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Three Requirements of I/O Design 

1. Data location 
▫ Device selection 
▫ Address of data within device 

2. Data transfer 
▫ Amount of data varies with device and may need to 

be specified 
▫ Transmission rate varies greatly with device 
▫ Data may be input, output, or either  

3. Data synchronization 
▫ Data should only be sent to an output device when it 

is ready to receive  
▫ Processor should only read data when it is available 

from an input device 
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Memory Mapped I/O 
• Memory divided to 

reserve space for I/O 
registers 
▫ I/O register appears as 

memory address to CPU 

• I/O registers physically 
distributed between 
different device interfaces 
▫ Only a small fraction in 

use in a system 

• Not all bits of memory 
word needed for a 
particular device register 
▫ Ignore unused bits 
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Key Concepts: Programmed I/O 

• Appropriate when speed of device does not 
overwhelm CPU processing ability 

• Processor will likely spend significant time in 
busy-wait loops (polling) 

• Hardware interface usually consists of a buffer 
register for data and status bits 

• Interface often employs asynchronous 
handshaking protocol (mismatched speeds) 

• Device driver required to ensure proper 
communication of data, control and status 
between CPU and device 
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I/O Interrupts 

• Programmed I/O spend time in busy-wait loops 

• Device requests service when ready with 
interrupt 

• SRC interrupting device must return the vector 
address and interrupt information bits 

▫ Processor must tell device when this information 

▫ Accomplished with acknowledge signal 

• Request and acknowledge form a 
communication handshake pair 

• It should be possible to disable interrupts from 
individual devices 
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Simplified Interrupt Interface Logic 

• Request and enable flags for each device 
• Returns vector and interrupt information on bus when 

acknowledged 
▫ Vector – location of ISR 
▫ Info – device specific information 

• Open collector NAND (wired-OR) so all devices can connect 
to the single ireq line 
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Interrupt Priority Chain 

• Wired-OR allows multiple devices to request 
interrupts simultaneously 

▫ Must select appropriate device for 
acknowledgment 

• Priority chain passes iack from device to device 

▫ 𝑖𝑎𝑐𝑘𝑗 = 𝑖𝑎𝑐𝑘𝑗−1 ∧ 𝑟𝑒𝑞𝑗−1 ∧ 𝑒𝑛𝑏𝑗−1 

▫ Requires each enable for each device 
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Interrupt Logic for SRC I/O Interface 

• Request set by 
Ready and 

cleared by 
acknowledge 

• iack only sent 

out if this 
device is not 
requesting 
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Subroutine for Interrupt Driven I/O 

• Initialization routine 
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;Getline is called with return address in R31 and a pointer to a 

;character buffer in R1. It will input characters up to a carriage 

;return under interrupt control, setting Done to -1 when complete. 

CR .equ 13  ;ASCII code for carriage return. 

CIvec .equ 01F0H  ;Character input interrupt vector address. 

Bufp: .dw 1  ;Pointer to next character location. 

Save: .dw  2  ;Save area for registers on interrupt. 

Done: .dw  1  ;Flag location is -1 if input complete. 

Getln:  st r1, Bufp ;Record pointer to next character. 

 edi   ;Disable interrupts while changing mask. 

 la r2, 1F1H ;Get vector address and device enable bit 

 st r2, CICTL ; and put into control register of device. 

 la r3, 0  ;Clear the 

 st r3, Done ; line input done flag. 

 een   ;Enable Interrupts 

 br r31  ;   and return to caller. 



Interrupt Handler for SRC Char Input 

• Handler sit in the interrupt vector location and 
is initiated on request 
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 .org CIvec  ;Start handler at vector address. 

 str r0, Save ;Save the registers that 

 str r1, Save+4 ; will be used by the interrupt handler. 

 ldr r1, Bufp ;Get pointer to next character position. 

 ld r0, CIN  ;Get the character and enable next input. 

 st r0, 0(r1) ;Store character in line buffer. 

 addi r1, r1, 4 ;Advance pointer and 

 str r1, Bufp ; store for next interrupt. 

 lar r1, Exit ;Set branch target. 

addi r0,r0, -CR ;Carriage return? addi with minus CR. 

 brnz r1, r0  ;Exit if not CR, else complete line. 

 la r0, 0  ;Turn off input device by 

 st r0, CICTL ; disabling its interrupts. 

 la r0, -1  ;Get a -1 indicator, and 

 str r0, Done ; report line input complete. 

Exit: ldr r0, Save ;Restore registers 

 ldr r1, Save+4 ; of interrupted program. 

 rfi   ;Return to interrupted program. 



General Functions of Interrupt Handler 

1. Save the state of the interrupted program 

2. Do programmed I/O operations to satisfy the 
interrupt request 

3. Restart or turn off the interrupting device 

4. Restore the state and return to the interrupted 
program 
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Interrupt Response Time 

• Response to another interrupt is delayed until 
interrupts are re-enabled by rfi 

• Character input handler disables interrupts for a 
maximum of 17 instructions 

▫ 20 MHz CPU, 10 cycles for acknowledge of 
interrupt, and average execution rate of 8 CPI 

▫ Second interrupt could be delayed by  


10+17×8

20
= 7.3 𝜇sec 
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Nested Interrupts 

• Some high speed devices have a deadline for 
interrupt response 

▫ Possible when limited buffering 

▫ Longer response times may miss data  

▫ Real-time control system might fail to meet specs 

• Require method to interrupt an interrupt 
handler 

▫ Higher priority (fast device) will be processed 
completely before returning to interrupt handler 

• Interrupting devices are priority ordered by 
shortness of their deadlines 

 

14 



Steps in Response of Nested Interrupt Handler 

1. Save the state changed by interrupt (IPC & II) 

2. Disable lower priority interrupts 

3. Re-enable exception processing 

4. Service interrupting device 

5. Disable exception processing 

6. Re-enable lower priority interrupts 

7. Restore saved interrupt state (IPC & II) 

8. Return to interrupted program and re-enable 
exceptions 
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Interrupt Masks 

• Priority interrupt scheme could be managed 
using device enable bits 

• Order bits from left to right in order of 
increasing priority to form interrupt mask 

▫ Mask value when executing device j interrupt 
handler 

 

 

 

 Notice only devices to left of j are enabled 
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low priority j high priority 

0 0 … 0 0 0 1 … 1 1 

device j enable 



Priority Interrupt System 
• Priority groups – 𝑚 = 2𝑘 groups 

 

 

 

 

 

 

 

 

 

 

• Encoder gives binary index j of lowest numbered request (device 
with highest priority) 

• Compare requesting priority with current - lower sends new request 

• Acknowledge sets new priority level and sends ack to device 
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Key Concepts: Interrupt-Driven I/O 

• CPU does not worry about device until I/O is 
ready for service 

• Interrupt handler (ISR) is invoked by request for 
service from the device 

• Individual device interrupts can be 
enabled/disabled by software 

▫ Provides mechanism for prioritizing interrupts 
and preventing interrupts in critical sections 

• Interrupt nesting allows higher priority 
interrupts to interrupt lower priority ones 
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Direct Memory Access (DMA) 

• Allows external devices to access memory 
without processor intervention 

▫ I/O device doesn’t need handshake 
communication with processor 

▫ Useful for high speed devices 

▫ Prevents use of processor cycles for device-to-
memory operations 

• Requires a DMA interface device 

▫ Device must be programmed (set up) and have 
transfer initiated 

19 



DMA Device Interface Steps for Transfer 

1. Become bus master 
▫ Only one master can control a bus 
▫ Handshake protocol 

2. Send memory address and R/W signal 
3. Synchronize sending and receiving of data using 

Complete signal  
4. Release bus as needed (could be after each 

transfer) 
▫ Allow other DMA device or CPU access 

5. Advance memory address to point to next data 
item 

6. Count number of items transferred and check for 
end of data block 

7. Repeat if more data needs to be transferred 
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I/O DMA Device Interface Architecture 
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Reformatting Data 

• Data changes in format going between the 
processor/memory and an I/O device 

• Parallel/serial conversion 

▫ Use shift registers  
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Serial to parallel conversion 



Error Detection and Correction 
• It is possible for data to be corrupted during 

transmission 
• Bit error rate (BER) is the probability that a bit will 

be in error when read 
▫ Statistical property 
▫ Important in I/O where noise and signal integrity 

cannot be easily controlled (comes up all the time in 
communications) 

▫ 10-18 inside a processor 
▫ Between 10-8 – 10-12 or worse in outside world  

• Many techniques to deal with errors 
▫ Parity check 
▫ SECDED  encoding 
▫ CRC 
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Parity Check 

• An additional parity bit is added to transmitted 
data 

• Even parity 
▫ Parity bit value selected to have even number of 1 

bits in data 

• Odd parity 
▫ Parity bit value selected to have odd number of 1 

bits in data 
• Example:  10011010 

▫ 4 (even) number of 1 bits 
▫ Even parity:  100110100 
▫ Odd parity:  100110101 
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Hamming Codes 
• Coding theory – how to encode a signal for 

transmission 
▫ Source coding – data compression 
▫ Channel coding – error correction 

• Hamming codes are a class of codes that use 
combinations of parity checks to both detect and 
correct errors 
▫ Add group parity bits into the data bits 

• Parity bits interspersed within data bits for ease of 
visualization 
▫ Parity bits placed in bit locations that are power of 2 
▫ Parity bit value computed with data bits in locations 

with a 1 in the binary representation of parity bit 
location 
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Multiple Parity Checks for Hamming Code 

• Note: bit positions numbered beginning with 1 not 0 
• Bit positions that are power of two reserved for parity bits 

▫  𝑃1 =  001, 𝑃2 =  010, 𝑃4 = 100 
• Parity bit Pi computed over data bits with a 1 at parity bit 

location 
▫  𝑃2=  0𝟏0  uses 𝐷3=  0𝟏1,  𝐷6= 1𝟏0, 𝐷7 = 1𝟏1 

• Each data bit is involved in a number of parity checks 
• For single bit error 

▫ All parity bits using that data bit will be in error 
▫ Binary encoding of checks indicates location of error 
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Venn Diagram for Hamming Codes 
 • Insert data into Venn 

diagram 

• Sender computes and 
inserts parity bits 
(even) 

• Receiver recomputes 
parity based on received 
signal 

▫ Detects errors based 
on parity bits 

▫ Corrects error given 
parity bits in error 
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Hamming Code Example 
• Encode 1011 with odd Hamming code  

 
• Insert the data bits: P1 P2 1 P4 0 1 1 
• P1 is computed from P1 D3 D5 D7 = 1 

▫ P1 = 1. 
• P2 is computed from P2 D3 D6 D7 = 1 

▫ P2 = 0. 
• P4 is computed from P1 D5 D6 D7 = 1 

▫ P4 = 1. 
 

• The final encoded number is 1011011. 
 

• Note: Hamming encoding scheme assumes that at 
most one bit is in error for error correction 
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SECDED (Single Error Correct, Double Error Detect) 

• Hamming code with added parity bit 
▫ Parity bit at position 0 computed over entire 

Hamming code 
• For single bit error 

▫ Unique set of Hamming checks will fail 
▫ Overall parity will also be wrong 
▫ Hamming check will indicate which bit position is 

in error 
• For 2 bit error 

▫ One or more Hamming checks will fail 
▫ Overall parity will be correct. 

• Assumes that the probability of 3 or more bits 
being in error  is negligible. 
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SECDED Example 

• Odd parity SECDED of 1011 

• Hamming code = 1011011 

• Compute 𝑃0 parity over entire code 

▫ 5 ones 

▫ 𝑃0 = 0 

• SECDED code = 01011011 
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Cyclic Redundancy Check (CRC) 

• Data transmitted serially (communication lines) 
has pattern of errors that results in several bits 
in error 

▫ Previous noise affected individual bits 

• Parity checks are not as useful in these cases. 

• Instead CRC checks are used. 

• The CRC can be generated serially 

• It usually consists of XOR gates. 
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Polynomial CRC Generator 

• The number and position of XOR gates is 
determined by the generating  polynomial 

• CRC does not support error correction but the CRC 
bits generated can be used to detect multi-bit errors. 

• The CRC results in extra CRC bits, which are 
appended to the data word and sent along. 

• The receiving entity can check for errors by 
recomputing the CRC and comparing it with the one 
that was transmitted. 
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Key Concepts: Data Formatting and Error Control 

• Data representation is different internally and 
externally to CPU 
▫ I/O device may require different format conversion by 

interface 

• Error detection and correction are often necessary 
for I/O subsystems because of higher error rates 

• Simple parity checks are sufficient for low enough 
error rates (single bit) 

• Hamming codes and SECDED allow for error 
detection and correction 

• CRC checks are easy to implement and detect 
multiple bit errors 
▫ No correction – requires retransmission of data 
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Chapter 8 Summary 
• I/O subsystems appear to programmer as a part of memory 

(memory-mapped I/O) 
▫ Special characteristics of data location, transfer, and 

synchronization make it different 
• Combination of hardware and software protocols guarantee 

correct data transfer 
▫ Programmed I/O – uses an instruction to begin transfer and polls  
▫ Interrupt-driven I/O – uses exception handling to service I/O 
▫ DMA – interface allows device to control memory bus like the 

processor 
• Data within processor and outside in devices have different 

characteristics that may require data format change 
(serial/parallel) 

• I/O is more error prone than CPU hence requires error 
detection and/or correction 
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