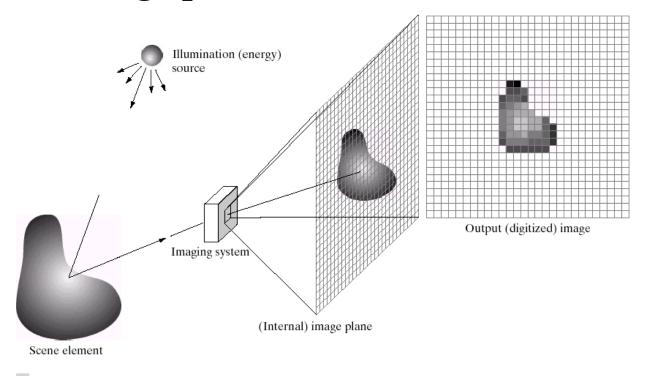
Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu

ECG782: Multidimensional Digital Signal Processing

Digital Image Fundamentals

Outline

- Image Formation and Models
- Pixels
- Pixel Processing
- Color


M-D Signals

- Use mathematical models to describe signals
 - A function depending on some variable with a physical meaning
- 1D signal
 - E.g. speech, audio, voltage, current
 - Dependent on "time"
- 2D signal
 - E.g. image
 - Dependent on spatial coordinates in a plane
- 3D signal
 - E.g. volume in space, video
- M-D signal
 - E.g. ???

Image Formation

a c d e

 Incoming light energy is focused and collected onto an image plane

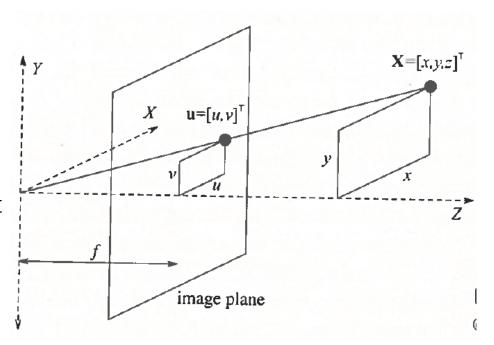
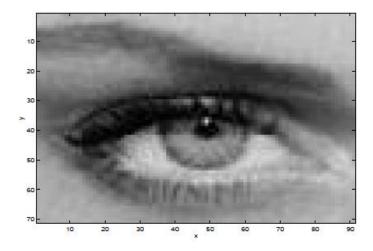

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

Image Formation Model

- Imaging takes the 3D world and projects it onto a 2D image
- Simple model for the process is called the pinhole camera

- $X = [x, y, z]^T$ represents point in world 3D space
- $u = [u, v]^T$ represents a 2D point on image plane
- *f* focal length of camera
- World-image relationship

$$u = \frac{xf}{z} \qquad v = \frac{y}{z}$$



Perspective Projection

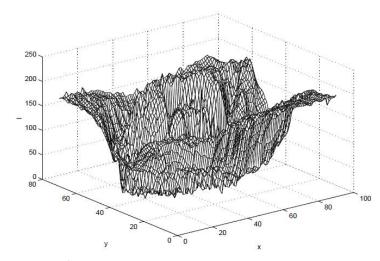

- Pinhole camera causes perspective distortion
 - Loss of information from perspective projection
 - The transform is not one-to-one
 - A line in space gets mapped to the same point
 - Need depth information to resolve ambiguity
- Orthographic (parallel) projection
 - □ Linear approximation with $f \rightarrow \infty$
 - This is how far away objects z → ∞ are mapped onto image plane

Image Representation

- Multiple equivalent representations
- Image

Surface

Matrix

Image Representation

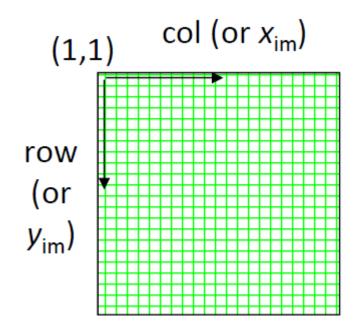
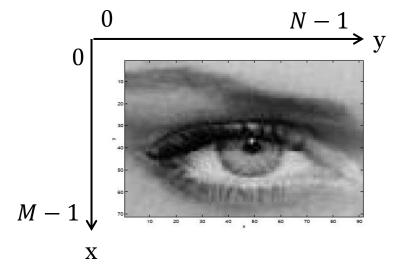
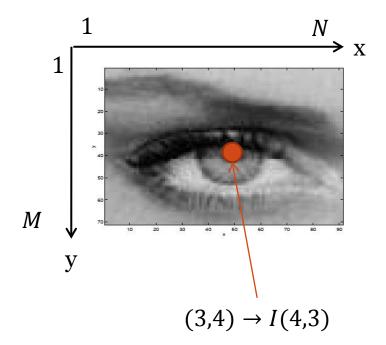

- Image f(x, y) is a 2D function
 - □ *f* amplitude, gray level, or brightness
 - (x, y) spatial coordinates
 - Conceptually, (x, y) are continuous but are discrete in practice
- In general, the function can be vector-valued
 - E.g. color images represented by (red, green, blue)
 - $f(x,y) = [r,g,b]^T$
- The image function can be M-dimensional
 - E.g. computed tomography (CT) images are 3D
 - f(x, y, z) represents x-ray absorption at point (x, y, z)

Image as Function

- Think of an image as a function, f, that maps from R^2 to R
 - $0 < f(x, y) < \infty$ is the intensity at a point (x, y)
- In reality, an image is defined over a rectangle with a finite range of values
 - $f: [a,b] \times [c,d] \rightarrow [0,1]$
- Computationally, [0,1] range is convenient but usually we have an 8-bit quantized representation
 - 0 < f(x, y) < 255
- Color image is just three separate functions pasted together
 - f(x,y) = [r(x,y); g(x,y); b(x,y)]

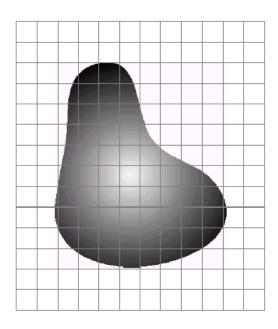
Image as Matrix


- Images are usually represented by matrices
 - $M \times N$ dimension
- Be aware that images can have different origin definitions
 - Bottom left typical Cartesian coordinates
 - Upper left typical image definition (matrix or table notation)
 - Matlab uses (1,1) for origin not (0,0)

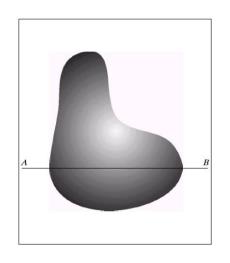

- Index an element either by
 - (x,y)
 - $rac{row,col}{}$

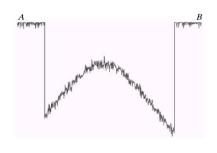
Matrix Notation

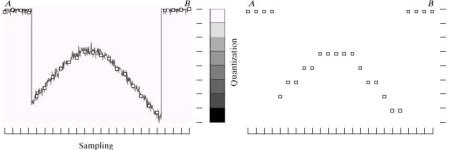
- Mathematical
- Notation starts with f(0,0)



- Matlab
- Notation starts with I(1,1)
 - No zero indexing


Image Sampling


• A continuous image is sampled and ordered into a image grid



- Each grid element is known as a pixel
 - Voxel for volume element
- Consider the pixel as the smallest unit in an image
 - This is not quite a delta because it has a finite size on the CMOS sensor
 - It is possible to do sub-pixel processing (e.g. corner detection)

Quantization

- a b c d FIGURE 2.16 Generating a digital image. (a) Continuous image. (b) A scan line from A to B in the continuous image,

used to illustrate the concepts of sampling and quantization. (c) Sampling and quantization. (d) Digital scan line.

- Quantization gives the number of output levels L
- Continuous image
- Scan line from A to B
- Sampling (horizontal bar) and quantization (vertical bar)
- Digital scan line resulting effect of sampling and quantization

Quantization Levels

- *L* = number of output levels
- k = number of bits per pixel
- Output range of image
 - $[0, L-1] = [0, 2^k 1]$
- Image storage size
 - $b = M \times N \times k$
 - Number of bits to store image with dimensions M × N
- 8-bits per channel is typical
 - Provide enough resolution to provide quality visual reproduction

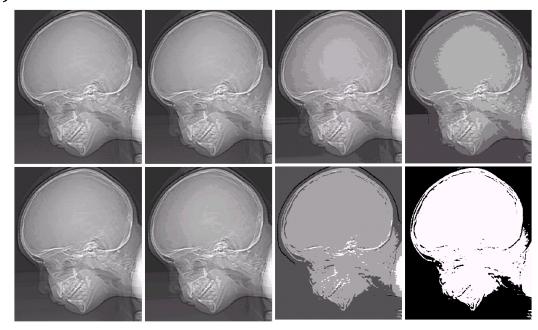
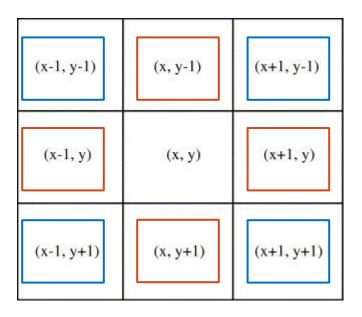

(d)

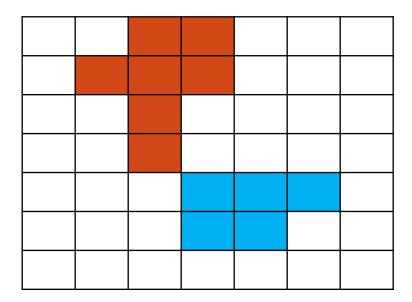
Figure 2.3: Brightness levels. (a) 64. (b) 16. (c) 4. (d) 2. © Cengage Learning 2015.

Resolution

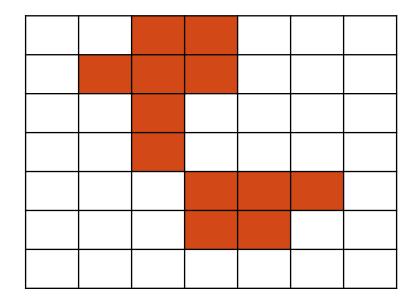

- Spatial resolution is the smallest discernible detail in an image
 - This is controlled by the sampling factor (the size
 M × N of the CMOS sensor)
- Gray-level resolution is the smallest discernible change in gray level
 - Based on number of bits for representation

Pixel Neighborhood

 The pixel neighborhood corresponds to nearby pixels



- 4-neighbors
 - Horizontal and vertical neighbors
- 8-neighbors
 - Include 4-neighbors and the diagonal pixels


Connectivity

• Path exists between pixels

• 4-connected

• 8-connected

Image Processing

- Usually the first stage of computer vision applications
 - Pre-process an image to ensure it is in a suitable form for further analysis
- Typical operations include:
 - Exposure correction, color balancing, reduction in image noise, increasing sharpness, rotation of an image to straighten

2D Signal Processing

- Image processing is an extension of signal processing to two independent variables
 - Input signal, output signal
- General system

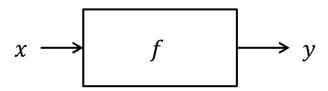
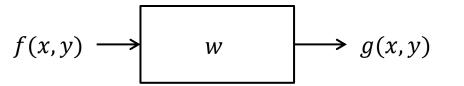
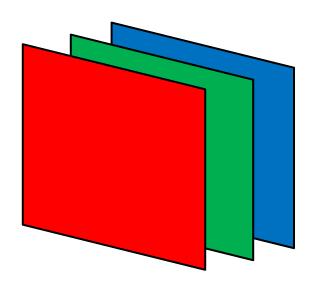



Image processing

- Linear operators
 - H(af + bg) = aH(f) + bH(g)
 - Input is an image, output is an image
- Important class of operators for image processing because of the wealth of theoretical and practical results
 - E.g. signal processing
- However, non-linear operations can provide better performance but not always in predictable ways.

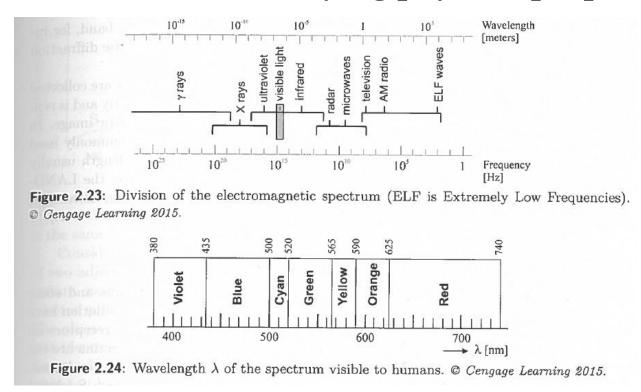
Point Operators/Processes


- Output pixel value only depends on the corresponding input pixel value
- Often times we will see operations like dividing one image by another
 - Matrix division is not defined
 - The operation is carried out between corresponding pixels in the two image
 - Element-by-element dot operation in Matlab
 - $\cdot >> I3 = I1./I2$
 - Where I1 and I2 are the same size

Pixel Transforms

- Gain and bias (Multiplication and addition of constant)
 - g(x,y) = a(x,y)f(x,y) + b(x,y)
 - a (gain) controls contrast
 - b (bias) controls brightness
 - Notice parameters can vary spatially (think gradients)
- Linear blend
 - $g(x) = (1 \alpha)f_0(x) + \alpha f_1(x)$
 - We will see this used later for motion detection in video processing

Color Transforms


- Usually we think of a color image as three images concatenated together
 - Have a red, green, blue slice corresponding to the notion of primary colors

- Manipulations of these color channels may not correspond directly with desired perceptual response
 - Adding bias to all channels may actually change the apparent color instead of increasing brightness
- Need other representations of color for mathematical manipulation

Color Images

Color comes from underlying physical properties

- However, humans do not perceive color in the same physical process
 - There is some subjectivity (e.g. color similarity)

Human Color Perception

- Cones in human retina are sensitive to color
 - In the center of eye
 - 3 different types for different EM frequency sensitivity
- Rods are monochromatic
 - On outside of the eye and good for low lighting and motion sensing

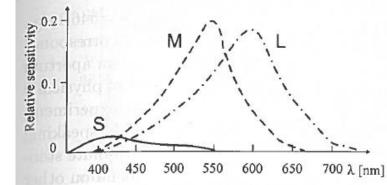


Figure 2.26: Relative sensitivity of S, M, L cones of the human eye to wavelength. © Cengage Learning 2015.

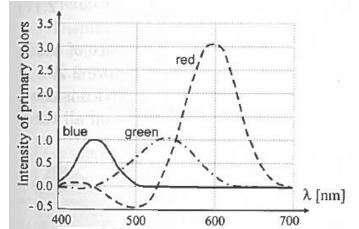


Figure 2.27: Color matching functions obtained in the color matching experiment. Intensities of the selected primary colors which perceptually match spectral color of given wavelength λ . Based on [Wandell, 1995].

Colorspaces

- Uniform method for defining colors
- Can transform from one to another
 - Want to take advantage of properties and color gamut

XYZ

- International absolute color standard
- No negative mixing

RGB

- Additive color mixing for red, green, and blue
- Widely used in computers

CMYK

- Cyan, magenta, yellow, black
- Used for printers and based off of reflectivity

HSV

- Hue, saturation, and value = color, amount, brightness
- Closer to human perception

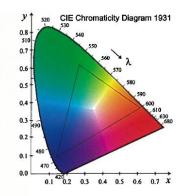
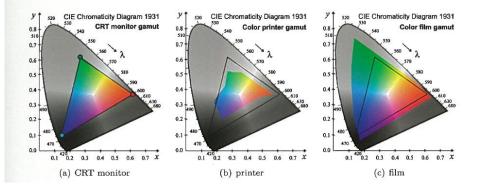
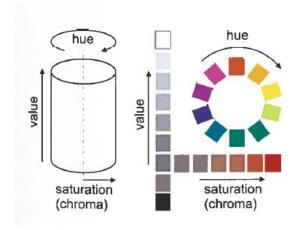




Plate 1: © Cengage Learning 2015. Page 35, Figure 2.30.

