1. (OS 2.22)
Consider a discrete-time LTI system with impulse response \(h[n] \). If the input \(x[n] \) is a periodic sequence with period \(N \) (i.e. if \(x[n] = x[n + N] \)), show that the output \(y[n] \) is also a periodic sequence with period \(N \).

2. (OS 2.23 a,b,c) + additional systems
For each of the following systems, determine whether the system is (1) stable, (2) causal, (3) linear, and (4) time-invariant.

(a) \(T(x[n]) = (\cos \pi n)x[n] \)
(b) \(T(x[n]) = x[n^2] \)
(c) \(T(x[n]) = x[n] \sum_{k=0}^{\infty} \delta[n - k] \)
(d) \(T(x[n]) = e^{x[n]} \)
(e) \(T(x[n]) = ax[n] + b \)

3. (OS 2.31)
If the input and output of a causal LTI system satisfy the difference equation
\[
y[n] = ay[n - 1] + x[n],
\]
then the impulse response of the system must be \(h[n] = a^n u[n] \).

(a) For what values of \(a \) is this system stable?
(b) Consider a causal LTI system for which the input and output are related by the difference equation
\[
y[n] = ay[n - 1] + x[n] - a^N x[n - N],
\]
where \(N \) is a positive integer. Determine and sketch the impulse response of this system.
\textit{Hint}: Use linearity and time-invariance to simplify the solution.
(c) Is the system in part (b) and FIR or an IIR system? Explain.
(d) For what values of \(a \) is the system in part (b) stable? Explain.

4. (OS 2.34 a,b,d)
An LTI system has the frequency response
\[
H(e^{j\omega}) = \frac{1 - 1.25e^{-j\omega}}{1 - 0.8e^{-j\omega}} = 1 - \frac{0.45e^{-j\omega}}{1 - 0.8e^{-j\omega}}.
\]
(a) Specify the difference equation that is satisfied by the input \(x[n] \) and output \(y[n] \).
(b) Use one of the above forms of the frequency response to determine the impulse response \(h[n] \).
(d) If the input to the above system is \(x[n] = \cos(0.2\pi n) \), the output should be of the form \(y[n] = A\cos(0.2\pi n + \theta) \). What are \(A \) and \(\theta \).

5. (OS 2.74)
The overall system in the dotted box in Figure P2.74 can be shown to be linear and time-invariant.
(a) Determine an expression for \(H(e^{j\omega}) \), the frequency response of the overall system from the input \(x[n] \) to the output \(y[n] \), in terms of \(H_1(e^{j\omega}) \), the frequency response of the internal LTI system. Remember that \((-1)^n = e^{j\pi n}\).

(b) Plot \(H(e^{j\omega}) \) for the case when the frequency response of the internal LTI system is

\[
H_1(e^{j\omega}) = \begin{cases}
1, & |\omega| < \omega_c \\
0, & \omega_c < |\omega| \leq \pi
\end{cases}
\]

6. (a) Prove that

\[
\sum_{n=0}^{N} a^n = \frac{1 - a^{N+1}}{1 - a}
\]

(b) Prove that, for \(|a| < 1\),

\[
\sum_{n=0}^{\infty} a^n = \frac{1}{1 - a}
\]

(c) Find a closed form expressed for

\[
\sum_{n=N_1}^{N_2} a^n
\]

for any \(0 < N_1, N_2 < \infty\).

7. Use the convolution sum formula to find \(y[n] = h[n] * x[n] \) for

\[
h[n] = \begin{cases}
1, & n \geq -3 \\
3^n, & n < -3
\end{cases}
\]

\[
x[n] = \begin{cases}
(1/3)^n, & n \geq 3 \\
3^n, & n < 3
\end{cases}
\]