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Dense Motion Estimation 

• Motion is extremely important in vision 

• Biologically: motion indicates what is food and 
when to run away 

▫ We have evolved to be very sensitive to motion 
cues (peripheral vision) 

• Alignment of images and motion estimation is 
widely used in computer vision 

▫ Optical flow 

▫ Motion compensation for video compression 

▫ Image stabilization 

▫ Video summarization 
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Biological Motion 
• Even limited motion information is perceptually 

meaningful 
 
 
 
 
 
 
 
 
 
 
 

• http://www.biomotionlab.ca/Demos/BMLwalker.html 
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Motion Estimation 

• Input:  sequence of images 
• Output:  point correspondence 
• Prior knowledge: decrease problem complexity 

▫ E.g. camera motion (static or mobile), time 
interval between images, etc. 

 
• Motion detection 

▫ Simple problem to recognize any motion (security) 

• Moving object detection and location 
▫ Feature correspondence:  “Feature Tracking” 

 We will see more of this when we examine SIFT 

▫ Pixel (dense) correspondence:  “Optical Flow” 



Dynamic Image Analysis 
• Motion description 

▫ Motion/velocity field – 
velocity vector associated 
with corresponding keypoints 

▫ Optical flow – dense 
correspondence that requires 
small time distance between 
images 

 

• Motion assumptions 

▫ Maximum velocity – object 
must be located in an circle 
defined by max velocity 

▫ Small acceleration – limited 
acceleration 

▫ Common motion – all object 
points move similarly 

▫ Mutual correspondence – rigid 
objects with stable points 
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General Motion Analysis and Tracking 

• Two interrelated components: 

 

• Localization and representation of object of interest 
(target) 

▫ Bottom-up process: deal with appearance, 
orientation, illumination, scale, etc. 

• Trajectory filtering and data association 

▫ Top-down process: consider object dynamics to 
infer motion (motion models) 
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Differential Motion Analysis 
• Simple motion detection 

possible with image 
subtraction 

▫ Requires a stationary camera 
and constant illumination 

▫ Also known as change 
detection 

• Difference image 

▫ 𝑑 𝑖, 𝑗 =

 
1 𝑓1 𝑖, 𝑗 − 𝑓2 𝑖, 𝑗 > 𝜖
0 𝑒𝑙𝑠𝑒

 

▫ Binary image that highlights 
moving pixels 

• What are the various 
“detections” from this 
method? 

▫ See book 
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Background Subtraction 

• Motion is an important 

▫ Indicates an object of interest 

 

• Background subtraction 

▫ Given an image (usually a video frame), identify 
the foreground objects in that image 

 Assume that foreground objects are moving 

 Typically, moving objects more interesting than the 
scene 

 Simplifies processing – less processing cost and less 
room for error 
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Background Subtraction Example 
• Often used in traffic monitoring applications 

▫ Vehicles are objects of interest (counting vehicles) 
 
 
 
 
 
 
 
 

• Human action recognition (run, walk, jump, …) 
• Human-computer interaction (“human as 

interface”) 
• Object tracking 
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Requirements 

• A reliable and robust background subtraction 
algorithm should handle: 

▫ Sudden or gradual illumination changes 

 Light turning on/off, cast shadows through a day 

▫ High frequency, repetitive motion in the 
background 

 Tree leaves blowing in the wind, flag, etc. 

▫ Long-term scene changes 

 A car parks in a parking spot 
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Basic Approach 

• Estimate the background at time 𝑡 

• Subtract the estimated background from the 
current input frame 

• Apply a threshold, 𝑇ℎ, to the absolute difference 
to get the foreground mask. 

▫ |𝐼 𝑥, 𝑦, 𝑡 − 𝐵(𝑥, 𝑦, 𝑡)| > 𝑇ℎ = 𝐹(𝑥, 𝑦, 𝑡) 
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                                  −                                      > 𝑇ℎ =  

𝐼(𝑥, 𝑦, 𝑡) 𝐵(𝑥, 𝑦, 𝑡) 𝐹(𝑥, 𝑦, 𝑡) 

How can we estimate the background? 



Frame Differencing 

• Background is estimated to be the previous 
frame 

▫ 𝐵 𝑥, 𝑦, 𝑡 = 𝐼(𝑥, 𝑦, 𝑡 − 1) 

• Depending on the object structure, speed, frame 
rate, and global threshold, may or may not be 
useful 

▫ Usually not useful – generates impartial objects 
and ghosts 
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𝑡 − 1 
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𝑡 − 1 
𝑡 

Incomplete object ghosts 



Frame Differencing Example 
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Mean Filter 

• Background is the mean of the previous 𝑁 
frames 

▫ 𝐵 𝑥, 𝑦, 𝑡 =
1

𝑁
 𝐼(𝑥, 𝑦, 𝑡 − 𝑖)𝑁−1

𝑖=0  

▫ Produces a background that is a temporal 
smoothing or “blur” 

• 𝑁 = 10 
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Mean Filter 

• 𝑁 = 20 

 

 

 

 

 

• 𝑁 = 50 
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Median Filter 

• Assume the background is more likely to appear 
than foreground objects 

▫ 𝐵 𝑥, 𝑦, 𝑡 = 𝑚𝑒𝑑𝑖𝑎𝑛 𝐼 𝑥, 𝑦, 𝑡 − 𝑖 , 𝑖 ∈ {0, 𝑁 − 1} 

 
• 𝑁 = 10 

 

17 



Median Filter 

• 𝑁 = 20 

 

 

 

 

 

• 𝑁 = 50 
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Frame Difference Advantages 

• Extremely easy to implement and use 

• All the described variants are pretty fast 

• The background models are not constant 

▫ Background changes over time 
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Frame Differencing Shortcomings 

• Accuracy depends on object speed/frame rate 
• Mean and median require large memory 

▫ Can use a running average 

▫ 𝐵 𝑥, 𝑦, 𝑡 = 1 − 𝛼 𝐵 𝑥, 𝑦, 𝑡 − 1 + 𝛼𝐼 𝑥, 𝑦, 𝑡  
 𝛼 – is the learning rate 

• Use of a global threshold 
▫ Same for all pixels and does not change with time 
▫ Will give poor results when the: 

 Background is bimodal  
 Scene has many slow moving objects (mean, 

median) 
 Objects are fast and low frame rate (frame diff) 
 Lighting conditions change with time 
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Improving Background Subtraction 

• Adaptive Background Mixture Models for Real-
Time Tracking  

▫ Chris Stauffer and W.E.L. Grimson 

 

• “The” paper on background subtraction 

▫ Over 4000 citations since 1999 

 

▫ Will read this and see more next time 
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Optical flow 

• Dense pixel correspondence 



Optical Flow 

• Dense pixel correspondence 

▫ Hamburg Taxi Sequence 
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Translational Alignment 
• Motion estimation between images requires a error 

metric for comparison 
• Sum of squared differences (SSD) 

▫ 𝐸𝑆𝑆𝐷 𝑢 =  [𝐼1 𝑥𝑖 + 𝑢 − 𝐼0 𝑥𝑖 ]2 =  𝑒𝑖
2

𝑖𝑖  
 𝑢 = (𝑢, 𝑣) – is a displacement vector (can be subpixel) 
 𝑒𝑖 - residual error 

• Brightness constancy constraint 
▫ Assumption that that corresponding pixels will retain 

the same value in two images 
▫ Objects tend to maintain the perceived brightness 

under varying illumination conditions [Horn 1974] 
• Color images processed by channels and summed or 

converted to colorspace that considers only 
luminance 
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SSD Improvements 

• As we have seen, SSD is the simplest approach 
and can be improved 

• Robust error metrics 
▫ 𝐿1 norm (sum absolute differences) 

 Better outlier resilience  

• Spatially varying weights 
▫ Weighted SSD to weight contribution of each pixel 

during matching 
 Ignore certain parts of the image (e.g. foreground), 

down-weight objects during images stabilization 

• Bias and gain 
▫ Normalize exposure between images 

 Address brightness constancy 
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Correlation  

• Instead of minimizing pixel differences, 
maximize correlation 

• Normalized cross-correlation 

 

 

 

 

 

▫ Normalize by the patch intensities 

▫ Value is between [-1, 1] which makes it easy to use 
results (e.g. threshold to find matching pixels) 
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Problem definition:  optical flow 

• How to estimate pixel motion from image H to image I? 

• Solve pixel correspondence problem 

– given a pixel in H, look for nearby pixels of the same color in I 

Key assumptions 

• color constancy:  a point in H looks the same in I 

– For grayscale images, this is brightness constancy 

• small motion:  points do not move very far 

This is called the optical flow problem 



Optical flow constraints (grayscale images) 

• Let’s look at these constraints more closely 
• brightness constancy:   Q:  what’s the equation? 

• 𝐻(𝑥, 𝑦)  =  𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) 

• small motion:  (u and v are less than 1 pixel) 

– suppose we take the Taylor series expansion of I: 



Optical flow equation 

• Combining these two equations 

In the limit as u and v go to zero, this becomes exact 

 



Optical flow equation 
 

• Q:  how many unknowns 
and equations per pixel? 
▫ 𝑢 and 𝑣 are unknown - 1 

equation, 2 unknowns 
 

• Intuitively, what does 
this constraint mean? 
▫ The component of the flow 

in the gradient direction is 
determined 

▫ The component of the flow 
parallel to an edge is 
unknown 

• This explains the Barber 
Pole illusion 

▫ http://www.sandlotscience.com/A
mbiguous/Barberpole_Illusion.ht
m 

 
 

 
 

 
 

 

If (𝑢, 𝑣) satisfies the equation, so 
does (𝑢 + 𝑢’, 𝑣 + 𝑣’) if 

𝛻𝐼 ⋅ 𝑢′ 𝑣′ = 0 

http://www.sandlotscience.com/Ambiguous/Barberpole_Illusion.htm
http://www.sandlotscience.com/Ambiguous/Barberpole_Illusion.htm
http://www.sandlotscience.com/Ambiguous/Barberpole_Illusion.htm
http://www.sandlotscience.com/Ambiguous/Barberpole_Illusion.htm


 

Aperture problem 

Actual Motion 



Aperture problem 

 

Perceived Motion 



Solving the aperture problem 

• Basic idea:  assume motion field is smooth 
 

• Horn & Schunk:  add smoothness term 
 
 

• Lucas & Kanade:  assume locally constant motion 
▫ pretend the pixel’s neighbors have the same (u,v) 

 

 
• Many other methods exist.  Here’s an overview: 

▫ S. Baker, M. Black, J. P. Lewis, S. Roth, D. Scharstein, and R. Szeliski. A database and 
evaluation methodology for optical flow. In Proc. ICCV, 2007  

▫ http://vision.middlebury.edu/flow/  

http://vision.middlebury.edu/flow/


Lucas-Kanade flow 
• How to get more equations for a pixel? 

▫ Basic idea:  impose additional constraints 

 most common is to assume that the flow field is smooth locally 

 one method:  pretend the pixel’s neighbors have the same (u,v) 

 If we use a 5x5 window, that gives us 25 equations per pixel! 



RGB version 
• How to get more equations for a pixel? 

▫ Basic idea:  impose additional constraints 

 most common is to assume that the flow field is smooth locally 

 one method:  pretend the pixel’s neighbors have the same (u,v) 

 If we use a 5x5 window, that gives us 25*3 equations per pixel! 



Lucas-Kanade flow 
Prob:  we have more equations than unknowns 

• The summations are over all pixels in the K x K window 

• This technique was first proposed by Lucas & Kanade (1981) 

Solution:  solve least squares problem 

• minimum least squares solution given by solution (in d) of: 



Conditions for solvability 

• Optimal (u, v) satisfies Lucas-Kanade equation 
 
 
 
 

• When is This Solvable? 
• ATA should be invertible  
• ATA should not be too small due to noise 

– eigenvalues l1 and l2 of ATA should not be too small 
• ATA should be well-conditioned 

–   l1/ l2 should not be too large (l1 = larger eigenvalue) 
 

• Does this look familiar? 
• ATA is the Harris matrix 

 



Observation 

• This is a two image problem BUT 
▫ Can measure sensitivity by just looking at one of the images! 

▫ This tells us which pixels are easy to track, which are hard 

 very useful for feature tracking... 



 

Aperture problem 

Actual Motion 



 

Aperture problem 

Perceived Motion 



Errors in Lucas-Kanade 

• What are the potential causes of errors in this 
procedure? 

▫ Suppose ATA is easily invertible 

▫ Suppose there is not much noise in the image 

• When our assumptions are violated 
• Brightness constancy is not satisfied 

• The motion is not small 

• A point does not move like its neighbors 

– window size is too large 

– what is the ideal window size? 



Improving accuracy 

• Recall our small motion assumption 

 

 

• Not exact, need higher order terms to do better 

 

• Results in polynomial root finding problem 

▫ Can be solved using Newton’s method 

 Also known as Newton-Raphson 

• Lucas-Kanade method does a single iteration of 
Newton’s method 

▫ Better results are obtained with more iterations 



Iterative Refinement 

• Iterative Lucas-Kanade Algorithm 
1. Estimate velocity at each pixel by solving Lucas-Kanade equations 

2. Warp H towards I using the estimated flow field 

 - use image warping techniques 

3. Repeat until convergence 

 



Revisiting the small motion assumption 

• Is this motion small enough? 

▫ Probably not—it’s much larger than one pixel (2nd order terms dominate) 

▫ How might we solve this problem? 



Reduce the resolution! 

 



image I image H 

Gaussian pyramid of image H Gaussian pyramid of image I 

image I image H u=10 pixels 

u=5 pixels 

u=2.5 pixels 

u=1.25 pixels 

Coarse-to-fine optical flow estimation 

 



image I image J 

Gaussian pyramid of image H Gaussian pyramid of image I 

image I image H 

Coarse-to-fine optical flow estimation 

 

run iterative L-K 

run iterative L-K 

warp & upsample 

. 

. 

. 



Optical Flow Results 
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Optical Flow Results 
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Robust methods 

• L-K minimizes a sum-of-squares error metric 

▫ least squares techniques overly sensitive to 
outliers 

quadratic truncated quadratic lorentzian 

Error metrics 



Robust optical flow 

• Robust Horn & Schunk 

 

• Robust Lucas-Kanade  

first image quadratic flow lorentzian flow detected outliers 

Black, M. J. and Anandan, P., A framework for the robust estimation of optical flow, Fourth International Conf. on 

Computer Vision (ICCV), 1993, pp. 231-236 

http://www.cs.washington.edu/education/courses/576/03sp/readings/black93.pdf   

http://www.cs.washington.edu/education/courses/576/03sp/readings/black93.pdf


Benchmarking optical flow algorithms 

• Middlebury flow page 

▫ http://vision.middlebury.edu/flow/ 

 

http://vision.middlebury.edu/flow/


Flow quality evaluation 



Flow quality evaluation 



Flow quality evaluation 

Middlebury flow page 

• http://vision.middlebury.edu/flow/ 

Ground Truth 

http://vision.middlebury.edu/flow/


Flow quality evaluation 

Middlebury flow page 

• http://vision.middlebury.edu/flow/ 

Ground Truth Lucas-Kanade flow 

http://vision.middlebury.edu/flow/


Flow quality evaluation 

Middlebury flow page 

• http://vision.middlebury.edu/flow/ 

Ground Truth Best-in-class alg (as of 2/26/12) 

http://vision.middlebury.edu/flow/


Discussion:  features vs. flow? 

• Features are better for: 

 

 

• Flow is better for: 



Advanced topics 

• Particles:  combining features and flow 

▫ Peter Sand et al. 

▫ http://rvsn.csail.mit.edu/pv/ 

 

• State-of-the-art feature tracking/SLAM 

▫ Georg Klein et al. 

▫ http://www.robots.ox.ac.uk/~gk/ 

 

http://rvsn.csail.mit.edu/pv/
http://www.robots.ox.ac.uk/~gk/

