
http://www.egr.unlv.edu/~b1morris/cpe300/

CPE300: Digital System

Architecture and Design
Fall 2011

MW 17:30-18:45 CBC C316

Input and Output

11072011

Outline

• Chapter 8 Overview

• I/O Subsystem

• Programmed I/O

• I/O Interrupts

2

Chapter 8 Overview

• The I/O subsystem
▫ I/O buses and addresses

• Programmed I/O
▫ I/O operations initiated by program instructions

• I/O interrupts
▫ Requests to processor for service from an I/O

device

• Direct Memory Access (DMA)
▫ Moving data in and out without processor

intervention

• I/O data format change and error control
▫ Error detection and correction coding of I/O data

3

Three Requirements of I/O Design

1. Data location
▫ Device selection
▫ Address of data within device

2. Data transfer
▫ Amount of data varies with device and may need to

be specified
▫ Transmission rate varies greatly with device
▫ Data may be input, output, or either

3. Data synchronization
▫ Data should only be sent to an output device when it

is ready to receive
▫ Processor should only read data when it is available

from an input device

4

Location of I/O Data

• Data location may be trivial once device is
determined

▫ Character from a keyboard

▫ Character out to a serial printer

• Location may require searching

▫ Record number on a tape drive

▫ Track seek and rotation to sector on a disk

• Location may not be simple binary number
(unsigned integer address)

▫ Drive, platter, track, sector, word on a disk cluster

5

Data Transfer

• Amount of data transferred by different I/O
devices can be quite different

▫ Mouse button click vs. large disk copy

▫ A keyboard delivers one character about 1/10
second at the fastest

▫ Rate varies for disk seek where there is a rotation
delay followed by block transfer

6

Data Synchronization

• I/O devices are not usually timed by the master
clock
▫ Rates can differ greatly from processor speed
▫ Generally asynchronous

• Processor determines state of device and
transfers information at clock ticks
▫ I/O status and information must be stable at the

clock tick when it is accessed
▫ Processor must know when an output device can

accept new data
▫ Processor must know when an input device is

ready to supply new data

7

I/O Interface Standardization

• Standardization provides contract the defines data
structure an interface between CPU and I/O device
▫ Helps reduce location and synchronization issues

• Data location structure is device dependent
▫ Device is selected by processor
▫ Location within device is information passed to device
▫ Device handles low-level (internal) details and

provides a uniform interface for CPU

• Device status bits can be used for synchronization
▫ Data available signal from input device
▫ Ready to accept data from output device
▫ Other forms or synchronization may be required due

to speed constraints (interrupts and DMA)

8

I/O Connections and Bus Structure

• Isolated I/O

• Allows tailoring bus
to its purpose

• Requires many
connections to CPU
(pins)

9

• Shared I/O

• Memory and I/O
access can be
distinguished

• Timing and
synchronization
can be different for
each subsystem

• Memory-mapped
I/O

• Standardized data
transfer

• Least expensive
option

Memory Mapped I/O

• Combined memory control and I/O control lines
for a single unified bus

• I/O device registers appear to processor as
memory addresses

• Reduces the number of connections to the
processor chip

▫ Increased generality may require more control
signals

• Standardizes data transfer to and from processor

▫ Asynchronous operation is optional with memory
but demanded by I/O devices

10

Memory Mapped I/O Address Space
• Memory divided to

reserve space for I/O
registers

• I/O registers physically
distributed between
different device
interfaces
▫ Only a small fraction in

use in a system
• Not all bits of memory

word needed for a
particular device
register
▫ Ignore unused bits

11

Programmed I/O

• Device requirements
▫ Operations take many instruction execution times
▫ One word data transfers – no burst data transmission

• Process has time to test device status bits, write
control bits, and read/write data at the required
device speed
▫ Example status bits

 Input data ready, output device busy or offline

▫ Example control bits
 Reset device, start read/write

• Define I/O interface to match the speed and
protocol of processor bus with that required by the
I/O device

12

Programmed I/O Device Interface Structure

• I/O interface specifies connections between device and
control, address, and data bus
▫ Decodes addresses just for registers of specific device
▫ Control bits from processor to device stored in command register
▫ Control signals from device to CPU stored in status registers

13

SRC I/O Ports
• Addresses above 0xFFFF000 are reserved for I/O

registers
▫ 1024 32-bit I/O registers
▫ Negative displacement addressing

 0xFFFFFFFF – 0xFFFF0000

• Ports arbitrarily chosen within I/O space (need
specifications)

14

Port Name Hex Address Name

CICTL 0xFFFFF300 Keyboard control port

CIN 0xFFFFF304 Keyboard data port

COSTAT 0xFFFFF110 Printer status port

COUT 0xFFFFF114 Printer data port

LSTAT 0xFFFFF130 Line printer status

LOUT 0xFFFFF134 Line printer data port

LCMD 0xFFFFF138 Line printer command port

SRC I/O Register Decoder

15

Negative
addressing to
select I/O space

Device selection wired
by specification

Select status
or data

SRC Character Output Interface

16

1. Output initiated with
write to Char register

2. Clears Ready register

3. Start signal sent to

printer

4. Done signal from
printer sets Ready

Synchronization of Data Input

17

• Synchronous input

• Register-to-register
transfer

• Data strobed at end
of cycle

• Semi-synchronous
input

• Memory-to-CPU
transfer with few
memory cycles

• Complete = Done

signal

• Asynchronous
input

• Useful for I/O
because of
differences in speed

• Uses a hardware
handshaking
protocol

Asynchronous Data Input

18

1 May I?

2 Yes, you may

3 Thanks

4 You’re welcome

Ready

Acknowledge

Dat a

St robe dat a

v al id

(c) Asynchronous input

• Hardware
handshake

1. Ask for data

2. Data is made
valid and
request
acknowledged

3. Data received
and Ready

lowered

4. Acknowledge

lowered to
complete
transaction

Programmed I/O Device Driver Example

• Software to manage character output
• Device requirements
▫ 8 data lines for bits of an ASCII character
▫ Start signal to begin operation
▫ Data bits must be held until device returns Done

• Design decisions for matching bus to device
▫ Use low order 8 bits of word for character
▫ Make loading of character register signal Start
▫ Clear Ready status bit on Start and set it on
Done

▫ Return Ready as sign of status register for easy
testing

19

Character Output Program Fragment

• For readability: I/O registers are all caps., program locations have
initial cap., and instruction mnemonics are lower case

20

Status register COSTAT = 0xFFFFF110

Output register COUT = 0xFFFFF114

lar r3, Wait ;set branch target for wait

ld r2, Char ;get character for output

Wait: ld r1, COSTAT ;read device status register

brpl r3, r1 ;test for ready otherwise repeat

st r2, COUT ;output character and start device

• Polling loop to check if device is ready

▫ A 10 MIPS SRC would execute 10,000 instructions waiting for a 1,000
character/sec printer

80 Char Line Printer Code Fragment

lar r1, Buff ;set pointer to char buffer

la r2, 80 ;init char counter

lar r3, Wait ;init branch target

Wait: ld r0, LSTAT ;read ready bit

brpl r3, r0 ;check until ready

ld r0, 0(r1) ;get next char from buffer

st r0, LOUT ;send char to printer

addi r1, r1, 4 ;increment char pointer (32-bit word)

addi r2, r2, -1 ;decrement char counter

brnz r3, r2 ;if more char loop

la r0,1 ;set print line command

st r0, LCMD ;send command to printer

21

Status register LSTAT = 0xFFFFF130

Output register LOUT = 0xFFFFF134

Output register LCMD = 0xFFFFF138

Poll char Complete 80 char line Print line

Multiple Input Device Driver

• 32 low speed input devices
▫ Keyboards at ~10 characters/sec
▫ Max rate of one every 3 msec

• Each device has control/status register
▫ Only Ready status bit (bit 31) is used
▫ Driver works by polling (repeated testing) of Ready

bits

• Each device has 8-bit input data register
▫ Bits 7..0 of 32-bit input word hold character

• Software controlled by pointer and Done flag
▫ Pointer to next available location in input buffer
▫ Device Done is set when char received from device

▫ Device is idle until other program (main) clears done

22

32 Input Device Polling Driver

23

• 32 Pairs of control/status and
input data registers

• r0 – working register

• r1 – input char

• r2 – device index

• r3 – no device active

0xFFFF300 Dev0CICTL

0xFFFF304 Dev0CIN

0xFFFF308 Dev1CICTL

0xFFFF30C Dev1CIN

0xFFFF310 Dev2CICTL

0xFFFF314 Dev2CIN

…

CICTL .equ FFFFF300H ;first input control reg

CIN .equ FFFFF304H ;first input data reg

CR .equ 13 ;ASCII carriage return

Bufp: .dcw 1 ;location for first buffer pointer

Done: .dcw 63 ;done flags and rest of pointers

Driver: lar r4, Next ;branch target for next character

lar r5, Check ;check device is active

lar r6, Start ;start polling pass through 32 devices

Initialization

32 Input Device Polling Code

24

Characteristics of Polling Device Driver

• All devices active and always have a char ready

▫ 32 bytes of input in 547 instructions

▫ Data rate of 585 KB/s in 10 MIPS CPU

• CPU just misses setting of Ready

▫ 538 instructions executed before testing device
again

▫ 53.8 sec delay requires a device run below 18.6k
chars/sec to avoid risk of losing data

 Keyboards are slow enough

25

Key Concepts: Programmed I/O

• Appropriate when speed of device does not
overwhelm CPU processing ability

• Processor will likely spend significant time in
busy-wait loops (polling)

• Hardware interface usually consists of a buffer
register for data and status bits

• Interface often employs asynchronous
handshaking protocol (mismatched speeds)

• Device driver required to ensure proper
communication of data, control and status
between CPU and device

26

I/O Interrupts

• Programmed I/O spend time in busy-wait loops

• Device requests service when ready with
interrupt

• SRC interrupting device must return the vector
address and interrupt information bits

▫ Processor must tell device when this information

▫ Accomplished with acknowledge signal

• Request and acknowledge form a
communication handshake pair

• It should be possible to disable interrupts from
individual devices

27

Simplified Interrupt Interface Logic

• Request and enable flags for each device
• Returns vector and interrupt information on bus when

acknowledged
▫ Vector – location of ISR
▫ Info – device specific information

• Open collector NAND (wired-OR) so all devices can connect
to the single ireq line

28

Interrupt Priority Chain

• Wired-OR allows multiple devices to request
interrupts simultaneously

▫ Must select appropriate device for
acknowledgment

• Priority chain passes iack from device to device

▫ 𝑖𝑎𝑐𝑘𝑗 = 𝑖𝑎𝑐𝑘𝑗−1 ∧ 𝑟𝑒𝑞𝑗−1 ∧ 𝑒𝑛𝑏𝑗−1

▫ Requires each enable for each device

29

Arrange
devices with
higher priority
with lower j

Interrupt Logic for SRC I/O Interface

• Request set by
Ready and

cleared by
acknowledge

• iack only sent

out if this
device is not
requesting

30

Subroutine for Interrupt Driven I/O

• Initialization routine

31

;Getline is called with return address in R31 and a pointer to a

;character buffer in R1. It will input characters up to a carriage

;return under interrupt control, setting Done to -1 when complete.

CR .equ 13 ;ASCII code for carriage return.

CIvec .equ 01F0H ;Character input interrupt vector address.

Bufp: .dw 1 ;Pointer to next character location.

Save: .dw 2 ;Save area for registers on interrupt.

Done: .dw 1 ;Flag location is -1 if input complete.

Getln: st r1, Bufp ;Record pointer to next character.

 edi ;Disable interrupts while changing mask.

 la r2, 1F1H ;Get vector address and device enable bit

 st r2, CICTL ; and put into control register of device.

 la r3, 0 ;Clear the

 st r3, Done ; line input done flag.

 een ;Enable Interrupts

 br r31 ; and return to caller.

Interrupt Handler for SRC Char Input

• Handler sit in the interrupt vector location and
is initiated on request

32

 .org CIvec ;Start handler at vector address.

 str r0, Save ;Save the registers that

 str r1, Save+4 ; will be used by the interrupt handler.

 ldr r1, Bufp ;Get pointer to next character position.

 ld r0, CIN ;Get the character and enable next input.

 st r0, 0(r1) ;Store character in line buffer.

 addi r1, r1, 4 ;Advance pointer and

 str r1, Bufp ; store for next interrupt.

 lar r1, Exit ;Set branch target.

addi r0,r0, -CR ;Carriage return? addi with minus CR.

 brnz r1, r0 ;Exit if not CR, else complete line.

 la r0, 0 ;Turn off input device by

 st r0, CICTL ; disabling its interrupts.

 la r0, -1 ;Get a -1 indicator, and

 str r0, Done ; report line input complete.

Exit: ldr r0, Save ;Restore registers

 ldr r1, Save+4 ; of interrupted program.

 rfi ;Return to interrupted program.

General Functions of Interrupt Handler

1. Save the state of the interrupted program

2. Do programmed I/O operations to satisfy the
interrupt request

3. Restart or turn off the interrupting device

4. Restore the state and return to the interrupted
program

33

Interrupt Response Time

• Response to another interrupt is delayed until
interrupts are re-enabled by rfi

• Character input handler disables interrupts for a
maximum of 17 instructions

▫ 20 MHz CPU, 10 cycles for acknowledge of
interrupt, and average execution rate of 8 CPI

▫ Second interrupt could be delayed by

10+17×8

20
= 7.3 𝜇sec

34

Nested Interrupts

• Some high speed devices have a deadline for
interrupt response

▫ Possible when limited buffering

▫ Longer response times may miss data

▫ Real-time control system might fail to meet specs

• Require method to interrupt an interrupt
handler

▫ Higher priority (fast device) will be processed
completely before returning to interrupt handler

• Interrupting devices are priority ordered by
shortness of their deadlines

35

Steps in Response of Nested Interrupt Handler

1. Save the state changed by interrupt (IPC & II)

2. Disable lower priority interrupts

3. Re-enable exception processing

4. Service interrupting device

5. Disable exception processing

6. Re-enable lower priority interrupts

7. Restore saved interrupt state (IPC & II)

8. Return to interrupted program and re-enable
exceptions

36

Interrupt Masks

• Priority interrupt scheme could be managed
using device enable bits

• Order bits from left to right in order of
increasing priority to form interrupt mask

▫ Mask value when executing device j interrupt
handler

 Notice only devices to left of j are enabled

37

low priority j high priority

0 0 … 0 0 0 1 … 1 1

device j enable

Priority Interrupt System
• Priority groups – 𝑚 = 2𝑘 groups

• Encoder gives binary index j of lowest numbered request (device
with highest priority)

• Compare requesting priority with current - lower sends new request

• Acknowledge sets new priority level and sends ack to device

38

Key Concepts: Interrupt-Driven I/O

• CPU does not worry about device until I/O is
ready for service

• Interrupt handler (ISR) is invoked by request for
service from the device

• Individual device interrupts can be
enabled/disabled by software

▫ Provides mechanism for prioritizing interrupts
and preventing interrupts in critical sections

• Interrupt nesting allows higher priority
interrupts to interrupt lower priority ones

39

