
http://www.egr.unlv.edu/~b1morris/cpe300/

CPE300: Digital System

Architecture and Design
Fall 2011

MW 17:30-18:45 CBC C316

Pipelining Hazards, Instruction-Level
Parallelism, Microprogramming

11162011

Outline

• Review SRC Pipeline

• Pipelining Hazards

• Instruction-Level Parallelism

• Microprogramming

2

Pipelining
• Process of issuing a new instruction before the previous

one has completed execution
▫ Favorite technique for RISC processors
▫ Hide latency of instruction execution (multiple clock cycles

for a single instruction)
• Goal to keep equipment busy as much of the time as

possible
▫ Total throughput may be increased by decreasing the

amount of work done at a given stage and increasing the
number of stages (simple tasks to accomplish instruction
execution)

• Consequences for fetch-execute cycle
▫ Previous instruction not guaranteed to be completed before

next operation begins
▫ Results of previous operation not free available at next

operation

3

SRC Pipeline Registers and RTN

• Pipeline registers pass
info from stage to
stage

• RTN specifies output
register values in
terms of stage register
values

4

Pipeline Datapath and Control
• Multiplexer

control stressed
in figure

• Most control
signals sown and
given values

5

Functions of SRC Pipeline Stages
• Stage 1: Instruction fetch

▫ PC incremented or replaced by successful branch in stage 2
• Stage 2: Decode and operand access

▫ Load/store gets operands for address computation
▫ Store gets register value to be stored as 3rd operand
▫ ALU operation gets 2 registers or register and constant

• Stage 3: ALU operations
▫ Calculates effective address or does arithmetic/logic
▫ May pass through link PC or value to be stored in memory

• Stage 4: Data memory access
▫ Passes Z4 to Z5 unchanged for non-memory instructions
▫ Load fills Z5 from memory
▫ Store uses address from Z4 and data from MD4 (no longer

needed)
• Stage 5: Writes result register

▫ Z5 contains value to be written, which can be ALU result,
effective address, PC link value, or fetched data

▫ ra field always specifies result register in SRC

6

Pipeline Hazards

• Deterministic events that are a side-effect of
having instructions in pipeline

▫ Parallel execution

▫ Instruction dependence – instruction depends on
result of previous instruction that is not yet
completely executed

• Two categories of hazards

▫ Data hazards – incorrect use of old and new data

▫ Branch hazards – fetch of wrong instruction on a
change in the PC

7

Branch Hazards

• Branch targets determined in stage 2
▫ Instruction following the branch instruction will enter

the pipeline
▫ Branch delay states following instruction gets executed

without regard for branch action
 Branch delay slot instruction executed before branch is

taken

• Branch prediction
▫ Improve pipeline performance by trying to guess if the

branch will be taken
 Keep information to tell if instruction already seen and

PC values after execution

 Delay only when prediction is wrong

▫ Lots effort in designing prediction schemes

8

Data Hazards

• Incorrect use of old and new data
• Read after write (RAW) hazard

▫ Flow dependence – instruction uses data
produced by a previous one

• Write after read (WAR) hazard
▫ Anti-dependence – instruction writes a new value

over one that is still needed by a previous
instruction

• Write after write (WAW) hazard
▫ Output dependence – two parallel instructions

write the same register and must do it in the order
they were issued

9

Detecting Hazards

• Pairs of instructions must be considered to detect
hazards

• Data is normally available after being written to a
register
▫ Use data forwarding to make it available as early as

stage it was produced
 Stage 3 output for ALU results

 Stage 4 for memory fetch

▫ Receive data as late as stage in which they are used
 Operands normally needed in stage 2

 Stage 2 for branch target

 Stage 3 for ALU operands and address modifier

 Stage 4 for stored register

10

Data Hazards in SRC

• All data memory access occurs in stage 4
meaning all memory reads and writes are
sequential and do not cause hazards

• Registers written in the last stage

▫ WAW and WAR hazards do not occur

▫ Two writes occur in order issued

▫ Write always follows a previously issued read

• Only RAW hazards exist

▫ Values written to register at end of stage 5 may be
needed by a following instruction at beginning of
stage 2

11

Possible Solutions to Register Data Hazard

• Detection
▫ Machine manual could give rules specifying a

dependent instruction must have minimum
number of steps from instruction it depends on

▫ Can be done by compiler but generally too
restrictive

▫ Dependence on following stage can be detected
since operation and operands known at each stage

• Correction (hardware)
▫ Dependent instruction “stalled” to allow those

ahead in the pipeline to complete
▫ Result “forwarded” to an earlier stage without

waiting for a register write

12

RAW, WAW, and WAR Hazards

• RAW hazards due to causality
▫ Cannot use value before it has been produced
▫ Requires data forwarding

• WAW and WAR hazards can only occur when
instructions executed in parallel or out of order
▫ Not possible in SRC
▫ Arise because registers have the same name

 Can be fixed by renaming one of the registers
 Delay the update of a register until appropriate value

produced

13

Instruction Pair Hazard Interaction

• 4/1 indicates the normal/forwarded instruction
separation
▫ 4 instruction separation normally
▫ 1 indicates only a single stage of separation (1 instruction)
▫ Many have 4/1 and gives rise to approximately 1 instruction

per clock cycle

14

alu load ladr brl

6/4 6/5 6/4 6/2

alu 2/3 4/1 4/2 4/1 4/1

load 2/3 4/1 4/2 4/1 4/1

ladr 2/3 4/1 4/2 4/1 4/1

store 2/3 4/1 4/2 4/1 4/1

branch 2/2 4/2 4/3 4/2 4/1

Read from
register file

Stage
normally/latest
needed

Write to register file
Stage data normally/earliest available

Delays Unavoidable by Forwarding

• Loaded values cannot be available to next
instruction even with forwarding
▫ Restrict compiler from putting dependent instruction

in position right after load (next 2 positions for
branch)

• Target register cannot be forwarded to branch from
immediately preceding instruction
▫ Code restricted so branch target is not changed by

instruction preceding branch (previous 2 instructions
if load from memory)

▫ Not to be confused with branch delay slot
 Branch delay – dependence fetch on branch

 This is branch instruction dependent on some instruction
before it

15

Stalling Pipeline on Hazard Detection

• Pipeline can be stalled to inhibit earlier stages and
allowing later stages to proceed

• Stage is inhibited by pause signal

▫ Turn off clock to that stage to prevent registers from
changing

• Must deliver something to clear pipeline after the
paused stage

▫ Stage 3 must have do something after 1 and 2 paused

▫ Use nop

16

Stall from ALU-ALU Dependence

17

Data Forwarding: ALU to ALU

• With forwarding dependent ALU instructions
can be adjacent not 4 apart (4/1 in dependency
table
▫ Dependencies must be detected and data set from

higher stage directly to X or Y input of ALU

• Stage S dependency in stage 3
aluSalu3 ((raS=rb3)X3ZS:

 (raS=rc3) imm3Y3ZS):

▫ S = 4 or 5 stages
▫ rb and rc must be available in stage 3 for hazard

detection
• Multiplexers needed on X, Y inputs of ALU so

either Z4, Z5 can replace X3, or Y3

18

Data Forwarding Hardware
 • Hazard detection and

forwarding units added to
pipeline

• Multiplexers allow forwarding
of Z4 or Z5 to either the X or Y

inputs of ALU

• rb and rc needed from stage 3
for detection

19

Restrictions After Forwarding
1. Branch delay slot

▫ Instruction after branch is always
executed no matter if the branch
succeeds or not

2. Load delay slot
▫ Register loaded from memory cannot

be used as operand in the next
instruction

▫ Register loaded from memory cannot
be used as a branch target for the next 2
instructions

3. Branch target
▫ Results register of alu or ladr

instruction cannot be used as a branch
target by next instruction

20

br r4

add . . .

ld r4, 4(r5)

nop

neg r6, r4

ld r0, 1000

nop

nop

br r0

not r0, r1

nop

br r0

Instruction Level Parallelism
• Full pipeline completes at most one instruction

every clock cycle
• Fetch multiple instructions and start several at the

same time
▫ Requires multiple function units (e.g. integer, floating

point)
▫ Should be no dependence between instructions

• Superscalar architecture
▫ Dynamically fetch instructions to fill idle function

units
• Very long instruction Word (VLIW) deign

▫ Statically compile long instruction words with many
operations in a word to send to different function units

▫ Word size may be 128, 256, or more bits

21

Dual Issue VLIW Version of SRC
• 2 instructions per word (2 x 32 = 64 bit word)
• Two pipelines

▫ Pipeline 1 can execute memory-access instructions (ld,
ldr, st, and str)
 Only one memory access per clock cycle (64-bit word)

▫ Pipeline 2 can execute shr, shra, shc, br, and brl
 Expensive barrel shifter replaces memory access in stage 4
 One branch instruction per word

▫ Either pipeline can execute other instructions
 la, lar, add, addi, sub, and, andi, or, ori,
neg, not, nop, and stop

• Registers can have 4 reads and 2 writes per cycle
▫ Must provide more read/write ports or have a “shadow”

copy
• No branch delay slot
• Instruction forwarding wherever possible

22

SRC Dual-Issue Pipeline Structure

23

SRC Dual-Issue Pipeline Hardware
• Include datapaths and multiplexers (Mi, Ni) for data forwarding

24

Superscalar Architecture

• Uses multiple pipelines to issue multiple
instructions per clock cycle

• Selection of instructions done at run-time by
hardware

▫ Instruction buffer used to pre-fetch instructions

▫ Dependencies between pipeline contents and
buffer examined to determine which new
instructions to issue

25

Microprogramming

• Hardcoded control unit designed to generate control
signal sequence

• Build a computer to generate signals
▫ Treat control input/output relationship as a memory

system
▫ Read memory to get control signals

26

Step Concrete RTN Control Sequence

T0 MAPC: CPC+4; PCout, MAin, Inc4, Cin

T1 MDM[MA]: PCC Read, Cout, PCin, Wait

T2 IRMD; MDout, Irin

T3 AR[rb] Grb, Rout, Ain

T4 CA+R[rc]; Grc, Rout, ADD, Cin

T5 R[ra]C; Cout, Gra, Rin, End

Microcode Engine

• Generating control signals is much simpler than
a general purpose processor

▫ Simplest form just reads control signals in order
from read only memory

• Control store

▫ Fast local memory that contains control words

• Microinstruction

▫ Control store word contains bit pattern telling
which control signals are active in a specific step

• Major issue is to determine order in which
microinstructions are read

27

Microcoded Control Unit Diagram
• Microinstruction has branch

control, branch address, and
control signal fields

• Microprogram counter can be
set from several sources

▫ Use of 4-1 Mux

▫ Required for sequencing

▫ External source could be used
for exceptions

• Programmable logic array
(PLA) serves as lookup table

▫ Opcode mapped to start
address

28

Control Store

• Microinstruction format
▫ Control signals

 Binary values for all control
signals

▫ Branch control
 Bits to determine when to use

branch address

▫ Branch address
 Where to jump in control

store

• Control store
▫ Typically faster than main

memory (on board processor
chip)

▫ Usually wide but not many
words

29

Branch
Control

Control Signals
Branch
Address

… PCout PCin MDout IRin … End …

Hardwired vs Microcoded Control

• Hardwired control is faster

▫ Only a few gate delays

▫ Microcode requires memory fetch

• Microcode is easier to prototype

▫ Can reprogram memory chip easily

• Microcode is more flexible

▫ Change in instruction sets more accessible

30

Chapter 5 Summary

• Deals with alternative processor design strategies
• Pipelining utilizes hardware to increase

performance
▫ Want 1 instruction executed per clock cycle
▫ Data forwarding, branch delay slot, and load delay slot

help approach target goal
▫ Data hazards must be detected to guarantee correct

operation with use of pipeline

• Multi-issue with instruction-level parallelism in
another way to improve speed

• Microprogramming is an easy to design control
strategy
▫ Treats control as memory read

31

