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SPATIAL DOMAIN PROCESSING

 Spatial domain = the image plane
 Image processing through direct manipulation of image 

pixels

 Generally are more computationally efficient and require less 
resources than transform methods

 Two categories of spatial processing
 Intensity transformations – operate on single pixels

 Spatial filtering – operations that work in a neighborhood of 
each pixel
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IMAGE PROCESSING BASICS

 Input an image to a system 
get a processed image as 
output

 𝑔 𝑥, 𝑦 = 𝑇 𝑓 𝑥, 𝑦

 𝑓(𝑥, 𝑦) – input image

 𝑔(𝑥, 𝑦) – output image

 𝑇 – operator defined over a 
neighborhood around (𝑥, 𝑦)

 Basic spatial filtering 
implementation 

 Apply operator 𝑇 to pixels in the 
neighborhood to yield output at 
(𝑥, 𝑦)
 Typically the neighborhood is 

rectangular and much smaller size than 
image

𝑇𝑓(𝑥, 𝑦) 𝑔(𝑥, 𝑦)
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INTENSITY TRANSFORMATIONS

 Spatial filtering with smallest 
1 × 1 neighborhood

 𝑔 only depends on 𝑓 at a single 
point (𝑥, 𝑦)

 Intensity transformation 
function (gray-level mapping)

 𝑠 = 𝑇(𝑟)

 𝑟 – input intensity

 𝑠 – output intensity 

 Contrast stretching

 Increase dark/light 
pixels

 Thresholding

 Produce binary 
(two-level) image
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PIXEL TRANSFORMS

 Gain and bias (Multiplication and addition of constant)

 𝑔 𝑥, 𝑦 = 𝑎(𝑥, 𝑦)𝑓 𝑥, 𝑦 + 𝑏(𝑥, 𝑦)

 𝑎 (gain) controls contrast

 𝑏 (bias) controls brightness

 Notice parameters can vary spatially (think gradients)

 Linear blend

 𝑔 𝑥 = 1 − 𝛼 𝑓0 𝑥 + 𝛼𝑓1(𝑥)

 We will see this used later for motion detection in video 
processing
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 Given image with intensity 
range [0, 𝐿 − 1]

 Negative image transformation

 𝑠 = 𝐿 − 1 − 𝑟

 Reverse intensity levels of 
image

 Well suited for enhancing white 
or gray detail embedded in a dark 
image

IMAGE NEGATIVES
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 Techniques to remove an object and 
place it in a new scene
 E.g. blue/green screen

 Matting – extracting an object from 
an original image

 Compositing – inserting object into 
another image (without visible 
artifacts)

 A fourth alpha channel is added to 
an RGB image 
 𝛼 describes the opacity (opposite 

of transparency) of a pixel
 Over operator – a linear blend

 𝐶 = 1 − 𝛼 𝐵 + 𝛼𝐹

COMPOSITING AND MATTING
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HISTOGRAM PROCESSING

Digital image histogram is the count of pixels in an 
image having a particular value in range [0, 𝐿 − 1]
 ℎ 𝑟𝑘 = 𝑛𝑘
 𝑟𝑘 - the kth gray level value

 Set of 𝑟𝑘 are known as the bins of the histogram

 𝑛𝑘- the numbers of pixels with kth gray level

Empirical probability of gray level occurrence is 
obtained by normalizing the histogram

 𝑝 𝑟𝑘 = 𝑛𝑘/𝑛
 𝑛 – total number of pixels
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HISTOGRAM EXAMPLE

 x-axis – intensity value
 Bins [0, 255]

 y-axis – count of pixels

 Dark image
 Concentration in lower values

 Bright image
 Concentration in higher values

 Low-contrast image
 Narrow band of values

 High-contrast image
 Intensity values in wide band
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HISTOGRAM EQUALIZATION

 Assume continuous functions (rather 
than discrete images)

 Define a transformation of the 
intensity values to “equalize” each 
pixel in the image

 𝑠 = 𝑇 𝑟 0 ≤ 𝑟 ≤ 1

 Notice: intensity values are normalized 
between 0 and 1

 The inverse transformation is given 
as

 𝑟 = 𝑇−1 𝑠 0 ≤ 𝑠 ≤ 1

 Viewing the gray level of an image 
as a random variable

 𝑝𝑠(𝑠)=𝑝𝑟(𝑟)
𝑑𝑟

𝑑𝑠

 Let 𝑠 by the cumulative distribution 
function (CDF)

 𝑠 = 𝑇 𝑟 = 0
𝑟
𝑝𝑟 𝑤 𝑑𝑤

 Then


𝑑𝑠

𝑑𝑟
= 𝑝𝑟(𝑟)

 Which results in a uniform PDF for 
the output intensity

 𝑝𝑠 𝑠 = 1

 Hence, using the  CDF of a 
histogram will “equalize” an image
 Make the resulting histogram flat across 

all intensity levels
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DISCRETE HISTOGRAM EQUALIZATION

 The probability density is approximated by the normalized 
histogram

 𝑝𝑟 𝑟𝑘 =
𝑛𝑘

𝑛
𝑘 = 0,… , 𝐿 − 1

 The discrete CDF transformation is 

 𝑠𝑘 = 𝑇 𝑟𝑘 = σ𝑗=0
𝑘 𝑝𝑟(𝑟𝑗)

 𝑠𝑘 = σ𝑗=0
𝑘 𝑛𝑘

𝑛

 This transformation does not guarantee a uniform histogram in the 
discrete case
 It has the tendency to spread the intensity values to span a larger range
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 Histograms have wider spread of 
intensity levels

 Notice the equalized images all have 
similar visual appearance

 Even with different original histograms

 Contrast enhancement
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HISTOGRAM EQUALIZATION EXAMPLE

Original histogram original image equalized image equalized histogram



LOCAL HISTOGRAM ENHANCEMENT

 Global methods (like histogram equalization 
as presented) may not always make sense

 What happens when properties of image 
regions are different?

 Compute histogram over smaller windows

 Break image into “blocks”

 Process each block separately

 Original image

 Block histogram equalization

 Notice the blocking effects that cause 
noticeable boundary effects
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 Compute histogram over a block 
(neighborhood) for every pixel in 
a moving window

 Adaptive histogram equalization 
(AHE) is a computationally 
efficient method to combine 
block based computations 
through interpolation

LOCAL ENHANCEMENT

Figure 3.8 Locally adaptive histogram equalization: (a) original image; (b) block histogram
equalization; (c) full locally adaptive equalization.
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 Image processing is useful for 
the reduction of noise

 Common types of noise

 Salt and pepper – random 
occurrences of black and white 
pixels

 Impulse – random occurrences of 
white pixels

 Gaussian – variations in intensity 
drawn from normal distribution

IMAGE PROCESSING MOTIVATION

Adapted from S. Seitz

19



IDEAL NOISE REDUCTION

 How can we reduce noise given a single camera and a 
still scene?
 Take lots of images and average them

 What about if you only have a single image?
Adapted from S. Seitz
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IMAGE FILTERING

 Filtering is a neighborhood operation

 Use the pixels values in the vicinity of a given pixel to 
determine its final output value

 Motivation: noise reduction

 Replace a pixel by the average value in a neighborhood

 Assumptions:

 Expect pixels to be similar to their neighbors (local consistency)

 Expect noise processes to be independent from pixel to pixel (i.i.d.)
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LINEAR FILTERING

Most common type of neighborhood operator

Output pixel is determined as a weighted sum of 
input pixel values

 𝑔 𝑥, 𝑦 = σ𝑘,𝑙 𝑓 𝑥 + 𝑘, 𝑦 + 𝑙 𝑤(𝑘, 𝑙)

 𝑤 – is known as the kernel, mask, filter, template, or window

 𝑤(𝑘, 𝑙) – entry is known as a kernel weight or filter coefficient

This is also known as the correlation operator

 𝑔 = 𝑓⨂𝑤
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 𝑔 𝑥, 𝑦 = σ𝑘,𝑙 𝑓 𝑥 + 𝑘, 𝑦 + 𝑙 𝑤(𝑘, 𝑙)

 The filter mask is moved from 
point/pixel to point/pixel in an 
image
 The response is computed based on the 

sum of products of the mask coefficients 
and image

 Notice the mask is centered at 
𝑤(0,0)
 Usually we use odd sized masks so that 

the computation is symmetrically defined

 Matlab commands
 imfilter.m, filter2.m, conv2.m
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FILTERING RASTER SCAN

 Zig-zag scan through of image

 Process image row-wise
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 General system notation

 LTI system

 Convolution relationship

 Discrete 1D LTI system  Discrete 2D LTI system

 Linear filtering is the same as 
convolution without flipping

CONNECTION TO SIGNAL PROCESSING

𝑓𝑥 𝑦

𝑤𝑓(𝑥, 𝑦) 𝑔(𝑥, 𝑦)ℎ𝑥[𝑛] 𝑦[𝑛]

𝑦 𝑛 = 

𝑘=−∞

∞

𝑥 𝑘 ℎ[𝑛 − 𝑘] 𝑔(𝑥, 𝑦) = 

𝑠=−∞

∞



𝑡=−∞

∞

𝑓 𝑠, 𝑡 𝑤(𝑥 − 𝑠, 𝑦 − 𝑡)
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BORDER EFFECTS

 The filtering process suffers from boundary effects
 What should happen at the edge of an image?

 No values exist outside of image

 Padding extends image values outside of the image to 
“fill” the kernel at the borders
 Zero – set pixels to 0 value
 Will cause a darkening of the edges of the image (very typical)

 Constant – set border pixels to fixed value

 Clamp – repeat edge pixel value 

 Mirror – reflect pixels across image edge
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COMPUTATIONAL REQUIREMENTS

 Convolution requires 𝐾2

operations per pixel for a 𝐾 × 𝐾
size filter

 Total operations on an image is 
M×𝑁 × 𝐾2

 This can be computationally 
expensive for large 𝐾

 Cost can be greatly improved if 
the kernel is separable
 First do 1D horizontal convolution

 Follow with 1D vertical convolution

 Separable kernel

 𝑤 = 𝑣ℎ𝑇

 𝑣 – vertical kernel

 ℎ - horizontal kernel

 Defined by outer product

 Can approximate a separable 
kernel using singular value 
decomposition (SVD)

 Truly separable kernels will only 
have one non-zero singular value
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SMOOTHING FILTERS

Smoothing filters are used for blurring and noise 
reduction

 Blurring is useful for small detail removal (object 
detection), bridging small gaps in lines, etc.

These filters are known as lowpass filters

 Higher frequencies are attenuated

 What happens to edges?
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LINEAR SMOOTHING FILTER

 The simplest smoothing filter is the 
moving average or box filter
 Computes the average over a 

constant neighborhood

 This is a separable filter
 Horizontal 1D filter 
 Remember your square wave from DSP

 ℎ[𝑛] = ቊ
1 0 ≤ 𝑛 ≤ 𝑀
0 else

 Fourier transform is a sinc function
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MORE LINEAR SMOOTHING FILTERS

 More interesting filters can be readily obtained

 Weighted average kernel (bilinear) - places more 
emphasis on closer pixels
 More local consistency

 Gaussian kernel - an approximation of a Gaussian 
function 
 Has variance parameter to control the 

kernel “width”
 fspecial.m

Adapted from S. Seitz
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SMOOTHING EXAMPLES

Object detection
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 Sometimes linear filtering is not 
sufficient 
 Non-linear neighborhood operations 

are required

 Median filter – replaces the 
center pixel in a mask by the 
median of its neighbors
 Non-linear operation, 

computationally more expensive

 Provides excellent noise-reduction 
with less blurring than smoothing 
filters of similar size (edge 
preserving)

 For impulse and salt-and-pepper noise

MEDIAN FILTERING
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BILATERAL FILTERING

Combine the idea of a weighted filter kernel with a 
better version of outlier rejection

 𝛼-trimmed mean calculates average in neighborhood 
excluding the 𝛼 fraction that are smallest or largest

𝑤 𝑖, 𝑗, 𝑘, 𝑙 = 𝑑(𝑖, 𝑗, 𝑘, 𝑙) × 𝑟(𝑖, 𝑗, 𝑘, 𝑙)

 𝑑(𝑖, 𝑗, 𝑘, 𝑙) - domain kernel specifies “distance” similarity 
between pixels (usually Gaussian)

 𝑟(𝑖, 𝑗, 𝑘, 𝑙) – range kernel specifies “appearance 
(intensity)” similarity between pixels
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BILATERAL FILTERING EXAMPLE
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SHARPENING FILTERS

Sharpening filters are used to highlight fine detail or 
enhance blurred detail

Smoothing we saw was averaging

 This is analogous to integration

Since sharpening is the dual operation to smoothing, 
it can be accomplished through differentiation
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 Derivatives of digital functions are defined in terms of 
differences
 Various computational approaches

 Discrete approximation of a derivative


𝜕𝑓

𝜕𝑥
= 𝑓 𝑥 + 1 − 𝑓(𝑥)


𝜕𝑓

𝜕𝑥
= 𝑓 𝑥 + 1 − 𝑓(𝑥 − 1)

 Center symmetric

 Second-order derivative


𝜕2𝑓

𝜕𝑥2
= 𝑓 𝑥 + 1 + 𝑓 𝑥 − 1 − 2𝑓(𝑥)

DIGITAL DERIVATIVES
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 1st derivative
 Zero in constant segments

 Non-zero at intensity transition

 Non-zero along ramps

 2nd derivative
 Zero in constant areas

 Non-zero at intensity transition

 Zero along ramps

 2nd order filter is more aggressive at 
enhancing sharp edges
 Outputs different at ramps

 1st order produces thick edges

 2nd order produces thin edges

 Notice: the step gets both a negative and 
positive response in a double line

DIFFERENCE PROPERTIES
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THE LAPLACIAN

 2nd derivatives are generally better for image enhancement because 
of sensitivity to fine detail

 The Laplacian is simplest isotropic derivative operator

 𝛻2𝑓 =
𝜕2𝑓

𝜕𝑥2
+

𝜕2𝑓

𝜕𝑦2

 Isotropic – rotation invariant

 Discrete implementation using the 2nd derivative previously defined


𝜕2𝑓

𝜕𝑥2
= 𝑓 𝑥 + 1, 𝑦 + 𝑓 𝑥 − 1, 𝑦 − 2𝑓(𝑥, 𝑦)


𝜕2𝑓

𝜕𝑦2
= 𝑓 𝑥, 𝑦 + 1 + 𝑓 𝑥, 𝑦 − 1 − 2𝑓 𝑥, 𝑦

 𝛻2𝑓 = 𝑓 𝑥 + 1, 𝑦 + 𝑓 𝑥 − 1, 𝑦 + 𝑓 𝑥, 𝑦 + 1 + 𝑓 𝑥, 𝑦 − 1 − 4𝑓(𝑥, 𝑦)
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 Zeros in corners give isotropic 
results for rotations of 90°

 Non-zeros corners give isotropic 
results for rotations of 45°

 Include diagonal derivatives in 
Laplacian definition

 Center pixel sign indicates light-
to-dark or dark-to-light 
transitions
 Make sure you know which

DISCRETE LAPLACIAN
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 Sharpened image created by addition 
of Laplacian

 𝑔 𝑥, 𝑦 = ൝
𝑓 𝑥, 𝑦 − 𝛻2𝑓(𝑥, 𝑦) 𝑤 0,0 < 0

𝑓 𝑥, 𝑦 + 𝛻2𝑓(𝑥, 𝑦) 𝑤 0,0 > 0

 Notice: the use of diagonal entries 
creates much sharper output image

 How can we compute 𝑔(𝑥, 𝑦) in one 
filter pass without the image addition?

 Think of a linear system

SHARPENING IMAGES
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 Edges can be obtained by 
subtracting a blurred version of 
an image

 𝑓𝑢𝑠 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 − ҧ𝑓 𝑥, 𝑦

 Blurred image

 ҧ𝑓 𝑥, 𝑦 = ℎblur ∗ 𝑓(𝑥, 𝑦)

 Sharpened image

 𝑓𝑠 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 + 𝛾𝑓𝑢𝑠 𝑥, 𝑦

UNSHARP MASKING

41



 1st derivatives can be useful for 
enhancement of edges
 Useful preprocessing before edge 

extraction and interest point detection

 The gradient is a vector indicating 
edge direction

 𝛻f =
𝐺𝑥
𝐺𝑦

=

𝜕𝑓

𝜕𝑥
𝜕𝑓

𝜕𝑦

 The gradient magnitude can be 
approximated as

 𝛻𝑓 ≈ 𝐺𝑥 + 𝐺𝑦
 This give isotropic results for rotations of 

90°

 Sobel operators

 Have directional sensitivity 

 Coefficients sum to zero

 Zero response in constant intensity 
region

THE GRADIENT

𝐺𝑥𝐺𝑦
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MORPHOLOGICAL IMAGE PROCESSING

 Filtering done on binary images
 Images with two values [0,1], [0, 255], [black, white]

 Typically, this image will be obtained by thresholding

 𝑔 𝑥, 𝑦 = ቊ
1 𝑓 𝑥, 𝑦 > 𝑇
0 𝑓(𝑥, 𝑦) ≤ 𝑇

 Morphology is concerned with the structure and shape 

 In morphology, a binary image is convolved with a 
structuring element 𝑠 and results in a binary image

 More later in Chapter 9 of Gonzalez and Woods
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MATHEMATICAL MORPHOLOGY

 Tool for extracting image components that are useful in 
the representation and description of region shape

 Boundaries, skeletons, convex hull, etc.

 The language of mathematical morphology is set theory

 A set represents an object in an image

 This is often useful in video processing because of the 
simplicity of processing and emphasis on “objects”

 Handy tool for “clean up” of a thresholded image
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 Threshold operation

 𝜃 𝑓, 𝑡 = ቊ
1 𝑓 ≥ 𝑡
0 else

 Structuring element 
 𝑠 – e.g. 3 x 3 box filter (1’s indicate 

included pixels in the mask)

 𝑆 – number of “on” pixels in 𝑠

 Count of 1s in a structuring element

 𝑐 = 𝑓 ⊗ 𝑠

 Correlation (filter) raster scan procedure

 Basic morphological operations can 
be extended to grayscale images

 Dilation

 dilate 𝑓, 𝑠 = 𝜃(𝑐, 1)

 Grows (thickens) 1 locations

 Erosion

 erode 𝑓, 𝑠 = 𝜃(𝑐, 𝑆)

 Shrink (thins) 1 locations

 Opening

 open 𝑓, 𝑠 = dilate(erode 𝑓, 𝑠 , 𝑠)

 Generally smooth the contour of an object, 
breaks narrow isthmuses, and eliminates 
thin protrusions

 Closing

 close 𝑓, 𝑠 = erode(dilate 𝑓, 𝑠 , 𝑠)

 Generally smooth the contour of an object, 
fuses narrow breaks/separations, eliminates 
small holes, and fills gaps in a contour

MORPHOLOGICAL OPERATIONS
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 Dilation - grows (thickens) 1 locations
 Erosion - shrink (thins) 1 locations
 Opening - generally smooth the contour of an object, breaks 

narrow isthmuses, and eliminates thin protrusions
 Closing - generally smooth the contour of an object, fuses narrow 

breaks/separations, eliminates small holes, and fills gaps in a 
contour

MORPHOLOGY EXAMPLE
Note: black for object
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 Semi-global image operation to 
provide consistent labels to similar 
regions

 Based on adjacency concept 

 Most efficient algorithms compute in 
two passes

 More computational formulations 
(iterative) exist from morphology

 𝑋𝑘 = 𝑋𝑘−1 ⊕𝐵 ∩ 𝐴

CONNECTED COMPONENTS

Connected component Structuring element

Set
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MORE CONNECTED COMPONENTS

 Typically, only the “white” pixels will be considered objects
 Dark pixels are background and do not get counted

 After labeling connected components, statistics from each 
region can be computed 
 Statistics describe the region – e.g. area, centroid, perimeter, etc.

 Matlab functions
 bwconncomp.m, labelmatrix.m (bwlabel.m)- label image

 label2rgb.m – color components for viewing

 regionprops.m – calculate region statistics
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CONNECTED COMPONENT EXAMPLE

Grayscale image Threshold image

Opened Image Labeled image – 91 grains of rice
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