
http://www.ee.unlv.edu/~b1morris/ecg782/ 

Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu 

ECG782:  Multidimensional 

Digital Signal Processing 

 

Filtering in the Frequency Domain 

 



Outline 

• Background Concepts 

• Sampling and Fourier Transform 

• Discrete Fourier Transform 

• Extension to Two Variables 

• Properties of 2D DFT 

• Frequency Domain Filtering Basics 

• Smoothing 

• Sharpening 

• Selective Filtering 

• Implementation 

2 



Motivation 
• Complicated signals 

(functions) can be constructed 
as a linear combination of 
sinusoids 
▫ Mathematically compact 

representation with complex 
exponentials 𝑒𝑗𝜔𝑡  

• Introduced as Fourier series 
by Jean Baptiste Joseph 
Fourier 
▫ Initially considered periodic 

signals  

▫ Later extended to aperiodic 
signals 

• Powerful mathematical tool 
▫ Can go between “time” and 

“frequency” domain 
processing 
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Preliminary Concepts 
• Complex numbers 

▫ 𝐶 = 𝑅 + 𝑗𝐼 

▫ 𝐶∗ = 𝑅 − 𝑗𝐼 

▫ 𝐶 = 𝐶 𝑒𝑗𝜃 

 Using Euler’s formula  

 𝑒𝑗𝜃 = cos𝜃 + 𝑗 sin 𝜃 

• Fourier Series 

▫ Express a periodic signal as a 
sum of sines and cosines 

▫ 𝑓 𝑡 =  𝑐𝑛𝑒𝑗𝜔0𝑛𝑡
𝑛  

▫ 𝑐𝑛 =
1

𝑇
 𝑓 𝑡 𝑒−𝑗𝜔0𝑛𝑡
𝑇

 

 𝜔0 = 2𝜋/𝑇 

 

• Fourier Transform 

▫ 𝐹 𝜇 =  ℱ 𝑓 𝑡 =
 𝑓 𝑡 𝑒−𝑗2𝜋𝜇𝑡𝑑𝑡 

 𝜇 : continuous frequency 
variable 

▫ 𝑓 𝑡 = ℱ−1 𝐹 𝜇 =
 𝐹 𝜇 𝑒𝑗2𝜋𝜇𝑡𝑑𝜇 

 

▫ Notice for real 𝑓 𝑡  this 
generally results in a complex 
transform 
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Rectangle Wave Example 

• 𝐹 𝜇 = 𝐴𝑊
sin 𝜋𝜇𝑊

𝜋𝜇𝑊
 

▫ Rectangle in time gives sinc in frequency 
▫ See book for derivation 

• Frequency spectrum 

▫ 𝐹 𝜇 = 𝐴𝑊
sin 𝜋𝜇𝑊

𝜋𝜇𝑊
 

 Consider only a real portion 

• Note zeros are inversely proportional to width of box  
▫ Wider in time, narrow in frequency 
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Convolution Properties 

• Very important input-output relationship 
between a input signal 𝑓 𝑡  and an LTI system 
ℎ(𝑡) 

• 𝑓 𝑡 ∗ ℎ 𝑡 =  𝑓 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏 

• Dual time-frequency relationship 

▫ 𝑓 𝑡 ∗ ℎ 𝑡 ↔ 𝐹 𝜇 𝐻 𝜇  

▫ 𝑓 𝑡 ℎ 𝑡 ↔ 𝐹 𝜇 ∗ 𝐻 𝜇  

▫ Convolution-multiplication relationship 
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Sampling 
• Convert continuous signal to a 

discrete sequence 

▫ Use impulse train sampling 

•  𝑓 𝑡 = 𝑓 𝑡 𝑠Δ𝑇 𝑡 =
 𝑓 𝑡 𝛿(𝑡 − 𝑛Δ𝑇)𝑛  

▫ 𝛿 𝑡 − 𝑛Δ𝑇  - impulse 
response at time 𝑡 = 𝑛Δ𝑇 

•  Sample value 

▫ 𝑓𝑘 = 𝑓(𝑘Δ𝑇) 
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Fourier Transform of Sampled Signal 
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• 𝐹 𝜇 = ℱ 𝑓 𝑡 = 𝐹 𝜇 ∗ 𝑆(𝜇) 

▫ 𝑆 𝜇 =
1

Δ𝑇
 𝛿 𝜇 −

𝑛

Δ𝑇𝑛  

▫ FT of impulse train is an 
impulse train 

 See section 4.2.3 in the book 
for details 

 Note spacing between 
impulses are inversely 
related 

• 𝐹 𝜇 =
1

ΔT
 𝐹 𝜇 −

𝑛

Δ𝑇𝑛  

▫ Sampling creates copies of 
the original spectrum 

▫ Must be careful with 
sampling period to avoid 
aliasing (overlap of spectrum) 



Sampling Theorem 
• Conditions to be able to recover 

𝑓 𝑡  completely after sampling  

• Requires bandlimited 𝑓(𝑡) 

▫ 𝐹 𝜇 = 0  for |𝜇| > 𝜇max  

▫ Can isolate center spectrum 
copy from its neighbors 

• Sampling theorem 

▫
1

Δ𝑇
> 2𝜇max  

 Nyquist rate 2𝜇max  

• Recovery with lowpass filter 

▫ 𝐻 𝜇 = Δ𝑇  for 𝜇 ≤ 𝜇max  
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Aliasing 
• Corruption of recovered signal 

if not sampled at rate less than 
Nyquist rate 
▫ Spectrum copies overlap 

▫ High frequency components 
corrupt lower frequencies 

 

• In reality this is always present 
▫ Most signals are not 

bandlimited 

▫ Bandlimited signals require 
infinite time duration 
 Windowing to limit size 

naturally causes distortion 

▫ Use anti-aliasing filter before 
sampling 
 Filter reduces high 

frequency components 
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Discrete Fourier Transform 
• Discussion has considered continuous signals (functions) 

▫ Need to operate on discrete signals 
• DFT is a sampled version of the sampled signal FT in one 

period 

▫ 𝐹 𝜇 =  𝑓𝑛𝑒−𝑗2𝜋𝜇𝑛Δ𝑇
𝑛  

▫ Sample in frequency evenly (𝑀) over a period 

 𝜇 =
𝑚

𝑀Δ𝑇
 

▫ 𝐹𝑚 =  𝑓𝑛𝑒−𝑗2𝜋𝑚𝑛/𝑀
𝑛  

 𝑚 = 0,1,2, … , 𝑀 − 1 
▫ 𝑀 samples of 𝑓 𝑡 , 𝑓𝑛 , results in 𝑀 DFT values 
▫ Note: implicitly assumes samples come from one period of 

periodic signal 
• Inverse DFT 

▫ 𝐹𝑛 =
1

𝑀
 𝐹𝑚𝑒𝑗2𝜋𝑚𝑛/𝑀

𝑚  
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Sampling/Frequency Relationship 

• 𝑀 samples of signal with sample period Δ𝑇 
▫ Total time  𝑇 = 𝑀Δ𝑇 

• Spacing in discrete frequency 

▫ Δ𝑢 =
1

𝑀Δ𝑇
=

1

𝑇
 

 Note the switch to 𝑢 for discrete frequency  

▫ Total frequency range  Ω = 𝑀Δ𝑢 =
1

Δ𝑇
 

• Resolution of DFT is dependent on the duration 
𝑇 of the sampled function 
▫ Generally the number of samples 

 

• See fft.m in Matlab to test this 
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Extensions to 2D 

• All discussions can be extended to two variables 
easily 
▫ Add second integral or summation for extra 

variable 

• 2D rectangle 

▫ 𝐹 𝜇, 𝜈 = ATZ
sin 𝜋𝜇𝑇

𝜋𝜇𝑇
 

sin 𝜋𝜈𝑍

𝜋𝜈𝑍
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Image Aliasing 

• Temporal aliasing appears in video 

▫ Wheel effect – looks like it is spinning opposite 
direction 

• Spatial aliasing is the same as the previous 
discussion now in two dimensions 
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Image Interpolation and Resampling 

• Used for image resizing 
▫ Zooming – oversample and image 
▫ Shrinking – undersample an image 

 Must be careful of aliasing 
 Generally smooth before downsample 
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Fourier Spectrum and Phase Angle 
• 𝐹 𝑢, 𝑣 = 𝐹 𝑢, 𝑣 𝑒𝑗𝜙 𝑢,𝑣  

▫ Magnitude, spectrum 

 𝐹 𝑢, 𝑣 =
𝑅2 𝑢, 𝑣 + 𝐼2 𝑢, 𝑣 1/2 

▫ Phase angle  

 𝑒𝑗𝜙 𝑢,𝑣 = arctan
𝐼 𝑢,𝑣

𝑅 𝑢,𝑣
 

 

• Spectrum is component we 
naturally specify while phase is 
a bit harder to visualize 

• Spectrum 
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Spectrum 
• Translation does not affect 

spectrum 

▫ Wide in space  narrow 
in frequency 

 

 

 

 

• Orientation clearly visible 
in spectrum 
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Phase 

• Difficult to describe phase given image content 

 

 

 

 

 

 

 

▫ a) centered rectangle 

▫ b) translated rectangle 

▫ c) rotated rectangle 
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Spectrum Phase Manipulation 

• Both spectrum and phase are important for image 
content  
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Frequency Domain Filtering Basics 
• Generally complicated relationship between image and 

transform 
▫ Frequency is associated with patterns of intensity variations 

in image 
• Filtering modifies the image spectrum based on a 

specific objective 
▫ Magnitude (spectrum) – most useful for visualization (e.g. 

match visual characteristics) 
▫ Phase – generally not useful for visualization 
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45 degree lines 

Off center line 



Fundamentals 

• Modify FT of image and inverse for result 

▫ 𝑔 𝑥, 𝑦 = ℱ−1[𝐻 𝑢, 𝑣 𝐹 𝑢, 𝑣 ] 
 𝑔(𝑥, 𝑦) : output image [𝑀 × 𝑁] 
 𝐹(𝑢, 𝑣) : FT of input image 𝑓 𝑥, 𝑦  [𝑀 × 𝑁] 
 𝐻(𝑢, 𝑣) : filter transfer function [𝑀 × 𝑁] 
 ℱ−1 : inverse FT (iFT) 

▫ Product from element-wise array multiplication 
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Remove DC (0,0) 
term from 𝐹(𝑢, 𝑣) 



Example Filters 
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Addition of small offset to 
retain DC component after HP  



DFT Subtleties 

• Multiplication in frequency is convolution in time 
▫ Must pad image since output is larger 

 Will pad 𝑓(𝑥, 𝑦) image but not ℎ(𝑥, 𝑦) 

  𝐻(𝑢, 𝑣) designed and sized for padded 𝐹(𝑢, 𝑣) 

▫ DFT implicitly assumes a periodic function 
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Phase Angle 

• Generally, a filter can affect the phase of a signal 

• Zero-phase-shift filters have no effect on phase 

▫ Focus of this chapter 

• Phase is very important to image 

▫ Small changes can lead to unexpected results 
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Frequency Domain Filtering Steps 
1. Given image 𝑓(𝑥, 𝑦) of size 𝑀 × 𝑁, get padding 

(𝑃, 𝑄) 
▫ Typically use 𝑃 = 2𝑀 and 𝑄 = 2𝑁 

2. Form zero-padded image 𝑓𝑝(𝑥, 𝑦) of size 𝑃 × 𝑄 
3. Multiply 𝑓𝑝(𝑥, 𝑦) by −1 𝑥+𝑦 to center the 

transform 
4. Compute DFT 𝐹(𝑢, 𝑣) 
5. Compute 𝐺 𝑢, 𝑣 = 𝐻 𝑢, 𝑣 𝐹(𝑢, 𝑣) 

▫ Get real, symmetric filter function 𝐻(𝑢, 𝑣) of size 

𝑃 × 𝑄 with center at coordinates 
𝑃

2
,
𝑄

2
 

6. Obtain (padded) output image from iFT 

▫ 𝑔𝑝 𝑥, 𝑦 = {real ℱ−1 𝐺 𝑢, 𝑣 −1 𝑥+𝑦 

7. Obtain 𝑔(𝑥, 𝑦) by extracting 𝑀 × 𝑁 region from top 
left quadrant of 𝑔𝑝(𝑥, 𝑦) 
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Steps Example 
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Relationship to Spatial Filtering 

• Frequency multiplication  convolution in 
spatial domain 

▫ ℎ(𝑥, 𝑦) ↔ 𝐻(𝑢, 𝑣) 

▫ Use of a finite impulse response 

• Generally use small filter kernels which are more 
efficient to implement in spatial domain 

• Frequency domain can be better for the design 
of filters 

▫ More natural space for definition 

▫ Use iFT to determine the “shape” of the spatial 
filter 
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Smoothing 

• High frequency image content comes from edges 
and noise 

• Smoothing/blurring is a lowpass operation that 
attenuates (removes) high frequency content 

• Consider three smoothing filters 

▫ Ideal lowpass – sharp filter 

▫ Butterworth – filter order controls shape 

▫ Gaussian – very smooth filter 
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Ideal Lowpass Filter 

• 𝐻 𝑢, 𝑣 =  
1 𝐷 𝑢, 𝑣 ≤ 𝐷0

0 𝐷 𝑢, 𝑣 > 𝐷0
 

▫ 𝐷 𝑢, 𝑣 = 𝑢 −
𝑃

2

2
+ 𝑣 −

𝑄

2

2
 

▫ Pass all frequencies 𝐷0 distance from DC 

 𝐷0 is the cuttoff frequency 
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Ideal Lowpass Example 
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blurring 

ringing  



LP Spectrum View 
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Butterworth LP Filter 

• 𝐻 𝑢, 𝑣 =
1

1+ 𝐷 𝑢,𝑣 /𝐷0
2𝑛 

▫ 𝑛 – order of the filter (controls sharpness of 
transition) 

▫ Cutoff generally specified as the 50% of max 
(D0 = 0.5)  
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Butterworth LP Example 
• No ringing is visible because of 

the gradual transition from 
high to low frequency in filter 

▫ May be visible in higher-
order filters (𝑛 > 2) 

▫ Trade-off frequency narrow 
main lobe with sidelobe 
height 
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Gaussian Lowpass Filter 

• 𝐻 𝑢, 𝑣 = 𝑒−𝐷2 𝑢,𝑣 /2𝜎2
 

▫ 𝜎 – measure of spread  

 𝜎 = 𝐷0 is the cutoff frequency 

▫ iFT is also a Gaussian 

 No ringing because of smooth function 

▫ A favorite filter for smoothing 
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Gaussian LP Example 
• No ringing 

• Not as much smoothing as 
Butterworth 2 

 

• Best for use when ringing is 
unacceptable 

• Butterworth better when tight 
control of transition between 
high and low frequency is 
required 
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Sharpening  
• Use a highpass filter 

▫ 𝐻𝐻𝑃 𝑢, 𝑣 = 1 − 𝐻𝐿𝑃(𝑢, 𝑣) 

• Ideal  

▫ 𝐻 𝑢, 𝑣 =  
0 𝐷 𝑢, 𝑣 ≤ 𝐷0

1 𝐷 𝑢, 𝑣 > 𝐷0
 

• Butterworth 

▫ 𝐻 𝑢, 𝑣 =
1

1+ 𝐷0/𝐷 𝑢,𝑣 2𝑛 

• Gaussian  

▫ 𝐻 𝑢, 𝑣 = 𝑒−𝐷2 𝑢,𝑣 /2𝜎2
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Highpass Examples 
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Same ringing artifacts as ideal lowpass 



HP Spectrum View 
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Selective Filtering 

• Bandpass/reject – operate on a ring in the 
frequency spectrum 
▫ See Table 4.6 for definitions 

 
 
 
 
 
 

• Notch filters – operate on specific regions in the 
frequency spectrum 
▫ Move center of HP filter appropriately 
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Notch Examples 
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Notch Examples II 
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BP Spectrum View 
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Implementation Issues 

• DFT is separable 

▫ Can compute first a 1D DFT over rows followed by 
the 1D DFT over columns 

▫ Simplifies computations in 1D 

• Practically use Fast Fourier Transform (FFT) to 
computer all DFT 

▫ Computationally efficient algorithm that 
simplifies problem by halving sequence repeatedly 

▫ Efficiency requires 𝑀 and 𝑁 (size of image) to be 
multiples of 2 
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