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• Basic idea: slide a window across image and 
evaluate a face model at every location 
 
 
 
 
 
 
 
 
 

Face Detection 



Challenges 

• Sliding window detector must evaluate tens of 
thousands of locations/scale combinations 
▫ Computationally expensive  worse for complex 

models 

• Faces are rare  usually only a few per image 
▫ 1M pixel image has 1M candidate face locations 

(ignoring scale) 
▫ For computational efficiency, need to minimize 

time spent evaluating non-face windows 
▫ False positive rate (mistakenly detecting a face) 

must be very low (< 10−6) otherwise the system 
will have false faces in every image tested 
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Contributions of Viola/Jones Detector 

• Robust 

▫ Very high detection rate and low false positive rate 

• Real-time 

▫ Training is slow, but detection very fast 

 

• Key Ideas 

▫ Integral images for fast feature evaluation 

▫ Boosting for intelligent feature selection 

▫ Attentional cascade for fast rejection of non-face 
windows 
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Integral Image Features 
• Want to use simple features 

rather than pixels to encode 
domain knowledge 

 

• Haar-like features 

▫ Encode differences between 
two, three, or four rectangles 

▫ Reflect similar properties of a 
face  

 Eyes darker than upper 
cheeks 

 Nose lighter than eyes 

 

• Believe that these simple 
intensity differences can 
encode face structure 
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Rectangular Features 
• Simple feature 

▫ 𝑣𝑎𝑙 =
∑ 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑏𝑙𝑎𝑐𝑘 𝑎𝑟𝑒𝑎 −
∑ 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑤ℎ𝑖𝑡𝑒 𝑎𝑟𝑒𝑎  

• Computed over two-, three-, 
and four-rectangles 

▫ Each feature is represented 
by a specific sub-window 
location and size 

 

• Over 180k features for a 
24 × 24 image patch  

▫ Lots of computation 
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Integral Image 
• Need efficient method to 

compute these rectangle 
differences 

• Define the integral image as 
the sum of all pixels above and 
left of pixel (𝑥, 𝑦) 

 

 

 

▫ Can be computed in a single 
pass over the image 

• Area of a rectangle from four 
array references 

▫ 𝐷 = 𝑖𝑖 4 + 𝑖𝑖 1 − 𝑖𝑖 2 −
𝑖𝑖 3  

▫ Constant time computation 

• Integral image 

 

 

 

 

 

 

 

 

• Rectangle calculation 
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𝑖𝑖 𝑥, 𝑦 =  𝑖(𝑥′, 𝑦′)

𝑥′<𝑥,𝑦′<𝑦
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Boosted Feature Selection 

• There are many possible features to compute 

▫ Individually, each is a “weak” classifier 

▫ Computationally expensive to compute all 

• Not all will be useful for face detection 

 

 

 

 

• Use AdaBoost algorithm to intelligent select a 
small subset of features which can be combined 
to form an effective “strong” classifier 
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Relevant feature Irrelevant feature 



AdaBoost (Adaptive Boost) Algorithm 

• Adaptive Boost algorithm 

▫ Iterative process to build a complex classifier in 
efficient manner 

• Construct a “strong” classifier as a linear 
combination of weighted “weak” classifiers 

▫ Adaptive: subsequent weak classifiers are 
designed to favor misclassifications of previous 
ones 
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Strong  
classifier 

Weak classifier 

Weight Image 



Implemented Algorithm 
• Initialize 

▫ All training samples weighted 
equally 

• Repeat for each training round 
▫ Select most effective weak 

classifier (single Haar-like 
feature) 
 Based on weighted eror 

▫ Update training weights to 
emphasize incorrectly 
classified examples 
 Next weak classifier will 

focus on “harder” examples 

• Construct final strong 
classifier as linear 
combination of weak learners  
▫ Weighted according to 

accuracy 
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 AdaBoost starts with a uniform 
distribution of “weights” over training 
examples.  

 

 Select the classifier with the lowest 
weighted error (i.e. a “weak” classifier) 

 

 Increase the weights on the training 
examples that were misclassified. 

 

 (Repeat) 

 At the end, carefully make a linear 
combination of the weak classifiers 
obtained at all iterations. 

AdaBoost example 

 1 1 1

strong

1
1 ( ) ( )

( ) 2

0 otherwise

n n nh h
h


      

 



x x
x

Slide taken from a presentation by Qing Chen, Discover Lab, University of Ottawa 



Boosted Face Detector 
• Build effective 200-feature 

classifier 

 

• 95% detection rate 

• 0.14 × 10−3 FPR (1 in 14084 
windows) 

• 0.7 sec / frame 

 

• Not yet real-time 
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Attentional Cascade 
• Boosted strong classifier is still 

too slow 
▫ Spends equal amount of time 

on both face and non-face 
image patches 

▫ Need to minimize time spent 
on non-face patches 

 

• Use cascade structure of 
gradually more complex 
classifiers 
▫ Early stages use only a few 

features but can filter out 
many non-face patches 

▫ Later stages solves “harder” 
problems 

▫ Face detected after going 
through all stages 
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Attentional Cascade 
• Much fewer features computed 

per sub-window 

▫ Dramatic speed-up in 
computation 

• See IJCV paper for details  

▫ #stages and #features/stage 

 

• Chain classifiers that are 
progressively more complex 
and have lower false positive 
rates 
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Face Cascade Example 

 

 

 

 

 

 

 

 

 

• Visualized 

▫ https://vimeo.com/12774628 
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Step 1 Step 4 Step N … … 

https://vimeo.com/12774628
https://vimeo.com/12774628
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Results 
• Training data 

▫ 4916 labeled faces 

▫ 9544 non-face images  350M 
non-face sub-windows 

▫ 24 × 24 pixel size 

• Cascade layout 
▫ 38 layer cascade classifier 

▫ 6061 total features 

▫ S1: 1, S2: 10, S3: 25, S4: 25, S5: 
50, … 

• Evaluation  
▫ Avg. 10/6061 features 

evaluated per sub-window 

▫ 0.67 sec/image  
 700 MHz PIII  

 384 × 388 image size 

 With various scale 

▫ Much faster than existing 
algorithms 
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Similar performance between 
cascade and big classifier, but 
cascade is ~10x faster 



MIT+CMU Face Test 
• Real-world face test set 

▫ 130 images with 507 frontal 
faces 
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Summary 

• Pros 
▫ Extremely fast feature computation 
▫ Efficient feature selection 
▫ Scale and location invariant detector 

 Scale features not image (e.g. image pyramid) 

▫ Generic detection scheme  can train other 
objects 

• Cons 
▫ Detector only works on frontal faces (< 45∘) 
▫ Sensitive to lighting conditions 
▫ Multiple detections to same face due to 

overlapping sub-windows 
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Quantifying Performance 
• Confusion matrix-based metrics 

▫ Binary {1,0} classification tasks 
 
 
 
 
 
 

 
 

• True positives (TP) - # correct 
matches 

• False negatives (FN) - # of 
missed matches 

• False positives (FP) - # of 
incorrect matches 

• True negatives (TN) - # of non-
matches that are correctly 
rejected 

• A wide range of metrics can be 
defined 
 

• True positive rate (TPR) 
(sensitivity) 

▫ 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
=
𝑇𝑃

𝑃
 

▫ Document retrieval  recall – 
fraction of relevant documents 
found 

• False positive rate (FPR) 

▫ 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
=
𝐹𝑃

𝑁
 

• Positive predicted value (PPV) 

▫ 𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
=
𝑇𝑃

𝑃′
 

▫ Document retrieval  
precision – number of relevant 
documents are returned  

• Accuracy (ACC) 

▫ 𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑃+𝑁
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Receiver Operating Characteristic (ROC) 

• Evaluate matching performance based on threshold 
▫ Examine all thresholds 𝜃 to map out performance 

curve 
• Best performance in upper left corner 

▫ Area under the curve (AUC) is a ROC performance metric 
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Scale Invariant Feature Transform (SIFT) 

• One of the most popular 
feature descriptors [Lowe 
2004] 

▫ Many variants have been 
developed 

 

• Descriptor is invariant to 
uniform scaling, orientation, 
and partially invariant to 
affine distortion and 
illumination changes 

 

• Used for matching between 
images 
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SIFT Steps I 
• Identify keypoints 

▫ Use difference of Gaussians for 
scale space representation 

▫ Identify “stable” regions 
 Location, scale, orientation 

• Compute gradient 16 × 16 grid 
around keypoint 
▫ Keep orientation and down-weight 

magnitude by a Gaussian fall off 
function 
 Avoid sudden changes in 

descriptor with small position 
changes 

 Give less emphasis to gradients far 
from center 

• Form a gradient orientation 
histogram in each 4 × 4 quadrant 
▫ 8 bin orientations 
▫ Trilinear interpolation of gradient 

magnitude to neighboring 
orientation bins 

▫ Gives 4 pixel shift robustness and 
orientation invariance 
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SIFT Steps II 
• Final descriptor is 4 × 4 × 8 =
128 dimension vector 
▫ Normalize vector to unit 

length for contrast/gain 
invariance 

▫ Values clipped to 0.2 and 
renormalized to remove 
emphasis of large gradients 
(orientation is most 
important) 

• Descriptor used for object 
recognition 
▫ Match keypoints  

▫ Hough transform used to 
“vote” for 2D location, scale, 
orientation 

▫ Estimate affine 
transformation 
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Other SIFT Variants 

• Speeded up robust features (SURF) [Bay 2008]  

▫ Faster computation by using integral images (Szeliski 
3.2.3 and later for object detection) 

▫ Popularized because it is free for non-commercial use 

 SIFT is patented 

• OpenCV implements many  

▫ FAST 

▫ ORB 

▫ BRISK 

▫ FREAK 

• OpenCV is a standard in vision research community 

▫ Emphasis on fast descriptors for real-time applications 

32 



Histogram of Oriented Gradients 

• Want descriptor for a full object rather than 
keypoints 
▫ Geared toward detection/classification rather than 

matching 

• Designed by Dalal and Triggs for pedestrian 
detection 
▫ Must handle various pose, variable appearance, 

complex background, and unconstrained illumination 
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HOG Steps I 
• Compute horizontal and 

vertical gradients (with no 
smoothing) 

• Compute gradient orientation 
and magnitude  

• Divide image into 16 × 16 
blocks of 50% overlap 
▫ For 64 × 128 image  
7 × 15 = 105 blocks 

▫ Each block consists of 2 ×
2 cells of size 8 × 8 pixels 

• Histogram of gradient 
orientation of cells 
▫ 9 bins between 0-180 degrees 

▫ Bin vote is gradient 
magnitude 

▫ Interpolate vote between bins 
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HOG Steps II 
• Group cells into large blocks 

and normalize 

• Concatenate histograms into 
large feature vector 

▫ #features = (15*7)*9*4 = 
3780 

 15*7 blocks 

 9 orientation bins 

 4 cells per block 

• Use SVM to train classifier 

▫ Unique feature signature for 
different objects 

▫ Computed on dense grids at 
single scale and without 
orientation alignment 
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HOG Overview 

• Note: emphasizes contours/silhouette of object 
so robust to illumination 
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SIFT vs HOG 
• SIFT 

▫ 128 dimensional vector 

▫ 16x16 window 

▫ 4x4 sub-window (16 total) 

▫ 8 bin histogram (360 degree) 

 

 

 

 

 

▫ Computed at sparse, scale-
invariant keypoints of image 

▫ Rotated and aligned for 
orientation 

▫ Good for matching 

• HOG 

▫ 3780 dimensional vector 

▫ 64x128 window 

▫ 16x16 blocks with overlap 

▫ Each block in 2x2 cells of 8x8 
pixels 

▫ 9 bin histogram (180 degree) 

 

 

▫ Appears similar in spirit to 
SIFT 

▫ Computed at dense grid at 
single scale  

▫ No orientation alignment 

▫ Good for detection 
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Powerful orientation-based descriptors 
Robust to changes in brightness 



Thank You 

• Questions? 
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