
http://www.egr.unlv.edu/~b1morris/cpe300/

CPE300: Digital System

Architecture and Design
Fall 2011

MW 17:30-18:45 CBC C316

Pipelining

11142011

Outline

• Review I/O

• Chapter 5 Overview

• Pipelining

• Pipelining Hazards

2

Review of I/O
• I/O subsystems appear to programmer as a part of memory

(memory-mapped I/O)
▫ Special characteristics of data location, transfer, and

synchronization make it different
• Combination of hardware and software protocols guarantee

correct data transfer
▫ Programmed I/O – uses an instruction to begin transfer and polls
▫ Interrupt-driven I/O – uses exception handling to service I/O
▫ DMA – interface allows device to control memory bus like the

processor
• Data within processor and outside in devices have different

characteristics that may require data format change
(serial/parallel)

• I/O is more error prone than CPU hence requires error
detection and/or correction

3

Chapter 5 Overview

1. Principles of pipelining

▫ SRC pipeline design

2. Pipeline hazards

3. Instruction-level parallelism

▫ Superscalar processors

▫ Very long instruction word (VLIW) machines

4. Microprogramming

▫ Control store and micro-branching

▫ Horizontal and vertical microprogramming

4

Pipelining
• Process of issuing a new instruction before the previous

one has completed execution
▫ Favorite technique for RISC processors
▫ Hide latency of instruction execution (multiple clock cycles

for a single instruction)
• Goal to keep equipment busy as much of the time as

possible
▫ Total throughput may be increased by decreasing the

amount of work done at a given stage and increasing the
number of stages (simple tasks to accomplish instruction
execution)

• Consequences for fetch-execute cycle
▫ Previous instruction not guaranteed to be completed before

next operation begins
▫ Results of previous operation not free available at next

operation

5

Industrial Manufacturing Pipeline

Execution Order

• 5

• 4

• 3

• 2

• 1

Only highlighted step is
active at a time

6

Industrial Manufacturing Pipeline

Execution Order

• 5 – fetch instruction
from memory

• 4 – operands (r4,
addr1) extracted

• 3 – operands fetched
and added in ALU

• 2 – idle, no memory
access is required

• 1 – results written to r3

Only highlighted step is
active at a time

7

Pipeline Stages

• 5 pipeline stages

1. Fetch instruction

2. Fetch operands

3. ALU operation

4. Memory access

5. Register write

• 5 instructions are executing
1. shr r3, r3, 2 ;store result in r3

2. sub r2, r5, r1 ;idle, no mem. access req.

3. add r4, r3, r2 ;adding in ALU

4. st r4, addr1 ;accessing r4 in addr1

5. ld r2, addr2 ;instruction being fetched

8

Pipelining Instruction Processing

• All 5 instruction in execution at the same time
• Assume instructions move one stage per clock tick

(exceptions exist)
▫ Every instruction takes 5 clock ticks to complete
▫ Instruction completes every clock tick

• Pipeline stages shown top to bottom in order
traversed by one instruction
▫ Instructions listed in order they are fetched (opposite

pipeline direction)

• Performance issues
▫ Latency – time to process individual instruction
▫ Bandwidth – instructions/second
▫ Trade-off: higher latency for improved bandwidth

9

Inter-Instruction Dependence
• Execution of some instructions may depend on

completion of other instructions in pipeline
▫ 0x100 add r0, r2, r4
▫ 0x104 sub r3, r0, r1

• “Stall” pipeline
▫ Stop execution of early stages while later ones

complete processing
• “Forward” data

▫ Detect register dependencies and make register value
available without waiting for register write

• Restrict instruction set usage for memory access
(harder to deal with than registers)
▫ Branch delay slot
▫ Load delay slot

10

Branch and Load Delay

• Instructions not changed, just how the operate
together

• Branch delay
▫ brz r2, r3

▫ add r6, r7, r8 ;instruction always executed

▫ st r6, addr1 ;only done if r3≠0

• Load delay
▫ ld r2, addr

▫ add r5, r1, r2 ;uses old value of r2

▫ shr r1, r1, 4

▫ sub r6, r8, r2 ;uses r2 val loaded from addr

11

Characteristics of Pipelined Processor Design

• Main memory must operate in single cycle
▫ Use fast (expensive) memory
▫ Usually accomplished with cache (Chapter 7)

• Instruction and data memory must appear separate
▫ Harvard architecture has separate instruction and data

memories
▫ Usually done with separate caches
▫ Need to fetch at same time as load/store

• Few buses are used
▫ Typical connections are point to point
▫ Some few-way multiplexors are used

• Data is latched in pipeline registers (temporary
register storage) at each pipeline stage

• ALU operations take 1 clock cycle
▫ Specifically shift (barrel shifter)

12

Pipelining Design Technique

• All instructions must fit into common pipeline
stage structure

1. Categorize instructions into classes

▫ Register transfer characteristics/behavior

▫ Data movement, ALU, Branch

2. Map instruction classes to pipeline datapath

3. Add control signals to manage instruction flow

4. Design hardware to handle data dependencies

13

SRC Adaption for Pipelined Execution

• 5 Stage pipeline

1. Instruction fetch

2. Decode and operand access

3. ALU operations

4. Data memory access

5. Register write

• Load/store, ALU, and branch instructions
organized to fit this pattern

14

5-Stage ALU Design

• add r4, r2, 12

1. Extract instruction,
increment PC

2. Second ALU operand is
either a register or c2 field

▫ Notice control signal Mp4

3. Opcode must be available in
stage 3 to notify ALU of
function

4. No memory operation

5. Write result to register file

15

Pipeline Control Signals

• The logic equations are based on the instruction
in the stage where they are used

• Digit appended to logic signal name to specify
stage it is computed
▫ regwrite5 is true when the opcode in stage 5 is
load5 ladr5 brl5alu5
 All signals are determined from op5

16

5-Stage Load/Store Design
• ld r2, 16(r4) st r3, (r5)

1. _

2. _

3. ALU computes
effective address

4. Read or write

5. Result register
written only for
load

17

5-Stage Branch Design

• br r31

1. _

2. New PC value known in
stage 2 not in stage 1

3. None

4. None

5. Only branch and link does a
register write

18

SRC Pipeline Registers and RTN

• Pipeline registers pass
info from stage to
stage

• RTN specifies output
register values in
terms of stage register
values

19

Global State for Pipelined SRC

• Pipeline registers have state information solely
for the corresponding stage

• Global state does not belong to any pipeline
stage – shared by all

▫ PC

 Accessed in stage 1 and stage 2 on branch

▫ General registers

▫ Instruction memory

 Accessed in stage 1

▫ Data memory

 Accessed in stage 4

20

Access Restrictions for Global State

• Separate instruction and data memories needed

▫ Two memory accesses can occur simultaneously

▫ Load/store accesses data memory in stage 4

▫ Stage 1 accesses an instruction

• Registers read and write at same time

▫ 2 operands may be needed in stage 2

▫ Register could be written as result in stage 5

• PC increment at stage 1 must be overridden by a
successful branch in stage 2

21

Pipeline Datapath and Control
• Multiplexer

control stressed
in figure

• Most control
signals sown and
given values

22

Example Pipeline Propogation

23

• Assume R[11] = 512 when brl instruction

executed

• R[6]=4 and R[8]=5

• R[5]=16 for ld

• R[12]=23 for str

100 add r4, r6, r8 ;R[4]R[6]+R[8]

104 ld r7, 128(r5) ;R[7]M[R[5]+128]

108 brl r9, r11, 001 ;PCR[11]: R[9]PC

112 str r12, 32 M[PC+32]R[12]

…

512 sub … ;next instruction

Cycle 1: add enters Pipeline

• PC incremented to 104

24

100 add r4, r6, r8

Cycle 2: ld Enters Pipeline

• Add operands are fetched in
stage 2

• add operands are fetched in

stage 2

25

104 ld r7, 128(r5)

100 add r4, r6, r8

Cycle 3: brl Enters Pipeline

• add performs arithmetic in

stage 3

26

108 brl r9, r11, 001

104 ld r7, 128(r5)

100 add r4, r6, r8

Cycle 4: str Enters Pipeline

• add is idle in stage 4

• Success of brl changes

program counter to 512

27

112 str r12, 32

108 brl r9, r11, 001

104 ld r7, 128(r5)

100 add r4, r6, r8

Cycle 5: sub Enters Pipeline

• add completes in stage 5

• sub is fetched from location

512 after the successful branch

28

512 sub …

112 str r12, 32

108 brl r9, r11, 001

104 ld r7, 128(r5)

100 add r4, r6, r8

Functions of SRC Pipeline Registers
• Registers between stages 1 and 2

▫ IR2 holds the full instruction including any register fields and
constants

▫ PC2 holds the incremented PC from instruction fetch
• Registers between stages 2 and 3

▫ IR3 holds opcode and ra (needed in stage 5)
▫ X3 holds PC or a register value (for link or first ALU operand)
▫ Y3 holds c1, c2, or register value for second ALU operand
▫ MD3 is used for a register value to be stored in memory

• Registers between stages 3 and 4
▫ IR4 holds opcode and ra
▫ Z4 has memory address or result register value
▫ MD4 has value to be stored in data memory

• Registers between stages 4 and 5
▫ IR5 holds opcode and destination registers number ra
▫ Z5 has value to be stored in destination register

 ALU result, PC link value, or fetched data

29

Functions of SRC Pipeline Stages
• Stage 1: fetches instruction

▫ PC incremented or replaced by successful branch in stage 2
• Stage 2: decodes instruction and gets operands

▫ Load/store gets operands for address computation
▫ Store gets register value to be stored as 3rd operand
▫ ALU operation gets 2 registers or register and constant

• Stage 3: performs ALU operation
▫ Calculates effective address or does arithmetic/logic
▫ May pass through link PC or value to be stored in memory

• Stage 4: accesses data memory
▫ Passes Z4 to Z5 unchanged for non-memory instructions
▫ Load fills Z5 from memory
▫ Store uses address from Z4 and data from MD4 (no longer needed)

• Stage 5: writes result register
▫ Z5 contains value to be written, which can be ALU result, effective

address, PC link value, or fetched data
▫ ra field always specifies result register in SRC

30

Pipeline Hazards

• Deterministic events that are a side-effect of
having instructions in pipeline

▫ Parallel execution

▫ Instruction dependence – instruction depends on
result of previous instruction that is not yet
completely executed

• Two categories of hazards

▫ Data hazards – incorrect use of old and new data

▫ Branch hazards – fetch of wrong instruction on a
change in the PC

31

Branch Hazards

• Branch targets determined in stage 2
▫ Instruction following the branch instruction will enter

the pipeline
▫ Branch delay states following instruction gets executed

without regard for branch action
 Branch delay slot instruction executed before branch is

taken

• Branch prediction
▫ Improve pipeline performance by trying to guess if the

branch will be taken
 Keep information to tell if instruction already seen and

PC values after execution

 Delay only when prediction is wrong

▫ Lots effort in designing prediction schemes

32

Data Hazards

• Incorrect use of old and new data
• Read after write (RAW) hazard

▫ Flow dependence – instruction uses data
produced by a previous one

• Write after read (WAR) hazard
▫ Anti-dependence – instruction writes a new value

over one that is still needed by a previous
instruction

• Write after write (WAW) hazard
▫ Output dependence – two parallel instructions

write the same register and must do it in the order
they were issued

33

Detecting Hazards

• Pairs of instructions must be considered to detect
hazards

• Data is normally available after being written to a
register
▫ Use data forwarding to make it available as early as

stage it was produced
 Stage 3 output for ALU results

 Stage 4 for memory fetch

▫ Receive data as late as stage in which they are used
 Operands normally needed in stage 2

 Stage 2 for branch target

 Stage 3 for ALU operands and address modifier

 Stage 4 for stored register

34

Data Hazards in SRC

• All data memory access occurs in stage 4
meaning all memory reads and writes are
sequential and do not cause hazards

• Registers written in the last stage

▫ WAW and WAR hazards do not occur

▫ Two writes occur in order issued

▫ Write always follows a previously issued read

• Only RAW hazards exist

▫ Values written to register at end of stage 5 may be
needed by a following instruction at beginning of
stage 2

35

Possible Solutions to Register Data Hazard

• Detection
▫ Machine manual could give rules specifying a

dependent instruction must have minimum
number of steps from instruction it depends on

▫ Can be done by compiler but generally too
restrictive

▫ Dependence on following stage can be detected
since operation and operands known at each stage

• Correction (hardware)
▫ Dependent instruction “stalled” to allow those

ahead in the pipeline to complete
▫ Result “forwarded” to an earlier stage without

waiting for a register write

36

RAW, WAW, and WAR Hazards

• RAW hazards due to causality
▫ Cannot use value before it has been produced
▫ Requires data forwarding

• WAW and WAR hazards can only occur when
instructions executed in parallel or out of order
▫ Not possible in SRC
▫ Arise because registers have the same name

 Can be fixed by renaming one of the registers
 Delay the update of a register until appropriate value

produced

37

Instruction Pair Hazard Interaction

• 4/1 indicates the normal/forwarded instruction
separation
▫ 4 instruction separation normally
▫ 1 indicates only a single stage of separation (1 instruction)
▫ Many have 4/1 and gives rise to approximately 1 instruction

per clock cycle

38

alu load ladr brl

6/4 6/5 6/4 6/2

alu 2/3 4/1 4/2 4/1 4/1

load 2/3 4/1 4/2 4/1 4/1

ladr 2/3 4/1 4/2 4/1 4/1

store 2/3 4/1 4/2 4/1 4/1

branch 2/2 4/2 4/3 4/2 4/1

Read from
register file

Stage
normally/latest
needed

Write to register file
Stage data normally/earliest available

Delays Unavoidable by Forwarding

• Loaded values cannot be available to next
instruction even with forwarding
▫ Restrict compiler from putting dependent instruction

in position right after load (next 2 positions for
branch)

• Target register cannot be forwarded to branch from
immediately preceding instruction
▫ Code restricted so branch target is not changed by

instruction preceding branch (previous 2 instructions
if load from memory)

▫ Not to be confused with branch delay slot
 Branch delay – dependence fetch on branch

 This is branch instruction dependent on some instruction
before it

39

Stalling Pipeline on Hazard Detection

• Pipeline can be stalled to inhibit earlier stages and
allowing later stages to proceed

• Stage is inhibited by pause signal

▫ Turn off clock to that stage to prevent registers from
changing

• Must deliver something to clear pipeline after the
paused stage

▫ Stage 3 must have do something after 1 and 2 paused

▫ Use nop

40

Stall from ALU-ALU Dependence

41

Data Forwarding Hardware
 • Hazard detection and

forwarding units added to
pipeline

• Multiplexers allow forwarding
of Z4 or Z5 to either the X or Y

inputs of ALU

• rb and rc needed from stage 3
for detection

42

Restrictions After Forwarding
1. Branch delay slot

▫ Instruction after branch is always
executed no matter if the branch
succeeds or not

2. Load delay slot
▫ Register loaded from memory cannot

be used as operand in the next
instruction

▫ Register loaded from memory cannot
be used as a branch target for the next 2
instructions

3. Branch target
▫ Results register of alu or ladr

instruction cannot be used as a branch
target by next instruction

43

br r4

add . . .

ld r4, 4(r5)

nop

neg r6, r4

ld r0, 1000

nop

nop

br r0

not r0, r1

nop

br r0

