ECG782: Multidimensional Digital Signal Processing

Motion

http://www.ee.unlv.edu/~b1morris/ecg782/

Outline

- Motion Analysis Motivation
- Differential Motion
- Optical Flow

Dense Motion Estimation

- Motion is extremely important in vision
- Biologically: motion indicates what is food and when to run away
 - We have evolved to be very sensitive to motion cues (peripheral vision)
- Alignment of images and motion estimation is widely used in computer vision
 - Optical flow
 - Motion compensation for video compression
 - Image stabilization
 - Video summarization

Biological Motion

• Even limited motion information is perceptually meaningful

<u>http://www.biomotionlab.ca/Demos/BMLwalker.html</u>

Motion Estimation

- Input: sequence of images
- Output: point correspondence
- Prior knowledge: decrease problem complexity
 - E.g. camera motion (static or mobile), time interval between images, etc.
- Motion detection
 - Simple problem to recognize any motion (security)
- Moving object detection and location
 - Feature correspondence: "Feature Tracking"
 - We will see more of this when we examine SIFT
 - Pixel (dense) correspondence: "Optical Flow"

Dynamic Image Analysis

- Motion description
 - Motion/velocity field velocity vector associated with corresponding keypoints
 - Optical flow dense correspondence that requires small time distance between images

- Motion assumptions
 - Maximum velocity object must be located in an circle defined by max velocity
 - Small acceleration limited acceleration
 - Common motion all object points move similarly
 - Mutual correspondence rigid objects with stable points

Figure 16.1: Object motion assumptions. (a) Maximum velocity (shaded circle represents area of possible object location). (b) Small acceleration (shaded circle represents area of possible object location at time t_2). (c) Common motion and mutual correspondence (rigid objects). © Cengage Learning 2015.

General Motion Analysis and Tracking

- Two interrelated components:
- Localization and representation of object of interest (target)
 - Bottom-up process: deal with appearance, orientation, illumination, scale, etc.
- Trajectory filtering and data association
 Top-down process: consider object dynamics to infer motion (motion models)

Differential Motion Analysis

- Simple motion detection possible with image subtraction
 - Requires a stationary camera and constant illumination
 - Also known as change detection
- Difference image
 - $\begin{array}{ll} & d(i,j) = \\ \begin{cases} 1 & |f_1(i,j) f_2(i,j)| > \epsilon \\ 0 & else \end{cases} \end{array}$
 - Binary image that highlights moving pixels
- What are the various "detections" from this method?
 - See book

Figure 16.2: Motion detection. (a) First frame of the image sequence. (b) Frame 2 of the sequence. (c) Last frame (frame 5). (d) Differential motion image constructed from image frames 1 and 2 (inverted to improve visualization). @ *M. Sonka 2015.*

Background Subtraction

- Motion is an important
 - Indicates an object of interest
- Background subtraction
 - Given an image (usually a video frame), identify the **foreground objects** in that image
 - Assume that foreground objects are moving
 - Typically, moving objects more interesting than the scene
 - Simplifies processing less processing cost and less room for error

Background Subtraction Example

Often used in traffic monitoring applications
 Vehicles are objects of interest (counting vehicles)

- Human action recognition (run, walk, jump, ...)
- Human-computer interaction ("human as interface")
- Object tracking

Requirements

- A reliable and robust background subtraction algorithm should handle:
 - Sudden or gradual illumination changes
 - Light turning on/off, cast shadows through a day
 - High frequency, repetitive motion in the background
 - Tree leaves blowing in the wind, flag, etc.
 - Long-term scene changes
 - A car parks in a parking spot

Basic Approach

- Estimate the background at time *t*
- Subtract the estimated background from the current input frame
- Apply a threshold, *Th*, to the absolute difference to get the foreground mask.

$$|I(x, y, t) - B(x, y, t)| > Th = F(x, y, t)$$

I(x, y, t)

B(x, y, t)

F(x, y, t)

How can we estimate the background?

Frame Differencing

- Background is estimated to be the previous frame
 - B(x, y, t) = I(x, y, t 1)
- Depending on the object structure, speed, frame rate, and global threshold, may or may not be useful
 - Usually not useful generates impartial objects and ghosts

Frame Differencing Example

Th = 25

Th = 100

Th = 50

Mean Filter

• Background is the mean of the previous *N* frames

•
$$B(x, y, t) = \frac{1}{N} \sum_{i=0}^{N-1} I(x, y, t-i)$$

 Produces a background that is a temporal smoothing or "blur"

• *N* = 10

Estimated Background

Mean Filter

• *N* = 20

Estimated Background

• *N* = 50

Estimated Background

Foreground Mask

Median Filter

- Assume the background is more likely to appear than foreground objects
 - $B(x, y, t) = median(I(x, y, t i)), i \in \{0, N 1\}$
- *N* = 10

Estimated Background

Median Filter

• *N* = 20

Estimated Background

• *N* = 50

Estimated Background

Foreground Mask

Frame Difference Advantages

- Extremely easy to implement and use
- All the described variants are pretty fast
- The background models are not constant
 - Background changes over time

Frame Differencing Shortcomings

- Accuracy depends on object speed/frame rate
- Mean and median require large memory
 - Can use a running average
 - $B(x, y, t) = (1 \alpha)B(x, y, t 1) + \alpha I(x, y, t)$
 - α is the learning rate
- Use of a global threshold
 - Same for all pixels and does not change with time
 - Will give poor results when the:
 - Background is bimodal
 - Scene has many slow moving objects (mean, median)
 - Objects are fast and low frame rate (frame diff)
 - Lighting conditions change with time

Improving Background Subtraction

- Adaptive Background Mixture Models for Real-Time Tracking
 - Chris Stauffer and W.E.L. Grimson
- "The" paper on background subtraction
 Over 4000 citations since 1999
 - Will read this and see more next time

Optical flow

• Dense pixel correspondence

Optical Flow

Dense pixel correspondence Hamburg Taxi Sequence

0	_															-															\top	
																														ħ		
					-			-		-					-							-								-	-	
20			·													·																
											1					1								1								
	F.		·				·		·		·		·	·		·	·	·	·							÷			·			
											,					,								,								
			·								÷		·			·		·														
																·																
40								-		-																					-	
	F.	·	·	·		•	·		·		·	·		·		·	·		·	2	2	ſ.	:	·								• •
						,					ı.					ı.		1	5	F	۴	ć	۴	۴	Ē	2						
		·	·	·	•	·	·		·		·	·	·	·		·	6	٢	5	٩	۴	6	7	۴	6	Ē		·	·	·	•	·
		·	·	·	•	·	·		·	•	·	·	·	·	•	·	ţ,	Ľ,	2	÷.	ř.	2	Ŀ,	2	4	Ľ.	2	;	·	•	•	·
		·	·	·	-	·	·	-	·	-	·	·		·	•	·	·	^	5	<u>``</u>	P.	2	P.	<u>r</u>	6	P.,	r	2	÷	÷	-	·
60	F	·	·	·	•	·	·		·	•	·	·	·	·	•	·	·	·	ç	π	r J	5	2	ŗ	2	2	2	2	т 	2	•	•
			,			,					ı			,		ı					ŗ.	5	5	5	5	P.	2	5	5	۴		,
		·	·	·	·	•	·	·	·	•	·	·	·	·	·	·	·	·	·	·	·	6	P	ŗ	6	r F	Å.	۲ -	ç	·	•	·
		·	·	·	•	لا ر		.*			÷.	•	đ.	·	·	٠	·	·	٠	·	·	·	r-	r	έ.	£		ŀ	<u>_</u>	:	·	·
80		•	·	·	\sim		<u>ار ا</u>	÷~	Υ'n	<u>~</u> ز	÷		,	Ċ,	÷.,	·	·	·	·	•		-	·	·			:	÷	r	75	-	·
	F.	·	·	\sim	87	۱ <u>۰</u>	Ť	ž.	÷-	ž	Ŷ.	Ż	7	Ż.,	7	t	·	·	·	·	·	·	·	·	·		λų.	m,	·	·	•	• •
			\sim	ı`	<u>ح و</u>	S	÷٦	÷.	47	Ť	÷	÷	÷	÷	1	7	÷.	Ċ.	s' .					ı		1		,	'			'
		·		÷	Y.	Y)	Ż	∻	Ż	÷	て	रे	Ż	Ž	- (<	7	75	<u>(*</u>	·	·	·	·	·	·	÷	•	·	·	·	•	·
			Ť	Ž	7	-?	Ę.	÷	Ž	ž	ζ.	7	÷	Ť	Ž	₹	⋌	77	ċ	s°.	•	•	·	,	•		•	•	•	•	•	•
100		·	2	52	÷	Ž	Ť	Ť	Ž	÷		7	Ť	ž	÷			- (7	' •	·	·	·	·	·	÷	•	·	·	·	•	·
100	Γ.	·		-	~	Y	7	÷	7	?	Ž	Ż	Ż	Ż	7	÷	Ż	2	7	· ·	1	·	·	·	·	•	•	•	·	•	•	•
		•	·	•	-	·	·	_		-7	7	7	-7	7	7	7	-7	~7	5	~ ~	÷	-	•		•		•	•		-	-	•
		•	·	·	•	·	·		·	•	'	•		-9	-7	-7	-		• •	•	•	·	·	,	•		•	•	•	•	•	•
			'			'					I.			'		1			,					ı		1			'			'
120	L	·	·	·	•	·	·		·	•	·	·	·	·	•	·	·	·	·	·	·	·	·	·	·		•	·	·	•	•	•
120	Γ	•	•	•	•	•	•		•	•	'	•	•	•	•	'	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•
	L	•	•	•	•	i	•		•	•	i	•	•	•	•	i	•	•	•	•	i	•	•	•	•	i	•	•	•	•	i	•
	п			20						40					50					80				100					17.0			

Translational Alignment

- Motion estimation between images requires a error metric for comparison
- Sum of squared differences (SSD)
 - $E_{SSD}(u) = \sum_{i} [I_1(x_i + u) I_0(x_i)]^2 = \sum_{i} e_i^2$
 - u = (u, v) is a displacement vector (can be subpixel)
 - e_i residual error
- Brightness constancy constraint
 - Assumption that that corresponding pixels will retain the same value in two images
 - Objects tend to maintain the perceived brightness under varying illumination conditions [Horn 1974]
- Color images processed by channels and summed or converted to colorspace that considers only luminance

SSD Improvements

- As we have seen, SSD is the simplest approach and can be improved
- Robust error metrics
 - L₁ norm (sum absolute differences)
 - Better outlier resilience
- Spatially varying weights
 - Weighted SSD to weight contribution of each pixel during matching
 - Ignore certain parts of the image (e.g. foreground), down-weight objects during images stabilization
- Bias and gain
 - Normalize exposure between images
 - Address brightness constancy

Correlation

- Instead of minimizing pixel differences, maximize correlation
- Normalized cross-correlation

$$E_{\rm NCC}(u) = \frac{\sum_{i} [I_0(x_i) - \overline{I_0}] [I_1(x_i + u) - \overline{I_1}]}{\sqrt{\sum_{i} [I_0(x_i) - \overline{I_0}]^2} \sqrt{\sum_{i} [I_1(x_i + u) - \overline{I_1}]^2}},$$

$$\overline{I_0} = \frac{1}{N} \sum_i I_0(x_i) \text{ and}$$
$$\overline{I_1} = \frac{1}{N} \sum_i I_1(x_i + u)$$

- Normalize by the patch intensities
- Value is between [-1, 1] which makes it easy to use results (e.g. threshold to find matching pixels)

- How to estimate pixel motion from image H to image I?
 - Solve pixel correspondence problem
 - given a pixel in H, look for nearby pixels of the same color in I

Key assumptions

- color constancy: a point in H looks the same in I
 - For grayscale images, this is **brightness constancy**
- small motion: points do not move very far

This is called the **optical flow** problem

- Let's look at these constraints more closely
 - brightness constancy: Q: what's the equation?

•
$$H(x,y) = I(x+u,y+v)$$

• small motion: (u and v are less than 1 pixel)

- suppose we take the Taylor series expansion of I:

 $I(x+u, y+v) = I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \text{higher order terms}$ $\approx I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v$

Optical flow equation

Combining these two equations

$$0 = I(x + u, y + v) - H(x, y)$$

$$\approx I(x, y) + I_x u + I_y v - H(x, y)$$

$$\approx (I(x, y) - H(x, y)) + I_x u + I_y v$$

$$\approx I_t + I_x u + I_y v$$

$$\approx I_t + \nabla I \cdot [u \ v]$$

In the limit as u and v go to zero, this becomes exact

$$0 = I_t + \nabla I \cdot \begin{bmatrix} \frac{\partial x}{\partial t} & \frac{\partial y}{\partial t} \end{bmatrix}$$

shorthand: $I_x = \frac{\partial I}{\partial x}$

Optical flow equation $0 = I_t + \nabla I \cdot [u \ v]$

- Q: how many unknowns and equations per pixel?
 - *u* and *v* are unknown 1 equation, 2 unknowns
- Intuitively, what does this constraint mean?
 - The component of the flow in the gradient direction is determined
 - The component of the flow parallel to an edge is unknown
- This explains the Barber Pole illusion
 - <u>http://www.sandlotscience.com/A</u> <u>mbiguous/Barberpole_Illusion.ht</u> <u>m</u>

If (u, v) satisfies the equation, so does (u + u', v + v') if $\nabla I \cdot [u' v'] = 0$

Solving the aperture problem

- Basic idea: assume motion field is smooth
- Horn & Schunk: add smoothness term $\int \int (I_t + \nabla I \cdot [u \ v])^2 + \lambda^2 (\|\nabla u\|^2 + \|\nabla v\|^2) \ dx \ dy$
- Lucas & Kanade: assume locally constant motion
 pretend the pixel's neighbors have the same (u,v)

- Many other methods exist. Here's an overview:
 - S. Baker, M. Black, J. P. Lewis, S. Roth, D. Scharstein, and R. Szeliski. *A database and evaluation methodology for optical flow*. In Proc. ICCV, 2007
 - <u>http://vision.middlebury.edu/flow/</u>

Lucas-Kanade flow

- How to get more equations for a pixel?
 - Basic idea: impose additional constraints
 - most common is to assume that the flow field is smooth locally
 - one method: pretend the pixel's neighbors have the same (u,v)
 - If we use a 5x5 window, that gives us 25 equations per pixel!

 $0 = I_t(\mathbf{p_i}) + \nabla I(\mathbf{p_i}) \cdot [u \ v]$

$$\begin{bmatrix} I_x(\mathbf{p}_1) & I_y(\mathbf{p}_1) \\ I_x(\mathbf{p}_2) & I_y(\mathbf{p}_2) \\ \vdots & \vdots \\ I_x(\mathbf{p}_{25}) & I_y(\mathbf{p}_{25}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p}_1) \\ I_t(\mathbf{p}_2) \\ \vdots \\ I_t(\mathbf{p}_{25}) \end{bmatrix}$$
$$\begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p}_1) \\ I_t(\mathbf{p}_2) \\ \vdots \\ I_t(\mathbf{p}_{25}) \end{bmatrix}$$

RGB version

- How to get more equations for a pixel?
 - Basic idea: impose additional constraints
 - most common is to assume that the flow field is smooth locally
 - one method: pretend the pixel's neighbors have the same (u,v)
 - If we use a 5x5 window, that gives us 25*3 equations per pixel!

$$0 = I_t(\mathbf{p_i})[0, 1, 2] + \nabla I(\mathbf{p_i})[0, 1, 2] \cdot [u \ v]$$

$$\begin{bmatrix} I_{x}(\mathbf{p}_{1})[0] & I_{y}(\mathbf{p}_{1})[0] \\ I_{x}(\mathbf{p}_{1})[1] & I_{y}(\mathbf{p}_{1})[1] \\ I_{x}(\mathbf{p}_{1})[2] & I_{y}(\mathbf{p}_{1})[2] \\ \vdots & \vdots \\ I_{x}(\mathbf{p}_{25})[0] & I_{y}(\mathbf{p}_{25})[0] \\ I_{x}(\mathbf{p}_{25})[1] & I_{y}(\mathbf{p}_{25})[1] \\ I_{x}(\mathbf{p}_{25})[2] & I_{y}(\mathbf{p}_{25})[2] \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_{t}(\mathbf{p}_{1})[0] \\ I_{t}(\mathbf{p}_{1})[2] \\ \vdots \\ I_{t}(\mathbf{p}_{25})[0] \\ I_{t}(\mathbf{p}_{25})[0] \\ I_{t}(\mathbf{p}_{25})[1] \\ I_{t}(\mathbf{p}_{25})[2] \end{bmatrix}$$

Lucas-Kanade flow

Prob: we have more equations than unknowns

$$\begin{array}{ccc} A & d = b \\ _{25\times2} & _{2\times1} & _{25\times1} \end{array} \longrightarrow \text{minimize } \|Ad - b\|^2$$

Solution: solve least squares problem

• minimum least squares solution given by solution (in d) of:

$$(A^T A) \underset{2 \times 2}{d} = A^T b$$

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$
$$A^T A \qquad \qquad A^T b$$

- The summations are over all pixels in the K x K window
- This technique was first proposed by Lucas & Kanade (1981)

Conditions for solvability

• Optimal (u, v) satisfies Lucas-Kanade equation

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$
$$A^T A \qquad \qquad A^T b$$

- When is This Solvable?
 - **A^TA** should be invertible
 - **A^TA** should not be too small due to noise
 - eigenvalues l_1 and l_2 of $A^T A$ should not be too small
 - **A^TA** should be well-conditioned
 - l_1/l_2 should not be too large (l_1 = larger eigenvalue)
- Does this look familiar?
 - **A^TA** is the Harris matrix

Observation

• This is a two image problem BUT

- Can measure sensitivity by just looking at one of the images!
- This tells us which pixels are easy to track, which are hard
 - very useful for feature tracking...

Errors in Lucas-Kanade

- What are the potential causes of errors in this procedure?
 - Suppose A^TA is easily invertible
 - Suppose there is not much noise in the image
- When our assumptions are violated
 - Brightness constancy is **not** satisfied
 - The motion is **not** small
 - A point does **not** move like its neighbors
 - window size is too large
 - what is the ideal window size?

Improving accuracy

- Recall our small motion assumption 0 = I(x + u, y + v) - H(x, y) $\approx I(x, y) + I_x u + I_y v - H(x, y)$
- Not exact, need higher order terms to do better = $I(x, y) + I_x u + I_y v$ + higher order terms - H(x, y)
- Results in polynomial root finding problem
 - Can be solved using Newton's method
 - Also known as Newton-Raphson
- Lucas-Kanade method does a single iteration of Newton's method
 - Better results are obtained with more iterations

Iterative Refinement

• Iterative Lucas-Kanade Algorithm

- 1. Estimate velocity at each pixel by solving Lucas-Kanade equations
- 2. Warp H towards I using the estimated flow field
 - - use image warping techniques
- 3. Repeat until convergence

Revisiting the small motion assumption

- Is this motion small enough?
 - Probably not—it's much larger than one pixel (2nd order terms dominate)
 - How might we solve this problem?

Reduce the resolution!

Coarse-to-fine optical flow estimation

Gaussian pyramid of image H

Gaussian pyramid of image I

Coarse-to-fine optical flow estimation

Gaussian pyramid of image H

Gaussian pyramid of image I

Optical Flow Results

Optical Flow Results

49

Robust methods

 L-K minimizes a sum-of-squares error metric
 least squares techniques overly sensitive to outliers

 \mathbf{O}

Robust optical flow

Robust Horn & Schunk ∫∫ρ(It+∇I·[u v])+λ²ρ(||∇u||²+||∇v||²) dx dy
Robust Lucas-Kanade ∑ρ(It+∇I·[u v])

first image quadratic flow

 $(x,y) \in W$

lorentzian flow

detected outliers

Black, M. J. and Anandan, P., A framework for the robust estimation of optical flow, *Fourth International Conf. on Computer Vision* (ICCV), 1993, pp. 231-236 http://www.cs.washington.edu/education/courses/576/03sp/readings/black93.pdf

Benchmarking optical flow algorithms

- Middlebury flow page
 - <u>http://vision.middlebury.edu/flow/</u>

Middlebury flow page

http://vision.middlebury.edu/flow/

Ground Truth

Middlebury flow page

• http://vision.middlebury.edu/flow/

Lucas-Kanade flow

Ground Truth

Middlebury flow page

http://vision.middlebury.edu/flow/

Best-in-class alg (as of 2/26/12)

Ground Truth

Discussion: features vs. flow?

• Features are better for:

• Flow is better for:

Advanced topics

- Particles: combining features and flow
 - Peter Sand et al.
 - <u>http://rvsn.csail.mit.edu/pv/</u>
- State-of-the-art feature tracking/SLAM
 Georg Klein et al.
 - http://www.robots.ox.ac.uk/~gk/