
http://www.ee.unlv.edu/~b1morris/ecg782/

Rapid Object Detection using a

Boosted Cascade of Simple

Features

Paul Viola and Michael Jones

CVPR 2001

Brendan Morris

Outline

• Motivation

• Contributions

• Integral Image Features

• Boosted Feature Selection

• Attentional Cascade

• Results

• Summary

• Other Object Detection

▫ Scale Invariant Feature Transform (SIFT)

▫ Histogram of Oriented Gradients (HOG)

2

• Basic idea: slide a window across image and
evaluate a face model at every location

Face Detection

Challenges

• Sliding window detector must evaluate tens of
thousands of locations/scale combinations
▫ Computationally expensive worse for complex

models

• Faces are rare usually only a few per image
▫ 1M pixel image has 1M candidate face locations

(ignoring scale)
▫ For computational efficiency, need to minimize

time spent evaluating non-face windows
▫ False positive rate (mistakenly detecting a face)

must be very low (< 10−6) otherwise the system
will have false faces in every image tested

4

Outline

• Motivation

• Contributions

• Integral Image Features

• Boosted Feature Selection

• Attentional Cascade

• Results

• Summary

• Other Object Detection

▫ Scale Invariant Feature Transform (SIFT)

▫ Histogram of Oriented Gradients (HOG)

5

Contributions of Viola/Jones Detector

• Robust

▫ Very high detection rate and low false positive rate

• Real-time

▫ Training is slow, but detection very fast

• Key Ideas

▫ Integral images for fast feature evaluation

▫ Boosting for intelligent feature selection

▫ Attentional cascade for fast rejection of non-face
windows

6

Outline

• Motivation

• Contributions

• Integral Image Features

• Boosted Feature Selection

• Attentional Cascade

• Results

• Summary

• Other Object Detection

▫ Scale Invariant Feature Transform (SIFT)

▫ Histogram of Oriented Gradients (HOG)

7

Integral Image Features
• Want to use simple features

rather than pixels to encode
domain knowledge

• Haar-like features

▫ Encode differences between
two, three, or four rectangles

▫ Reflect similar properties of a
face

 Eyes darker than upper
cheeks

 Nose lighter than eyes

• Believe that these simple
intensity differences can
encode face structure

8

Rectangular Features
• Simple feature

▫ 𝑣𝑎𝑙 =
∑ 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑏𝑙𝑎𝑐𝑘 𝑎𝑟𝑒𝑎 −
∑ 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑤ℎ𝑖𝑡𝑒 𝑎𝑟𝑒𝑎

• Computed over two-, three-,
and four-rectangles

▫ Each feature is represented
by a specific sub-window
location and size

• Over 180k features for a
24 × 24 image patch

▫ Lots of computation

9

Integral Image
• Need efficient method to

compute these rectangle
differences

• Define the integral image as
the sum of all pixels above and
left of pixel (𝑥, 𝑦)

▫ Can be computed in a single
pass over the image

• Area of a rectangle from four
array references

▫ 𝐷 = 𝑖𝑖 4 + 𝑖𝑖 1 − 𝑖𝑖 2 −
𝑖𝑖 3

▫ Constant time computation

• Integral image

• Rectangle calculation

10

𝑖𝑖 𝑥, 𝑦 = 𝑖(𝑥′, 𝑦′)

𝑥′<𝑥,𝑦′<𝑦

Outline

• Motivation

• Contributions

• Integral Image Features

• Boosted Feature Selection

• Attentional Cascade

• Results

• Summary

• Other Object Detection

▫ Scale Invariant Feature Transform (SIFT)

▫ Histogram of Oriented Gradients (HOG)

11

Boosted Feature Selection

• There are many possible features to compute

▫ Individually, each is a “weak” classifier

▫ Computationally expensive to compute all

• Not all will be useful for face detection

• Use AdaBoost algorithm to intelligent select a
small subset of features which can be combined
to form an effective “strong” classifier

12

Relevant feature Irrelevant feature

AdaBoost (Adaptive Boost) Algorithm

• Adaptive Boost algorithm

▫ Iterative process to build a complex classifier in
efficient manner

• Construct a “strong” classifier as a linear
combination of weighted “weak” classifiers

▫ Adaptive: subsequent weak classifiers are
designed to favor misclassifications of previous
ones

13

Strong
classifier

Weak classifier

Weight Image

Implemented Algorithm
• Initialize

▫ All training samples weighted
equally

• Repeat for each training round
▫ Select most effective weak

classifier (single Haar-like
feature)
 Based on weighted eror

▫ Update training weights to
emphasize incorrectly
classified examples
 Next weak classifier will

focus on “harder” examples

• Construct final strong
classifier as linear
combination of weak learners
▫ Weighted according to

accuracy

14

 AdaBoost starts with a uniform
distribution of “weights” over training
examples.

 Select the classifier with the lowest
weighted error (i.e. a “weak” classifier)

 Increase the weights on the training
examples that were misclassified.

 (Repeat)

 At the end, carefully make a linear
combination of the weak classifiers
obtained at all iterations.

AdaBoost example

 1 1 1

strong

1
1 () ()

() 2

0 otherwise

n n nh h
h

x x
x

Slide taken from a presentation by Qing Chen, Discover Lab, University of Ottawa

Boosted Face Detector
• Build effective 200-feature

classifier

• 95% detection rate

• 0.14 × 10−3 FPR (1 in 14084
windows)

• 0.7 sec / frame

• Not yet real-time

16

Outline

• Motivation

• Contributions

• Integral Image Features

• Boosted Feature Selection

• Attentional Cascade

• Results

• Summary

• Other Object Detection

▫ Scale Invariant Feature Transform (SIFT)

▫ Histogram of Oriented Gradients (HOG)

17

Attentional Cascade
• Boosted strong classifier is still

too slow
▫ Spends equal amount of time

on both face and non-face
image patches

▫ Need to minimize time spent
on non-face patches

• Use cascade structure of
gradually more complex
classifiers
▫ Early stages use only a few

features but can filter out
many non-face patches

▫ Later stages solves “harder”
problems

▫ Face detected after going
through all stages

18

Attentional Cascade
• Much fewer features computed

per sub-window

▫ Dramatic speed-up in
computation

• See IJCV paper for details

▫ #stages and #features/stage

• Chain classifiers that are
progressively more complex
and have lower false positive
rates

19

FACE IMAGE

SUB-WINDOW
Classifier 1

T
Classifier 3

T

F

NON-FACE

T
Classifier 2

T

F

NON-FACE

F

NON-FACE

vs false neg determined by

% False Pos

%
 D

et
ec

ti
o
n

0 50

0

1
0
0

ROC

Face Cascade Example

• Visualized

▫ https://vimeo.com/12774628

20

Step 1 Step 4 Step N … …

https://vimeo.com/12774628
https://vimeo.com/12774628

Outline

• Motivation

• Contributions

• Integral Image Features

• Boosted Feature Selection

• Attentional Cascade

• Results

• Summary

• Other Object Detection

▫ Scale Invariant Feature Transform (SIFT)

▫ Histogram of Oriented Gradients (HOG)

21

Results
• Training data

▫ 4916 labeled faces

▫ 9544 non-face images 350M
non-face sub-windows

▫ 24 × 24 pixel size

• Cascade layout
▫ 38 layer cascade classifier

▫ 6061 total features

▫ S1: 1, S2: 10, S3: 25, S4: 25, S5:
50, …

• Evaluation
▫ Avg. 10/6061 features

evaluated per sub-window

▫ 0.67 sec/image
 700 MHz PIII

 384 × 388 image size

 With various scale

▫ Much faster than existing
algorithms

22

Similar performance between
cascade and big classifier, but
cascade is ~10x faster

MIT+CMU Face Test
• Real-world face test set

▫ 130 images with 507 frontal
faces

23

Outline

• Motivation

• Contributions

• Integral Image Features

• Boosted Feature Selection

• Attentional Cascade

• Results

• Summary

• Other Object Detection

▫ Scale Invariant Feature Transform (SIFT)

▫ Histogram of Oriented Gradients (HOG)

24

Summary

• Pros
▫ Extremely fast feature computation
▫ Efficient feature selection
▫ Scale and location invariant detector

 Scale features not image (e.g. image pyramid)

▫ Generic detection scheme can train other
objects

• Cons
▫ Detector only works on frontal faces (< 45∘)
▫ Sensitive to lighting conditions
▫ Multiple detections to same face due to

overlapping sub-windows

25

Outline

• Motivation

• Contributions

• Integral Image Features

• Boosted Feature Selection

• Attentional Cascade

• Results

• Summary

• Other Object Detection

▫ Scale Invariant Feature Transform (SIFT)

▫ Histogram of Oriented Gradients (HOG)

26

Quantifying Performance
• Confusion matrix-based metrics

▫ Binary {1,0} classification tasks

• True positives (TP) - # correct
matches

• False negatives (FN) - # of
missed matches

• False positives (FP) - # of
incorrect matches

• True negatives (TN) - # of non-
matches that are correctly
rejected

• A wide range of metrics can be
defined

• True positive rate (TPR)
(sensitivity)

▫ 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
=
𝑇𝑃

𝑃

▫ Document retrieval recall –
fraction of relevant documents
found

• False positive rate (FPR)

▫ 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
=
𝐹𝑃

𝑁

• Positive predicted value (PPV)

▫ 𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
=
𝑇𝑃

𝑃′

▫ Document retrieval
precision – number of relevant
documents are returned

• Accuracy (ACC)

▫ 𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑃+𝑁

27

actual value

p
re

d
ic

te
d

o

u
tc

o
m

e

p n total

p’ TP FP P’

n’ FN TN N’

total P N

http://en.wikipedia.org/wiki/Receiver_operating_characteristic
http://en.wikipedia.org/wiki/Receiver_operating_characteristic

Receiver Operating Characteristic (ROC)

• Evaluate matching performance based on threshold
▫ Examine all thresholds 𝜃 to map out performance

curve
• Best performance in upper left corner

▫ Area under the curve (AUC) is a ROC performance metric

28

Scale Invariant Feature Transform (SIFT)

• One of the most popular
feature descriptors [Lowe
2004]

▫ Many variants have been
developed

• Descriptor is invariant to
uniform scaling, orientation,
and partially invariant to
affine distortion and
illumination changes

• Used for matching between
images

29

SIFT Steps I
• Identify keypoints

▫ Use difference of Gaussians for
scale space representation

▫ Identify “stable” regions
 Location, scale, orientation

• Compute gradient 16 × 16 grid
around keypoint
▫ Keep orientation and down-weight

magnitude by a Gaussian fall off
function
 Avoid sudden changes in

descriptor with small position
changes

 Give less emphasis to gradients far
from center

• Form a gradient orientation
histogram in each 4 × 4 quadrant
▫ 8 bin orientations
▫ Trilinear interpolation of gradient

magnitude to neighboring
orientation bins

▫ Gives 4 pixel shift robustness and
orientation invariance

30

SIFT Steps II
• Final descriptor is 4 × 4 × 8 =
128 dimension vector
▫ Normalize vector to unit

length for contrast/gain
invariance

▫ Values clipped to 0.2 and
renormalized to remove
emphasis of large gradients
(orientation is most
important)

• Descriptor used for object
recognition
▫ Match keypoints

▫ Hough transform used to
“vote” for 2D location, scale,
orientation

▫ Estimate affine
transformation

31

Other SIFT Variants

• Speeded up robust features (SURF) [Bay 2008]

▫ Faster computation by using integral images (Szeliski
3.2.3 and later for object detection)

▫ Popularized because it is free for non-commercial use

 SIFT is patented

• OpenCV implements many

▫ FAST

▫ ORB

▫ BRISK

▫ FREAK

• OpenCV is a standard in vision research community

▫ Emphasis on fast descriptors for real-time applications

32

Histogram of Oriented Gradients

• Want descriptor for a full object rather than
keypoints
▫ Geared toward detection/classification rather than

matching

• Designed by Dalal and Triggs for pedestrian
detection
▫ Must handle various pose, variable appearance,

complex background, and unconstrained illumination

33

HOG Steps I
• Compute horizontal and

vertical gradients (with no
smoothing)

• Compute gradient orientation
and magnitude

• Divide image into 16 × 16
blocks of 50% overlap
▫ For 64 × 128 image
7 × 15 = 105 blocks

▫ Each block consists of 2 ×
2 cells of size 8 × 8 pixels

• Histogram of gradient
orientation of cells
▫ 9 bins between 0-180 degrees

▫ Bin vote is gradient
magnitude

▫ Interpolate vote between bins

34

HOG Steps II
• Group cells into large blocks

and normalize

• Concatenate histograms into
large feature vector

▫ #features = (15*7)*9*4 =
3780

 15*7 blocks

 9 orientation bins

 4 cells per block

• Use SVM to train classifier

▫ Unique feature signature for
different objects

▫ Computed on dense grids at
single scale and without
orientation alignment

35

HOG Overview

• Note: emphasizes contours/silhouette of object
so robust to illumination

36

SIFT vs HOG
• SIFT

▫ 128 dimensional vector

▫ 16x16 window

▫ 4x4 sub-window (16 total)

▫ 8 bin histogram (360 degree)

▫ Computed at sparse, scale-
invariant keypoints of image

▫ Rotated and aligned for
orientation

▫ Good for matching

• HOG

▫ 3780 dimensional vector

▫ 64x128 window

▫ 16x16 blocks with overlap

▫ Each block in 2x2 cells of 8x8
pixels

▫ 9 bin histogram (180 degree)

▫ Appears similar in spirit to
SIFT

▫ Computed at dense grid at
single scale

▫ No orientation alignment

▫ Good for detection

37

Powerful orientation-based descriptors
Robust to changes in brightness

Thank You

• Questions?

38

References

• Reading
▫ P. Viola and M. Jones, Rapid object detection

using a boosted cascade of simple features, CVPR
2001

▫ P. Viola and M. Jones, Robust real-time face
detection, IJCV 57(2), 2004

▫ Dalal and Triggs, "Histogram of Oriented
Gradients for Human Detection", CVPR 2005

▫ Lowe, "Distinctive Image Features from Scale-
Invariant Keypoints", IJCV 60(2) 1999

• Code
▫ OpenCV has implementations

39

