𝑖 = −𝑚

3. Find base c equivalent of 𝐷
of digit 𝑓𝑖

4. Update

▫ 𝑓 =
𝑓:𝐷

𝑏

▫ 𝑖 = 𝑖 + 1

5. If 𝑖 = 0, result is 𝑓; otherwise
repeat step 3

• Example

• Convert 0.4138 to base 10

▫ 𝑓 =
0:3

8
= 0.375

▫ 𝑓 =
0.375:1

8
 = 0.171875

▫ 𝑓 =
0.171875:4

8
= 0.521484375

• Notice: there will be precision
errors due to numerical round-
off

▫ Only a fixed number of digits
can be retained

33

Converting Fractions to Base b

1. Start with fraction f in base c

▫ 𝑓 =. 𝑓;1𝑓;2…𝑓;𝑚

2. Initialize

▫ 𝑣 = 𝑓

▫ 𝑖 = 1

3. Set

▫ 𝐷;𝑖 = 𝑏 ∙ 𝑣

▫ 𝑣 = 𝑏 ∙ 𝑣-𝐷;𝑖

▫ Get base b digit 𝑓;𝑖 for 𝐷;𝑖
with table

4. Increment

▫ 𝑖 = 𝑖 + 1

▫ Repeat Step 3 until

 𝑣 = 0

 Enough digits generated

• Example

• Convert 0.3110 to base 8

▫ 0.31 × 8 = 2.48 𝑓;1 = 2

▫ 0.48 × 8 = 3.84 𝑓;2 = 3

▫ 0.84 × 8 = 6.73 𝑓;3 = 6

• Notice:

▫ Since 83 > 102, 0.2368 has
more accuracy than 0.3110

34

Digit Grouping for Related Bases

• Base b = ck

• Can convert between bases by replacing single
digit symbol in base b with corresponding digits
in base c

• (Our favorite method to change base e.g. binary
to hex)

35

