
http://www.egr.unlv.edu/~b1morris/cpe300/

CPE300: Digital System

Architecture and Design
Fall 2011

MW 17:30-18:45 CBC C316

1-Bus Architecture and Datapath

10242011

Outline

• Midterm

• 1-Bus Microarchitecture

• Datapath

• 1-Bus Logic Design

2

Midterm Scores

• Max = 65.5, min = 28

• Mean = 48.6, std = 10.8

▫ 48+ should feel pretty good

▫ Mean + std should feel very good

3

Midterm Discussion

• Go through solutions on board

4

Chapter 4 – Processor Design

1. The Design Process

2. A 1-bus Microarchitecture for SRC

3. Data Path Implementation

4. Logic Design for the 1-bus SRC

5. The Control Unit

6. The 2- and 3-bus Processor Designs

7. The Machine Reset Process

8. Machine Exceptions

5

Register Transfer Descriptions

• Abstract RTN

▫ Defines “what” not the “how” (Chapter 2)

 Overall effect of instructions on programmer-visible
registers

▫ Implementation independent

 Registers and operations

• Concrete RTN

▫ Detailed register transfer steps in datapath to
produce overall effect

 Dependent on implementation details

▫ Steps correspond to processor clock pulses

6

The (SRC) Design Process

1. Informal description – abstract RTN (Chapter
2)

2. Propose several block diagram architectures to
support the abstract RTN

▫ Develop RTN steps consistent with architecture

▫ Track demands made by concrete RTN on
hardware

3. Design datapath hardware and identify needed
control signals

4. Design control unit to generate control signals

7

1-Bus SRC Microarchitecture

• 5 classic components of computer

▫ Memory, Input, Output

▫ CPU – Control and Datapath

8

High-Level View of 1-Bus SRC Design

9

Microarchitecture Constraints
• One bus connecting registers

▫ Only single register transfer at a
time

• Memory address must be copied into
memory address (MA) register by
CPU

• Memory data written from or read
into memory data (MD) register

• ALU operation
▫ First operand always registered in A

▫ Second operand always comes from
bus

▫ Result registered in C

• Information into IR and MA only
from bus
▫ Decoder (not shown) interprets

contents of IR

▫ MA supplies address to memory not
CPU bus

10

RTN for ADD Instruction

• Develop steps to execute instruction

• Abstract RTN
▫ (IRM[PC]: PCPC+4; instsruction_execution);

▫ Instruction_execution := (…

 add(:=op=12)R[ra]R[rb]+R[rc]:

 …);

• Concrete RTN

▫ 3 concrete RT

 (T3, T4, T5)

▫ 2 RT in T0

▫ 6 total clock cycles

11

Step RTN

T0 MAPC: CPC+4;

T1 MDM[MA]: PCC

T2 IRMD

T3 AR[rb]

T4 CA+R[rc];

T5 R[ra]C

fe
tc

h

ex
e

cu
ti

o
n

Concrete RTN to Subunits

• ALU must be able to add two 32-bit values (ADD)

• ALU must be able to increment B input by 4
▫ CPC+4;

• Memory read must use address from MA and
return data to MD
▫ MDM[MA], IRMD

• RT separated by colon (:) are operations in the
same clock cycle

• Steps T0-T2 make up instruction fetch and is the
same for all instructions

12

RTN for ADDI Instruction

• Abstract RTN
▫ (IRM[PC]: PCPC+4; instsruction_execution);

▫ Instruction_execution := (…

 addi(:=op=13)R[ra]R[rb]+c2<16..0> {two’s complement,

sign-extend}:

 …);

• Concrete RTN
▫ Same as ADD except

 step T4

▫ Requires hardware

 for sign extension

13

Step RTN

T0-T2 Instruction Fetch

T3 AR[rb]

T4 CA+c2 {sign-extend};

T5 R[ra]C

More Complete View of 1-Bus SRC Design

• Concrete RTN adds detail to the datapath

14

IR register logic and
data paths

Shift counter register

Condition bit flip-flop

RTN for Load/Store Instruction

• Abstract RTN
▫ ld(:=op=1)R[ra]M[disp]:

▫ st(:=op=3)M[disp]R[ra]:

 disp<31..0>:=((rb=0)c2<16..0> {sign-extend}:

 (rb≠0)R[rb]+c2<16..0>{sign-ext,2’s comp}

• Concrete RTN

15

Step RTN ld RTN st

T0-T2 Instruction Fetch

T3 A(rb=00: rb≠0R[rb]);

T4 CA+(16@IR<16>#IR<15..0>);

T5 MAC;

T6 MDM[MA]; MDR[ra]

T7 R[ra]MD; M[MA]MD;

T3, T4 are effective address arithmetic calculation

Notes for Load/Store RTN

• T0-T2 are same as for add (all instructions)

• T3-T5 are same for ld and st – calculate disp

• Need way to use 0 for R[rb] when rb=0

• 15-bit sign extension of IR<16..0> is needed

• Memory read into MD at T6 of ld

• Write of MD into memory at T7 of st

16

RTN for Conditional Branch

• Abstract RTN
▫ br(:=op=8)(condPCR[rb]):

 cond:=(

 c3<2..0>=00: ;never

 c3<2..0>=11: ;always

 c3<2..0>=2R[rc]=0: ;if register is zero

 c3<2..0>=3R[rc]≠0: ;if register is nonzero

 c3<2..0>=4R[rc]<31>=0: ;if register is positive or zero

 c3<2..0>=5R[rc]<31>=1): ;if register is negative

• Concrete RTN

17

Step RTN

T0-T2 Instruction Fetch

T3 CONcond(R[rc]);

T4 CONPCR[rb];

CON is 1-bit register that is set based on condition logic:
the contents of c<2..0> and R[rc]

Notes on Conditional Branch RTN

• c3<2..0> are just 3 low order bits of IR

• cond() is evaluated by combinational logic
circuit having inputs R[rc] and c3<2..0>

• One bit CON register is not accessible to the

programmer

▫ Holds intermediate output of combinational logic
for the condition

• If branch succeeds
▫ PC is replaced by contents of a general register

18

RTN for SRC Shift Right

• Abstract RTN
▫ shr(:=op=26)R[ra]<31..0>(n@0)#R[rb]<31..n>:

 n:=((c3<4..0>=0)R[rc]<4..0>: ;shift count in reg.

 (c3<4..0>≠0)c3<4..0>): ;shift cnt const. field

• Concrete RTN

19

Step RTN

T0-T2 Instruction Fetch

T3 nIR<4..0>

T4 (n=0)(nR[rc]<4..0>);

T5 CR[rb]

T6 Shr(:=n≠0(C<31..0>0#C<31..1>: nn-1; Shr));

T7 R[ra]C

T6 is repeated n times

Notes on Shift RTN

• Abstract RTN defines n with :=

• Concrete RTN has n as a physical register

• n is not only the shift count but used as a
counter in step T6
▫ T6 is repeated n times through recursive Shr call

▫ Will require more complicated control, described
later

20

Datapath/Control Unit Separation

• Interface between datapath and control consists
of gate and strobe signals
▫ Gate – selects one of several values to apply to a

common point (e.g. bus)
▫ Strobe – changes the contents of a register (flip-

flops) to match new inputs

• Type of flip-flop used in a register has significant
impact on control and limited impact on
datapath
▫ Latch – simpler hardware but more complex

timing
▫ Edge triggered – simpler timing but

approximately 2x hardware

21

Latch/Edge-Triggered Operation

• Latch output follows input while strobe is high

• Edge-triggering samples input at the edge time

22

D

C

D

C

Q

D Q

C

D

C

Q

More Complete View of 1-Bus SRC Design

• Add control signals and gate-level logic

23

IR register logic and
data paths

Shift counter register

Condition bit flip-flop

1

2

3

4

5

6

Register File and Control Signals
• Register selection

▫ IR decode of register fields

▫ Grx signal to gate register rx

by decoder

• Rout gates selected register

onto the bus

• Rin strobes selected register

from the bus

• Base address out BAout gates
zero signal when R[0] is

selected

24

Extracting Constants/op from IR
• 3D blocks distinguish multi-bit

elements

▫ Register flip-flops

▫ Tri-state bus drivers

• Sign bits fanned out from one
to several bits and gated onto
bus

▫ IR<21> is sign bit of c1 and

must be sign extended

▫ IR<16> is sign bit of c2 and

must be sign extended

25

Memory Interface

• MD is loaded from memory bus or from CPU bus

• MD can drive memory bus or CPU bus

• MA only gets address from CPU processor bus

26

ALU and Associated Registers

• Add control lines to select ALU function
▫ INC4 for hardware supported PC increment

27

1-Bit ALU Logic-Level Design

28

PC increment Negative numbers in B

AND gates select

appropriate output

Control Sequences

• Register transfers are the concrete RTN

• Control sequence are the control signals that
cause the RT

29

Step Concrete RTN Control Sequence

T0 MAPC: CPC+4; PCout, MAin, Inc4, Cin

T1 MDM[MA]: PCC Read, Cout, PCin, Wait

T2 IRMD MDout, IRin

T3 instruction_execution

Wait prevents control sequence from advancing to step T2
until memory asserts Done

Control Steps, Control Signals, and Timing

• Order control signals are written is irrelevant for
a given time step

▫ Step T0:
 (Inc4, Cin, PCout, MAin) = (PCout, MAin, Inc4, Cin)

• Timing distinction is made between gates and
strobes

▫ Gates early, strobes late in clock cycle

• Memory read should start as early as possible to
reduce wait time

• MA must have correct value before being used for

a read

30

Control for ADD Instruction
• add(:=op=12)R[ra]R[rb]+R[rc]:

• Grx used to gate correct 5-bit register select code

• End signals the control to start over at step T0

31

Step Concrete RTN Control Sequence

T0 MAPC: CPC+4; PCout, MAin, Inc4, Cin

T1 MDM[MA]: PCC Read, Cout, PCin, Wait

T2 IRMD MDout, IRin

T3 AR[rb] Grb, Rout, Ain

T4 CA+R[rc]; Grc, Rout, ADD, Cin

T5 R[ra]C Cout, Gra, Rin, End

RTN for ADDI Instruction
• addi(:=op=13)R[ra]R[rb]+c2<16..0> {two’s

complement, sign-extend}:

• C2out signal sign extends IR<16..0> and gates it to the
bus

32

Step Concrete RTN Control Sequence

T0 MAPC: CPC+4; PCout, MAin, Inc4, Cin

T1 MDM[MA]: PCC Read, Cout, PCin, Wait

T2 IRMD MDout, IRin

T3 AR[rb] Grb, Rout, Ain

T4 CA+c2 {sign-extend}; c2out, ADD, Cin

T5 R[ra]C Cout, Gra, Rin, End

RTN for st Instruction
• st(:=op=3)M[disp]R[ra]:

▫ disp<31..0>:=((rb=0)c2<16..0> {sign-extend}:

 (rb≠0)R[rb]+c2<16..0>{sign-ext,2’s comp}

• Notice the use of BAout in step T3 not Rout as done in addi

33

Step Concrete RTN Control Sequence

T0-T2 instruction_fetch

T3 A(rb=00: rb≠0R[rb]); Grb, BAout, Ain

T4 CA+(16@IR<16>#IR<15..0>); c2out, ADD, Cin

T5 MAC; Cout, MAin

T6 MDR[ra] Gra, Rout, MDin, Write

T7 M[MA]MD; Wait, End

Shift Counter

• Concrete RTN for shr relies upon a 5-bit

register to hold the shift count

• Must load, decrement, and have a way to test if
the contents equal 0

34

Control for Shift Instruction
• shr(:=op=26)R[ra]<31..0>(n@0)#R[rb]<31..n>:

▫ n:=((c3<4..0>=0)R[rc]<4..0>: ;shift count in reg.

 (c3<4..0>≠0)c3<4..0>): ;count const. field

• Conditional control signals and repeating control are new concepts

▫ Goto6 – repeats step T6 but must be carefully timed for the looping

35

Step Concrete RTN Control Sequence

T0-T2 Instruction Fetch

T3 nIR<4..0> c1out, Ld

T4 (n=0)(nR[rc]<4..0>); n=0(Grc, Rout, Ld)

T5 CR[rb] Grb, Rout, C=B, Cin

T6 Shr(:=n≠0

(C<31..0>0#C<31..1>:

nn-1; Shr));

n≠0(Cout, SHR, Cin, Decr,

Goto6)

T7 R[ra]C Cout, Gra, Rin, End

Branching

• Branch conditions dependent on cond field an a
register value (not flag or flag register)
▫ cond:=(

 c3<2..0>=00: ;never

 c3<2..0>=11: ;always

 c3<2..0>=2R[rc]=0: ;if register is zero

 c3<2..0>=3R[rc]≠0: ;if register is nonzero

 c3<2..0>=4R[rc]<31>=0: ;if register is positive or zero

 c3<2..0>=5R[rc]<31>=1): ;if register is negative

• Logic expression for condition
▫ cond = (c3<2..0>=1) (c3<2..0>=2) (R[rc]=0)

(c3<2..0>=3) (R[rc]=0) (c3<2..0>=4) R[rc]<31>

 (c3<2..0>=5) R[rc]<31>

36

Conditional Value Computation

• NOR gate does test of R[rc]=0 on bus

37

Control for Branch Instruction
• br(:=op=8)(condPCR[rb]):

• Condition logic always connected to CON

▫ R[rc] only needs to be placed on bus in T3

• Only PCin is conditional in T4 since gating R[rb] to bus makes no

difference if it is not used

38

Step Concrete RTN Control Sequence

T0-T2 Instruction Fetch

T3 CONcond(R[rc]); Grc, Rout, CONin

T4 CONPCR[rb]; Grb, Rout, CONPCin, End

Summary of Design Process

• Informal description formal RTN description
block diagram arch. concrete RTN steps
hardware design of blocks control sequences
control unit and timing

• At each level, more decisions must be made
▫ These decisions refine the design
▫ Also place requirements on hardware still to be

designed

• The nice one way process above has circularity
▫ Decisions at later stages cause changes in earlier ones
▫ Happens less in a text than in reality because

 Can be fixed on re-reading

 Confusing to first time student

39

