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 Complicated signals (functions) 
can be constructed as a linear 
combination of sinusoids
 Mathematically compact 

representation with complex 
exponentials 𝑒𝑗𝜔𝑡

 Introduced as Fourier series by 
Jean Baptiste Joseph Fourier
 Initially considered periodic signals 

 Later extended to aperiodic signals

 Powerful mathematical tool
 Can go between “time” and 

“frequency” domain processing
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MOTIVATION



 Complex numbers

 𝐶 = 𝑅 + 𝑗𝐼

 𝐶∗ = 𝑅 − 𝑗𝐼

 𝐶 = 𝐶 𝑒𝑗𝜃

 Using Euler’s formula 

 𝑒𝑗𝜃 = cos 𝜃 + 𝑗 sin 𝜃

 Fourier Series

 Express a periodic signal as a sum of 
sines and cosines

 𝑓 𝑡 = σ𝑛 𝑐𝑛𝑒
𝑗𝜔0𝑛𝑡

 𝑐𝑛 =
1

𝑇
𝑇 𝑓 𝑡 𝑒−𝑗𝜔0𝑛𝑡

 𝜔0 = 2𝜋/𝑇

 Fourier Transform

 𝐹 𝜇 = ℱ 𝑓 𝑡 =  𝑓 𝑡 𝑒−𝑗2𝜋𝜇𝑡𝑑𝑡

 𝜇 : continuous frequency variable

 𝑓 𝑡 = ℱ−1 𝐹 𝜇 =
 𝐹 𝜇 𝑒𝑗2𝜋𝜇𝑡𝑑𝜇

 Notice for real 𝑓 𝑡 this generally 
results in a complex transform
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PRELIMINARY CONCEPTS



 𝐹 𝜇 = 𝐴𝑊
sin 𝜋𝜇𝑊

𝜋𝜇𝑊

 Rectangle in time gives sinc in 
frequency

 See book for derivation

 Frequency spectrum

 𝐹 𝜇 = 𝐴𝑊
sin 𝜋𝜇𝑊

𝜋𝜇𝑊

 Consider only real portion

 Note zeros are inversely 
proportional to width of box 
 Wider in time, narrow in 

frequency
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RECTANGLE WAVE EXAMPLE



CONVOLUTION PROPERTIES

Very important input-output relationship between a 
input signal 𝑓 𝑡 and an LTI system ℎ(𝑡)

𝑓 𝑡 ∗ ℎ 𝑡 =  𝑓 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏

Dual time-frequency relationship

 𝑓 𝑡 ∗ ℎ 𝑡 ↔ 𝐹 𝜇 𝐻 𝜇

 𝑓 𝑡 ℎ 𝑡 ↔ 𝐹 𝜇 ∗ 𝐻 𝜇

 Convolution-multiplication relationship
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 Convert continuous signal to a 
discrete sequence

 Use impulse train sampling

 ሚ𝑓 𝑡 = 𝑓 𝑡 𝑠Δ𝑇 𝑡 =
σ𝑛 𝑓 𝑡 𝛿(𝑡 − 𝑛Δ𝑇)

 𝛿 𝑡 − 𝑛Δ𝑇 - impulse response at 
time 𝑡 = 𝑛Δ𝑇

 Sample value

 𝑓𝑘 = 𝑓(𝑘Δ𝑇)
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SAMPLING



 ෨𝐹 𝜇 = ℱ ሚ𝑓 𝑡 = 𝐹 𝜇 ∗ 𝑆(𝜇)

 𝑆 𝜇 =
1

Δ𝑇
σ𝑛 𝛿 𝜇 −

𝑛

Δ𝑇

 FT of impulse train is an impulse 
train

 See section 4.2.3 in the book for details

 Note spacing between impulses are 
inversely related

 ෨𝐹 𝜇 =
1

ΔT
σ𝑛𝐹 𝜇 −

𝑛

Δ𝑇

 Sampling creates copies of the 
original spectrum

 Must be careful with sampling period 
to avoid aliasing (overlap of 
spectrum)
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FOURIER TRANSFORM OF SAMPLED SIGNAL



SAMPLING THEOREM

 Conditions to be able to recover 𝑓 𝑡 completely 
after sampling:

 Requires bandlimited 𝑓(𝑡)

 𝐹 𝜇 = 0 for |𝜇| > 𝜇max

 Can isolate center spectrum copy from its 
neighbors

 Sampling theorem


1

Δ𝑇
> 2𝜇max

 Nyquist rate 2𝜇max

 Recovery with lowpass filter

 𝐻 𝜇 = Δ𝑇 for 𝜇 ≤ 𝜇max
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 Corruption of recovered signal if not 
sampled at rate less than Nyquist 
rate
 Spectrum copies overlap

 High frequency components corrupt 
lower frequencies

 In reality this is always present
 Most signals are not bandlimited

 Bandlimited signals require infinite time 
duration

 Windowing to limit size naturally causes 
distortion

 Use anti-aliasing filter before sampling

 Filter reduces high frequency components
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ALIASING



 Discussion has considered continuous signals (functions)
 Need to operate on discrete signals

 DFT is a sampled version of the sampled signal FT in one period

 ෨𝐹 𝜇 = σ𝑛 𝑓𝑛𝑒
−𝑗2𝜋𝜇𝑛Δ𝑇

 Sample in frequency evenly (𝑀) over a period

 𝜇 =
𝑚

𝑀Δ𝑇

 𝐹𝑚 = σ𝑛 𝑓𝑛𝑒
−𝑗2𝜋𝑚𝑛/𝑀

 𝑚 = 0,1,2, … ,𝑀 − 1

 𝑀 samples of 𝑓 𝑡 , 𝑓𝑛 , results in 𝑀 DFT values
 Note: implicitly assumes samples come from one period of periodic signal

 Inverse DFT

 𝐹𝑛 =
1

𝑀
σ𝑚𝐹𝑚𝑒

𝑗2𝜋𝑚𝑛/𝑀
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DISCRETE FOURIER TRANSFORM



SAMPLING/FREQUENCY RELATIONSHIP

 𝑀 samples of signal with sample period Δ𝑇
 Total time  𝑇 = 𝑀Δ𝑇

 Spacing in discrete frequency

 Δ𝑢 =
1

𝑀Δ𝑇
=

1

𝑇
 Note the switch to 𝑢 for discrete frequency 

 Total frequency range  Ω = 𝑀Δ𝑢 =
1

Δ𝑇

 Resolution of DFT is dependent on the duration 𝑇 of the 
sampled function
 Generally the number of samples

 See fft.m in Matlab to test this
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 All discussions can be extended 
to two variables easily

 Add second integral or 
summation for extra variable

 2D rectangle

 𝐹 𝜇, 𝜈 = ATZ
sin 𝜋𝜇𝑇

𝜋𝜇𝑇

sin 𝜋𝜈𝑍

𝜋𝜈𝑍
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EXTENSIONS TO 2D



IMAGE ALIASING

 Temporal aliasing appears in video

 Wheel effect – looks like it is spinning opposite direction

 Spatial aliasing is the same as the previous discussion
now in two dimensions
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 Used for image resizing

 Zooming – oversample an image

 Shrinking – undersample an 
image

 Must be careful of aliasing

 Generally smooth before downsample
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IMAGE INTERPOLATION AND RESAMPLING



FOURIER SPECTRUM AND PHASE ANGLE

 𝐹 𝑢, 𝑣 = 𝐹 𝑢, 𝑣 𝑒𝑗𝜙 𝑢,𝑣

 Magnitude, spectrum

 𝐹 𝑢, 𝑣 = 𝑅2 𝑢, 𝑣 + 𝐼2 𝑢, 𝑣 1/2

 Phase angle 

 𝑒𝑗𝜙 𝑢,𝑣 = arctan
𝐼 𝑢,𝑣

𝑅 𝑢,𝑣

 Spectrum is component we 
naturally specify while phase is 
a bit harder to visualize

 Spectrum
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 Translation does not affect 
spectrum

 Wide in space  narrow in 
frequency

 Orientation clearly visible in 
spectrum
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SPECTRUM



PHASE

Difficult to describe phase given image content

 a) centered rectangle, b) translated rectangle, c) rotated rectangle
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 Both spectrum and phase are important 
for image content
 Despite specifying filters by specturm

 a) woman image, b) phase
 c) reconstruction using only phase

 Able to “see” woman

 d) reconstruction using only magnitude 
spectrum
 Lose “woman”

 e) reconstruction with spectrum of 
rectangle and phase of woman
 Still “see” a woman

 f) reconstruction with phase of 
rectangle and spectrum of woman
 Looks more rectangle
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SPECTRUM PHASE MANIPULATION
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 Generally complicated relationship between image and transform

 Frequency is associated with patterns of intensity variations in image

 Filtering modifies the image spectrum based on a specific objective

 Magnitude (spectrum) – most useful for visualization (e.g. match visual 
characteristics)

 Phase – generally not useful for visualization
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FREQUENCY DOMAIN FILTERING BASICS

45 degree lines

Off center line



 Modify FT of image and 
inverse for result

 𝑔 𝑥, 𝑦 = ℱ−1[𝐻 𝑢, 𝑣 𝐹 𝑢, 𝑣 ]

 𝑔(𝑥, 𝑦) : output image [𝑀 × 𝑁]

 𝐹(𝑢, 𝑣) : FT of input image 𝑓 𝑥, 𝑦
[𝑀 × 𝑁]

 𝐻(𝑢, 𝑣) : filter transfer function [𝑀 ×
𝑁]

 ℱ−1 : inverse FT (iFT)

 Product from element-wise array 
multiplication
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FUNDAMENTALS

Remove DC (0,0)
term from 𝐹(𝑢, 𝑣)

 Example of simple filter to 
remove average intensity



EXAMPLE FILTERS

Addition of small 
offset to retain DC 
component after HP 
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 Multiplication in frequency is 
convolution in time

 Must pad image since output 
is larger
 Will pad 𝑓(𝑥, 𝑦) image but not ℎ(𝑥, 𝑦)

 𝐻(𝑢, 𝑣) designed and sized for padded 
𝐹(𝑢, 𝑣)

 DFT implicitly assumes a periodic 
function

 Image (dotted) copied vertically and 
horizontally
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DFT SUBTLETIES



PHASE ANGLE

Generally, a filter can affect the phase of a signal

Zero-phase-shift filters have no effect on phase

 Focus of this chapter

Phase is very important to image

 Small changes can lead to unexpected results
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FREQUENCY DOMAIN FILTERING STEPS

1. Given image 𝑓(𝑥, 𝑦) of size 𝑀 × 𝑁, get padding (𝑃, 𝑄)
 Typically use 𝑃 = 2𝑀 and 𝑄 = 2𝑁

2. Form zero-padded image 𝑓𝑝(𝑥, 𝑦) of size 𝑃 × 𝑄

3. Multiply 𝑓𝑝(𝑥, 𝑦) by −1 𝑥+𝑦 to center the transform 
 Needed when 𝐻(𝑢, 𝑣) is provided (center-defined)

4. Compute DFT 𝐹(𝑢, 𝑣)
5. Compute 𝐺 𝑢, 𝑣 = 𝐻 𝑢, 𝑣 𝐹(𝑢, 𝑣)

 Get real, symmetric filter function 𝐻(𝑢, 𝑣) of size 𝑃 × 𝑄 with center at 
coordinates 

𝑃

2
,
𝑄

2

6. Obtain (padded) output image from iFT

 𝑔𝑝 𝑥, 𝑦 = {real ℱ−1 𝐺 𝑢, 𝑣 −1 𝑥+𝑦

7. Obtain 𝑔(𝑥, 𝑦) by extracting 𝑀 × 𝑁 region from top left quadrant of 
𝑔𝑝(𝑥, 𝑦)
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EXAMPLE: FREQUENCY PROCESSING STEPS
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RELATIONSHIP TO SPATIAL FILTERING

 Frequency domain multiplication  convolution in 
spatial domain

 ℎ(𝑥, 𝑦) ↔ 𝐻(𝑢, 𝑣)

 Use of a finite impulse response

 Generally use small filter kernels which are more efficient 
to implement in spatial domain

 Frequency domain can be better for the design of filters

 More natural space for definition

 Use iFT to determine the “shape” of the spatial filter
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SMOOTHING

High frequency image content comes from edges and 
noise

Smoothing/blurring is a lowpass operation that 
attenuates (removes) high frequency content

Consider three smoothing filters

 Ideal lowpass – sharp filter

 Butterworth – filter order controls shape

 Gaussian – very smooth filter
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IDEAL LOWPASS FILTER

 𝐻 𝑢, 𝑣 = ቊ
1 𝐷 𝑢, 𝑣 ≤ 𝐷0
0 𝐷 𝑢, 𝑣 > 𝐷0

 𝐷 𝑢, 𝑣 = 𝑢 −
𝑃

2

2
+ 𝑣 −

𝑄

2

2 1/2

 Pass all frequencies 𝐷0 distance from DC
 𝐷0 is the cuttoff frequency
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IDEAL LOWPASS EXAMPLE

blurring

ringing 



LP SPECTRUM VIEW

35



BUTTERWORTH LP FILTER

𝐻 𝑢, 𝑣 =
1

1+ 𝐷 𝑢,𝑣 /𝐷0
2𝑛

 𝑛 – order of the filter (controls sharpness of transition)

 Cutoff generally specified as the 50% of max (D0 = 0.5) 
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 No ringing is visible because of the 
gradual transition from high to low 
frequency in filter

 May be visible in higher-order filters 
(𝑛 > 2)

 Trade-off frequency narrow main lobe 
with sidelobe height
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BUTTERWORTH LP EXAMPLE



GAUSSIAN LOWPASS FILTER

𝐻 𝑢, 𝑣 = 𝑒−𝐷
2 𝑢,𝑣 /2𝜎2

 𝜎 – measure of spread; 𝜎 = 𝐷0 is the cutoff frequency

 iFT is also a Gaussian

 No ringing because of smooth function

 A favorite filter for smoothing
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GAUSSIAN LP EXAMPLE

 No ringing

 Not as much smoothing as 
Butterworth 2

 Best for use when ringing is 
unacceptable

 Butterworth better when tight 
control of transition between 
high and low frequency is 
required
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SHARPENING 

 Use a highpass filter

 𝐻𝐻𝑃 𝑢, 𝑣 = 1 − 𝐻𝐿𝑃(𝑢, 𝑣)

 Ideal 

 𝐻 𝑢, 𝑣 = ቊ
0 𝐷 𝑢, 𝑣 ≤ 𝐷0
1 𝐷 𝑢, 𝑣 > 𝐷0

 Butterworth

 𝐻 𝑢, 𝑣 =
1

1+ 𝐷0/𝐷 𝑢,𝑣 2𝑛

 Gaussian 

 𝐻 𝑢, 𝑣 = 1 − 𝑒−𝐷
2 𝑢,𝑣 /2𝜎2
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 Same ringing artifacts as ideal 
lowpass
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HIGHPASS EXAMPLES



HP SPECTRUM VIEW
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SELECTIVE FILTERING

 Bandpass/reject – operate on a ring in the frequency 
spectrum
 See Table 4.6 for definitions

 Notch filters – operate on specific regions in the frequency 
spectrum
 Move center of HP filter appropriately
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NOTCH EXAMPLES
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NOTCH EXAMPLES II
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BP SPECTRUM VIEW
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IMPLEMENTATION ISSUES

DFT is separable
 Can compute first a 1D DFT over rows followed by the 

1D DFT over columns

 Simplifies computations in 1D

Practically use Fast Fourier Transform (FFT) to 
computer all DFT
 Computationally efficient algorithm that simplifies 

problem by halving sequence repeatedly

 Efficiency requires 𝑃 and 𝑄 (size of image) to be 
multiples of 2
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