
http://www.egr.unlv.edu/~b1morris/cpe300/ 

CPE300:  Digital System 

Architecture and Design 
Fall 2011 

MW 17:30-18:45 CBC C316 

 

Pipelining Hazards, Instruction-Level 
Parallelism, Microprogramming 

11162011 



Outline 

• Review SRC Pipeline 

• Pipelining Hazards 

• Instruction-Level Parallelism 

• Microprogramming 

 

2 



Pipelining 
• Process of issuing a new instruction before the previous 

one has completed execution 
▫ Favorite technique for RISC processors 
▫ Hide latency of instruction execution (multiple clock cycles 

for a single instruction) 
• Goal to keep equipment busy as much of the time as 

possible 
▫ Total throughput may be increased by decreasing the 

amount of work done at a given stage and increasing the 
number of stages (simple tasks to accomplish instruction 
execution) 

• Consequences for fetch-execute cycle 
▫ Previous instruction not guaranteed to be completed before 

next operation begins 
▫ Results of previous operation not free available at next 

operation 
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SRC Pipeline Registers and RTN 

• Pipeline registers pass 
info from stage to 
stage 

• RTN specifies output 
register values in 
terms of stage register 
values 
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Pipeline Datapath and Control  
• Multiplexer 

control stressed 
in figure 

• Most control 
signals sown and 
given values 
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Functions of SRC Pipeline Stages 
• Stage 1: Instruction fetch 

▫ PC incremented or replaced by successful branch in stage 2 
• Stage 2: Decode and operand access 

▫ Load/store gets operands for address computation 
▫ Store gets register value to be stored as 3rd operand 
▫ ALU operation gets 2 registers or register and constant 

• Stage 3: ALU operations 
▫ Calculates effective address or does arithmetic/logic 
▫ May pass through link PC or value to be stored in memory 

• Stage 4: Data memory access 
▫ Passes Z4 to Z5 unchanged for non-memory instructions 
▫ Load fills Z5 from memory 
▫ Store uses address from Z4 and data from MD4 (no longer 

needed) 
• Stage 5: Writes result register 

▫ Z5 contains value to be written, which can be ALU result, 
effective address, PC link value, or fetched data 

▫ ra field always specifies result register in SRC 
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Pipeline Hazards 

• Deterministic events that are a side-effect of 
having instructions in pipeline 

▫ Parallel execution 

▫ Instruction dependence – instruction depends on 
result of previous instruction that is not yet 
completely executed 

• Two categories of hazards 

▫ Data hazards – incorrect use of old and new data 

▫ Branch hazards – fetch of wrong instruction on a 
change in the PC 
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Branch Hazards 

• Branch targets determined in stage 2 
▫ Instruction following the branch instruction will enter 

the pipeline 
▫ Branch delay states following instruction gets executed 

without regard for branch action 
 Branch delay slot instruction executed before branch is 

taken 

• Branch prediction 
▫ Improve pipeline performance by trying to guess if the 

branch will be taken 
 Keep information to tell if instruction already seen and 

PC values after execution 

 Delay only when prediction is wrong 

▫ Lots effort in designing prediction schemes 
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Data Hazards 

• Incorrect use of old and new data 
• Read after write (RAW) hazard 

▫ Flow dependence – instruction uses data 
produced by a previous one 

• Write after read (WAR) hazard 
▫ Anti-dependence – instruction writes a new value 

over one that is still needed by a previous 
instruction 

• Write after write (WAW) hazard 
▫ Output dependence – two parallel instructions 

write the same register and must do it in the order 
they were issued 
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Detecting Hazards 

• Pairs of instructions must be considered to detect 
hazards 

• Data is normally available after being written to a 
register 
▫ Use data forwarding to make it available as early as 

stage it was produced 
 Stage 3 output for ALU results 

 Stage 4 for memory fetch 

▫ Receive data as late as stage in which they are used 
 Operands normally needed in stage 2 

 Stage 2 for branch target 

 Stage 3 for ALU operands and address modifier 

 Stage 4 for stored register 
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Data Hazards in SRC 

• All data memory access occurs in stage 4 
meaning all memory reads and writes are 
sequential and do not cause hazards 

• Registers written in the last stage 

▫ WAW and WAR hazards do not occur 

▫ Two writes occur in order issued 

▫ Write always follows a previously issued read 

• Only RAW hazards exist 

▫ Values written to register at end of stage 5 may be 
needed by a following instruction at beginning of 
stage 2 
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Possible Solutions to Register Data Hazard 

• Detection 
▫ Machine manual could give rules specifying a 

dependent instruction must have minimum 
number of steps from instruction it depends on 

▫ Can be done by compiler but generally too 
restrictive 

▫ Dependence on following stage can be detected 
since operation and operands known at each stage 

• Correction (hardware) 
▫ Dependent instruction “stalled” to allow those 

ahead in the pipeline to complete 
▫ Result “forwarded” to an earlier stage without 

waiting for a register write 
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RAW, WAW, and WAR Hazards 

• RAW hazards due to causality 
▫ Cannot use value before it has been produced 
▫ Requires data forwarding 

• WAW and WAR hazards can only occur when 
instructions executed in parallel or out of order 
▫ Not possible in SRC 
▫ Arise because registers have the same name 

 Can be fixed by renaming one of the registers 
 Delay the update of a register until appropriate value 

produced 
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Instruction Pair Hazard Interaction 

• 4/1 indicates the normal/forwarded instruction 
separation 
▫ 4 instruction separation normally 
▫ 1 indicates only a single stage of separation (1 instruction) 
▫ Many have 4/1 and gives rise to approximately 1 instruction 

per clock cycle 
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alu load ladr brl 

6/4 6/5 6/4 6/2 

alu 2/3 4/1 4/2 4/1 4/1 

load 2/3 4/1 4/2 4/1 4/1 

ladr 2/3 4/1 4/2 4/1 4/1 

store 2/3 4/1 4/2 4/1 4/1 

branch 2/2 4/2 4/3 4/2 4/1 

Read from 
register file 
 
Stage 
normally/latest 
needed 

Write to register file 
Stage data normally/earliest available 



Delays Unavoidable by Forwarding 

• Loaded values cannot be available to next 
instruction even with forwarding 
▫ Restrict compiler from putting dependent instruction 

in position right after load (next 2 positions for 
branch) 

• Target register cannot be forwarded to branch from 
immediately preceding instruction 
▫ Code restricted so branch target is not changed by 

instruction preceding branch (previous 2 instructions 
if load from memory) 

▫ Not to be confused with branch delay slot 
 Branch delay – dependence fetch on branch 

 This is branch instruction dependent on some instruction 
before it 
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Stalling Pipeline on Hazard Detection 

• Pipeline can be stalled to inhibit earlier stages and 
allowing later stages to proceed 

• Stage is inhibited by pause signal 

▫ Turn off clock to that stage to prevent registers from 
changing 

 

 

 

• Must deliver something to clear pipeline after the 
paused stage 

▫ Stage 3 must have do something after 1 and 2 paused 

▫ Use nop 
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Stall from ALU-ALU Dependence 
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Data Forwarding: ALU to ALU 

• With forwarding dependent ALU instructions 
can be adjacent not 4 apart (4/1 in dependency 
table 
▫ Dependencies must be detected and data set from 

higher stage directly to X or Y input of ALU 

• Stage S dependency in stage 3 
aluSalu3 ((raS=rb3)X3ZS: 

       (raS=rc3) imm3Y3ZS): 

▫ S = 4 or 5 stages 
▫ rb and rc must be available in stage 3 for hazard 

detection 
• Multiplexers needed on X, Y inputs of ALU so 

either Z4, Z5 can replace X3, or Y3 
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Data Forwarding Hardware 
 • Hazard detection and 

forwarding units added to 
pipeline 

• Multiplexers allow forwarding 
of Z4 or Z5 to either the X or Y 

inputs of ALU 

• rb and rc needed from stage 3 
for detection 
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Restrictions After Forwarding 
1. Branch delay slot 

▫ Instruction after branch is always 
executed no matter if the branch 
succeeds or not 

2. Load delay slot 
▫ Register loaded from memory cannot 

be used as operand in the next 
instruction 

▫ Register loaded from memory cannot 
be used as a branch target for the next 2 
instructions 

3. Branch target 
▫ Results register of alu or ladr 

instruction cannot be used as a branch 
target by next instruction 
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br r4 

add . . . 

 

 

ld r4, 4(r5) 

nop 

neg r6, r4 

 

 

ld r0, 1000 

nop 

nop 

br r0 

 

 

not r0, r1 

nop 

br r0 



Instruction Level Parallelism 
• Full pipeline completes at most one instruction 

every clock cycle 
• Fetch multiple instructions and start several at the 

same time 
▫ Requires multiple function units (e.g. integer, floating 

point) 
▫ Should be no dependence between instructions 

• Superscalar architecture 
▫ Dynamically fetch instructions to fill idle function 

units 
• Very long instruction Word (VLIW) deign 

▫ Statically compile long instruction words with many 
operations in a word to send to different function units 

▫ Word size may be 128, 256, or more bits 
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Dual Issue VLIW Version of SRC 
• 2 instructions per word (2 x 32 = 64 bit word) 
• Two pipelines 

▫ Pipeline 1 can execute memory-access instructions (ld, 
ldr, st, and str) 
 Only one memory access per clock cycle (64-bit word) 

▫ Pipeline 2 can execute shr, shra, shc, br, and brl 
 Expensive barrel shifter replaces memory access in stage 4 
 One branch instruction per word 

▫ Either pipeline can execute other instructions 
 la, lar, add, addi, sub, and, andi, or, ori, 
neg, not, nop, and stop 

• Registers can have 4 reads and 2 writes per cycle 
▫ Must provide more read/write ports or have a “shadow” 

copy 
• No branch delay slot 
• Instruction forwarding wherever possible 
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SRC Dual-Issue Pipeline Structure 
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SRC Dual-Issue Pipeline Hardware 
• Include datapaths and multiplexers (Mi, Ni) for data forwarding  
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Superscalar Architecture 

• Uses multiple pipelines to issue multiple 
instructions per clock cycle 

• Selection of instructions done at run-time by 
hardware 

▫ Instruction buffer used to pre-fetch instructions 

▫ Dependencies between pipeline contents and 
buffer examined to determine which new 
instructions to issue 
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Microprogramming 

• Hardcoded control unit designed to generate control 
signal sequence 
 
 
 
 
 
 
 

• Build a computer to generate signals 
▫ Treat control input/output relationship as a memory 

system 
▫ Read memory to get control signals 
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Step Concrete RTN Control Sequence 

T0 MAPC: CPC+4; PCout, MAin, Inc4, Cin 

T1 MDM[MA]: PCC Read, Cout, PCin, Wait 

T2 IRMD; MDout, Irin 

T3 AR[rb] Grb, Rout, Ain 

T4 CA+R[rc]; Grc, Rout, ADD, Cin 

T5 R[ra]C; Cout, Gra, Rin, End 



Microcode Engine 

• Generating control signals is much simpler than 
a general purpose processor 

▫ Simplest form just reads control signals in order 
from read only memory 

• Control store  

▫ Fast local memory that contains control words 

• Microinstruction 

▫ Control store word contains bit pattern telling 
which control signals are active in a specific step 

• Major issue is to determine order in which 
microinstructions are read 
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Microcoded Control Unit Diagram 
• Microinstruction has branch 

control, branch address, and 
control signal fields 

• Microprogram counter can be 
set from several sources  

▫ Use of 4-1 Mux 

▫ Required for sequencing 

▫ External source could be used 
for exceptions 

• Programmable logic array 
(PLA) serves as lookup table  

▫ Opcode mapped to start 
address  
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Control Store 

• Microinstruction format 
▫ Control signals 

 Binary values for all control 
signals 

▫ Branch control 
 Bits to determine when to use 

branch address  

▫ Branch address 
 Where to jump in control 

store 

• Control store 
▫ Typically faster than main 

memory (on board processor 
chip) 

▫ Usually wide but not many 
words 

29 

Branch 
Control 

Control Signals 
Branch 
Address 

… PCout PCin MDout IRin … End … 



Hardwired vs Microcoded Control 

• Hardwired control is faster 

▫ Only a few gate delays 

▫ Microcode requires memory fetch 

• Microcode is easier to prototype 

▫ Can reprogram memory chip easily 

• Microcode is more flexible 

▫ Change in instruction sets more accessible  
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Chapter 5 Summary 

• Deals with alternative processor design strategies 
• Pipelining utilizes hardware to increase 

performance 
▫ Want 1 instruction executed per clock cycle 
▫ Data forwarding, branch delay slot, and load delay slot 

help approach target goal 
▫ Data hazards must be detected to guarantee correct 

operation with use of pipeline 

• Multi-issue with instruction-level parallelism in 
another way to improve speed 

• Microprogramming is an easy to design control 
strategy  
▫ Treats control as memory read 
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