ECG782: MULTIDIMENSIONAL DIGITAL SIGNAL PROCESSING MOTION

http://www.ee.unlv.edu/~b1morris/ecg782

OUTLINE

- Motion Analysis Motivation
- Differential Motion
- Optical Flow

Note: most of the content comes from Sonka Chapter 16

DENSE MOTION ESTIMATION

- Motion is extremely important in vision
- Biologically: motion indicates what is food and when to run away
 - We have evolved to be very sensitive to motion cues (peripheral vision)
- Alignment of images and motion estimation is widely used in computer vision
 - Optical flow
 - Motion compensation for video compression
 - Image stabilization
 - Video summarization

BIOLOGICAL MOTION

• Even limited motion information is perceptually meaningful

http://www.biomotionlab.ca/Demos/BMLwalker.html

MOTION ESTIMATION

- Input: sequence of images
- Output: point correspondence
- Prior knowledge: decrease problem complexity
 - E.g. camera motion (static or mobile), time interval between images, etc.
- Motion detection
 - Simple problem to recognize any motion (e.g. security)
- Moving object detection and location
 - Feature correspondence: "Feature Tracking"
 - Pixel (dense) correspondence: "Optical Flow"

DYNAMIC IMAGE ANALYSIS

- Motion description
 - Motion/velocity field velocity vector associated with corresponding keypoints
 - Optical flow dense correspondence that requires small time distance between images

- Motion assumptions
 - Maximum velocity object must be located in an circle defined by max velocity

6

- Small acceleration limited acceleration
- Common motion all object points move similarly
- Mutual correspondence rigid objects with stable points

Figure 16.1: Object motion assumptions. (a) Maximum velocity (shaded circle represents area of possible object location). (b) Small acceleration (shaded circle represents area of possible object location at time t_2). (c) Common motion and mutual correspondence (rigid objects). © Cengage Learning 2015.

GENERAL MOTION ANALYSIS AND TRACKING

- Two interrelated components:
- Localization and representation of object of interest (target)
 - Bottom-up process: deal with appearance, orientation, illumination, scale, etc.
- Trajectory filtering and data association
 - Top-down process: consider object dynamics to infer motion (motion models)

OUTLINE

- Motion Analysis Motivation
- Differential Motion
- Optical Flow

Note: most of the content comes from Sonka Chapter 16

DIFFERENTIAL MOTION ANALYSIS

- Simple motion detection possible with image subtraction
 - Requires a stationary camera and constant illumination
 - Also known as change detection
- Difference image

•
$$d(i,j) = \begin{cases} 1 & |f_1(i,j) - f_2(i,j)| > \epsilon \\ 0 & else \end{cases}$$

- Binary image that highlights moving pixels
- What are the various "detections" from this method?
 - Chapter 16.1

Figure 16.2: Motion detection. (a) First frame of the image sequence. (b) Frame 2 of the sequence. (c) Last frame (frame 5). (d) Differential motion image constructed from image frames 1 and 2 (inverted to improve visualization). @M. Sonka 2015.

BACKGROUND SUBTRACTION

- Motion is quite important
 - Indicates an object of interest
- Background subtraction:
- Given an image (usually a video frame), identify the foreground objects in that image

10

- Assume that foreground objects are moving
- Typically, moving objects more interesting than the scene
- Simplifies processing less processing cost and less room for error

BACKGROUND SUBTRACTION EXAMPLE

Often used in traffic monitoring applicationsVehicles are objects of interest (counting vehicles)

Human action recognition (run, walk, jump, ...)
Human-computer interaction ("human as interface")
Object tracking

REQUIREMENTS

- A reliable and robust background subtraction algorithm should handle:
 - Sudden or gradual illumination changes
 - Light turning on/off, cast shadows through a day
 - High frequency, repetitive motion in the backgroundTree leaves blowing in the wind, flag, etc.
 - Long-term scene changes
 - A car parks in a parking spot

BASIC APPROACH

- Estimate the background at time *t*
- Subtract the estimated background from the current input frame
- Apply a threshold, Th, to the absolute difference to get the foreground mask.

$$|I(x, y, t) - B(x, y, t)| > Th = F(x, y, t)$$

I(x, y, t) B(x, y, t)

F(x, y, t)

How can we estimate the background?

FRAME DIFFERENCING

Background is estimated to be the previous frame

$$\blacksquare B(x, y, t) = I(x, y, t - 1)$$

- Depending on the object structure, speed, frame rate, and global threshold, may or may not be useful
 - Usually not useful generates impartial objects and ghosts

Incomplete object

14

ghosts

FRAME DIFFERENCING EXAMPLE

Th = 25

Th = 100

Th = 50

Th = 200

MEAN FILTER

 \blacksquare Background is the mean of the previous N frames

$$B(x, y, t) = \frac{1}{N} \sum_{i=0}^{N-1} I(x, y, t - i)$$

 Produces a background that is a temporal smoothing or "blur"

N = 10

Mecidiyeköy

Estimated Background

Foreground Mask

16

MEAN FILTER

■*N* = 20

Estimated Background

Estimated Background

■*N* = 50

Foreground Mask

Foreground Mask

MEDIAN FILTER

- Assume the background is more likely to appear than foreground objects
 - $B(x, y, t) = median(I(x, y, t i)), i \in \{0, N 1\}$

Estimated Background

Foreground Mask

MEDIAN FILTER

■*N* = 20

Estimated Background

Estimated Background

■*N* = 50

Foreground Mask

Foreground Mask

FRAME DIFFERENCE ADVANTAGES

20

- Extremely easy to implement and use
- All the described variants are pretty fast
- The background models are not constant
 - Background changes over time

FRAME DIFFERENCING SHORTCOMINGS

- Accuracy depends on object speed/frame rate
- Mean and median require large memory
 - Can use a running average

•
$$B(x, y, t) = (1 - \alpha)B(x, y, t - 1) + \alpha I(x, y, t)$$

- α is the learning rate
- Use of a global threshold
 - Same for all pixels and does not change with time
 - Will give poor results when the:
 - Background is bimodal
 - Scene has many slow moving objects (mean, median)
 - Objects are fast and low frame rate (frame diff)
 - Lighting conditions change with time

IMPROVING BACKGROUND SUBTRACTION

- Adaptive Background Mixture Models for Real-Time Tracking
 - Chris Stauffer and W.E.L. Grimson
- "The" paper on background subtraction
 - Over 10k citations since 1999
- Will read this and see more later
 - Example of paper presentation

OUTLINE

- Motion Analysis Motivation
- Differential Motion
- Optical Flow

Note: most of the content comes from Sonka Chapter 16

OPTICAL FLOW

Dense pixel correspondence

OPTICAL FLOW

Dense pixel correspondenceHamburg Taxi Sequence

0	_					-										-					_										-		_
		•	•	·	•	•	·	·	·	·		•	•	•	·	•	•	·	•	·	•	•	·	•	•	•	•	•	•	b	<u>.</u>	•	
								÷			÷				÷	,		÷						,		;			÷			÷	
20	Ļ	:	:	:	:	:	:	Ì	:	:		:	:	:	:	:	:	:	:	:	j	:	:		:	j	:	:		:	:	:	_
		•		•	•		•	·	•	·		•						·												•	•	•	
		:	:	:	:	:	:	÷	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	÷	:	:	÷	:	:	:	
10	L	-			•		•		•	•		•			•			·		•		r U			•			•		•	•	·	_
10			;	;	;	;	:	;	:	:		:	;	;	;	;	;	;	ŕ	ŕ	۴	ŗ	ŕ	ŕ	ŕ	į	;	;	;	;	;	;	
		:	:	:	:	:	:	÷	:	:	:	:	:	:	:	:	Ę.	r F	ų. V	ь Б	r F	ų.	Р F	۶ ۲	Ŕ.	F	ŕ	:	:	:	:	:	
:0	L	-								-		•						Α	۶ م	л; "А	۴ آ	б М	۲ ۲	ዮ ፍ	۴ F	Р Б	۴ F	۴ F	চ	-		•	_
50		;	;	;	;	;	;	÷	;	:	;	;	;	;	;	;	;	;			۴	۴	Ē	f	F	٢	ŕ	F	۴	۴	;	;	
		:	÷	:	:	لا	:	÷	:	:	:	:	:	:	÷	:	:	:	:	:	:	6	۲ ۲	ዮ ዮ	Р F	۴	۴ ۲	۹ ۲	r F	:	:	:	
20		-	,		~	÷	÷	÷	÷	÷	ş	-	۶÷												٦ì	Γ	"	A	۴	π,			
50	Γ	;	Ż	,`	1 / 7 /	او رب	-≯	÷~	÷-	-y	γ_ γ	÷	-7. -7	-;-	÷	÷	;	÷		;	÷	;	;	;	;	Ĵ			÷	;	;	;	
		•	ر. جر	÷	Ś,	ý) La	チー)~ ~~	*	÷	3	え	<u>*</u>	1	\rightarrow	$\stackrel{>}{\rightarrow}$	$\stackrel{\rightarrow}{\rightarrow}$	ہد جہ	7.	:	÷	:	:	÷	:	÷	÷	:	÷	÷	÷	÷	
			5	ż,	-÷	÷	÷	÷	÷	÷	Ż	÷	÷	÷	÷	÷	÷	÷	÷	÷.													
0		:			?	?	?	7	3		ケーテ	ナ	\$ \$	マテ	ナ	ゥッ	-3	~) ~)). }-	.,	:	:	:	:	Ĵ	:	:	Ċ	:	:	:	
		:	Ċ	÷	÷	·	÷	÷	÷	÷	÷	•	2	•	÷	-	÷	;		:	÷	:	:	Ċ	:	÷	:	÷	÷	÷	÷	·	
			÷			÷	÷	÷	÷						÷			÷								÷			÷	÷		÷	
20		:	:	:	:	;	:	Ì	:	:	:	:	:	:	:	;	:	:	:	:	-	:	:	:	:	-	:	:	:	:	:	:	
						70					10					50					80					10	n				20		-

TRANSLATIONAL ALIGNMENT

- Motion estimation between images requires a error metric for comparison
- Sum of squared differences (SSD)
 - $E_{SSD}(u) = \sum_{i} [I_1(x_i + u) I_0(x_i)]^2 = \sum_{i} e_i^2$
 - u = (u, v) is a displacement vector (can be subpixel)
 - e_i residual error

Brightness constancy constraint

• Assumption that that corresponding pixels will retain the same value in two images

26

- Objects tend to maintain the perceived brightness under varying illumination conditions [Horn 1974]
- Color images processed by channels and summed or converted to colorspace that considers only luminance

SSD IMPROVEMENTS

- As we have seen, SSD is the simplest approach and can be improved
- Robust error metrics
 - L_1 norm (sum absolute differences)
 - Better outlier resilience
- Spatially varying weights
 - Weighted SSD to weight contribution of each pixel during matching
 - Ignore certain parts of the image (e.g. foreground), down-weight objects during images stabilization
- Bias and gain
 - Normalize exposure between images
 - Address brightness constancy

CORRELATION

- Instead of minimizing pixel differences, maximize correlation
- Normalized cross-correlation

$$E_{\text{NCC}}(u) = \frac{\sum_{i} [I_0(x_i) - \overline{I_0}] [I_1(x_i + u) - \overline{I_1}]}{\sqrt{\sum_{i} [I_0(x_i) - \overline{I_0}]^2}} \sqrt{\sum_{i} [I_1(x_i + u) - \overline{I_1}]^2}$$

$$\overline{I_0} = \frac{1}{N} \sum_i I_0(x_i) \text{ and}$$
$$\overline{I_1} = \frac{1}{N} \sum_i I_1(x_i + u)$$

- Normalize by the patch intensities
- Value is between [-1, 1] which makes it easy to use results (e.g. threshold to find matching pixels)

PROBLEM DEFINITION: OPTICAL FLOW

- How to estimate pixel motion from image H to image I?
- Solve pixel correspondence problem
 - Given a pixel in H, look for nearby pixels of the same color in I
- Key assumptions
 - Color constancy: a point in H looks the same in I
 - For grayscale images, this is brightness constancy
 - Small motion: points do not move very far
- This is called the optical flow problem

H(x,y)

I(x, y)

$OPTICAL\ FLOW\ CONSTRAINTS\ (GRAYSCALE\ IMAGES)$

- Let's look at these constraints more closely
- Brightness constancy:
 - H(x,y) = I(x+u,y+v)
- Small motion
 - u and v are less than 1 pixel
 - Take a Taylor series expansion of I(x + u, y + v)

$$I(x+u, y+v) = I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \text{higher order terms}$$
$$\approx I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v$$

$$(x, y)$$

displacement = (u, v)

$$(x + u, y + v)$$

$$H(x, y)$$

$$I(x, y)$$

OPTICAL FLOW EQUATION

• Combining these two equations

$$0 = I(x + u, y + v) - H(x, y)$$
shorthand: $I_x = \frac{\partial I}{\partial x}$

$$\approx I(x, y) + I_x u + I_y v - H(x, y)$$

$$\approx (I(x, y) - H(x, y)) + I_x u + I_y v$$

$$\approx I_t + I_x u + I_y v$$

$$\approx I_t + \nabla I \cdot [u \ v]$$

In the limit as u and v go to zero, this becomes exact

$$0 = I_t + \nabla I \cdot \left[\frac{\partial x}{\partial t} \ \frac{\partial y}{\partial t}\right]$$

OPTICAL FLOW EQUATION

 $0 = I_t + \nabla I \cdot [u \ v]$

- How many unknowns and equations per pixel?
 - u and v are unknown 1 equation, 2 unknowns
- Intuitively, what does this constraint mean?
 - The component of the flow in the gradient direction is determined
 - The component of the flow parallel to an edge is unknown
- This explains the Barber Pole illusion
 - <u>http://www.sandlotscience.com/Ambiguous/Barb</u> <u>erpole_Illusion.htm</u>

• If (u, v) satisfies the equation, so does (u + u', v + v') if $\nabla I \cdot [u' v'] = 0$

APERTURE PROBLEM

APERTURE PROBLEM

SOLVING THE APERTURE PROBLEM

Basic idea: assume motion field is smoothHorn & Schunk: add smoothness term

 $\int \int (I_t + \nabla I \cdot [u \ v])^2 + \lambda^2 (\|\nabla u\|^2 + \|\nabla v\|^2) \ dx \ dy$

- Lucas & Kanade: assume locally constant motion
 - Pretend the pixel's neighbors have the same (u,v)
- Many other methods exist. Here's an overview:
 - S. Baker, M. Black, J. P. Lewis, S. Roth, D. Scharstein, and R. Szeliski. A database and evaluation methodology for optical flow. In Proc. ICCV, 2007
 - http://vision.middlebury.edu/flow/

LUCAS-KANADE FLOW

- How to get more equations for a pixel?
- Basic idea: impose additional constraints
- Most common is to assume that the flow field is smooth locally
 - One method: pretend the pixel's neighbors have the same (u,v)
 - If we use a 5x5 window, that gives us 25 equations per pixel!

 $0 = I_t(\mathbf{p_i}) + \nabla I(\mathbf{p_i}) \cdot [u \ v]$

$$\begin{bmatrix} I_x(\mathbf{p_1}) & I_y(\mathbf{p_1}) \\ I_x(\mathbf{p_2}) & I_y(\mathbf{p_2}) \\ \vdots & \vdots \\ I_x(\mathbf{p_{25}}) & I_y(\mathbf{p_{25}}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p_1}) \\ I_t(\mathbf{p_2}) \\ \vdots \\ I_t(\mathbf{p_{25}}) \end{bmatrix}$$
$$\begin{pmatrix} A \\ 25 \times 2 \end{pmatrix} \begin{pmatrix} d \\ 25 \times 1 \end{pmatrix}$$

LUCAS-KANADE FLOW (RGB VERSION)

- How to get more equations for a pixel?
- Basic idea: impose additional constraints
- Most common is to assume that the flow field is smooth locally
 - One method: pretend the pixel's neighbors have the same (u,v)
 - If we use a 5x5 window, that gives us 25 equations per pixel!

 $0 = I_t(\mathbf{p_i})[0, 1, 2] + \nabla I(\mathbf{p_i})[0, 1, 2] \cdot [u \ v]$

$ \begin{array}{cccc} I_x(\mathbf{p}_1)[0] & I_y(\mathbf{p}_1)[0] \\ I_x(\mathbf{p}_1)[1] & I_y(\mathbf{p}_1)[1] \\ I_x(\mathbf{p}_1)[2] & I_y(\mathbf{p}_1)[2] \\ \vdots & \vdots \\ I_x(\mathbf{p}_{25})[0] & I_y(\mathbf{p}_{25})[0] \\ I_x(\mathbf{p}_{25})[1] & I_y(\mathbf{p}_{25})[1] \\ I_x(\mathbf{p}_{25})[2] & I_y(\mathbf{p}_{25})[2] \end{array} $	$\left[\begin{array}{c} u\\v\end{array}\right] = -$	$\begin{bmatrix} I_t(\mathbf{p_1})[0] \\ I_t(\mathbf{p_1})[1] \\ I_t(\mathbf{p_1})[2] \\ \vdots \\ I_t(\mathbf{p_{25}})[0] \\ I_t(\mathbf{p_{25}})[1] \\ I_t(\mathbf{p_{25}})[2] \end{bmatrix}$
A 75×2	$\mathop{d}\limits_{\scriptscriptstyle{2 imes1}}$	<i>b</i> 75×1

LUCAS-KANADE FLOW

Problem: More equations than unknowns

 $\begin{array}{ccc} A & d = b \\ _{25\times2} & _{2\times1} & _{25\times1} \end{array} \longrightarrow \text{minimize } \|Ad - b\|^2$

Solution: Solve least squares problem

• Minimum LS solution by finding d

$$\begin{pmatrix} A^T A \end{pmatrix}_{2 \times 2} d = A^T b \qquad \left[\begin{array}{c} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{array} \right] \left[\begin{array}{c} u \\ v \end{array} \right] = - \left[\begin{array}{c} \sum I_x I_t \\ \sum I_y I_t \end{array} \right]$$

$$A^T A \qquad A^T b$$

- The summations are over all pixels in the K x K window
- This technique was first proposed by Lucas & Kanade (1981)

CONDITIONS FOR SOLVABILITY

• Optimal (u, v) satisfies Lucas-Kanade equation

$$\begin{array}{c} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{array} \right] \left[\begin{array}{c} u \\ v \end{array} \right] = - \left[\begin{array}{c} \sum I_x I_t \\ \sum I_y I_t \end{array} \right] \\ A^T A \qquad \qquad A^T b \end{array}$$

- When is This Solvable?
 - $A^T A$ should be invertible
 - $A^T A$ should not be too small due to noise
 - Eigenvalues l_1 and l_2 of $A^T A$ should not be too small
 - $A^T A$ should be well-conditioned
 - l_1/l_2 should not be too large $(l_1 = \text{larger eigenvalue})$
- $A^T A$ is the Harris matrix (see Interest Points)
 - Finds "corners" (areas of gradient in orthogonal directions)

OBSERVATION

- This is a two image problem BUT
 - Can measure sensitivity by just looking at one of the images!

40

- This tells us which pixels are easy to track, which are hard
 - Very useful for feature tracking...

APERTURE PROBLEM

APERTURE PROBLEM

ERRORS IN LUCAS-KANADE

- What are the potential causes of errors in this procedure?
 - Suppose $A^T A$ is easily invertible
 - Suppose there is not much noise in the image
- When our assumptions are violated
 - Brightness constancy is **not** satisfied
 - The motion is **not** small
 - A point does **not** move like its neighbors
 - Window size is too large
 - What is the ideal window size?

IMPROVING ACCURACY

Recall our small motion assumption

$$0 = I(x + u, y + v) - H(x, y)$$

$$\approx I(x, y) + I_x u + I_y v - H(x, y)$$

- Not exact, need higher order terms to do better = $I(x, y) + I_x u + I_y v$ + higher order terms - H(x, y)
- Results in polynomial root finding problem
 - Can be solved using Newton's method (also known as Newton-Raphson)
- Lucas-Kanade method does a single iteration of Newton's method
 - Better results are obtained with more iterations

ITERATIVE REFINEMENT

- Iterative Lucas-Kanade Algorithm
- 1. Estimate velocity at each pixel by solving Lucas-Kanade equations
- 2. Warp H towards I using the estimated flow field
 - Use image warping techniques
- 3. Repeat until convergence

REVISITING THE SMALL MOTION ASSUMPTION

Is this motion small enough?

- Probably not—it's much larger than one pixel (2nd order terms dominate)
- How might we solve this problem?

46

REDUCE THE RESOLUTION!

COARSE-TO-FINE OPTICAL FLOW ESTIMATION

48

Gaussian pyramid of image I

COARSE-TO-FINE OPTICAL FLOW ESTIMATION

OPTICAL FLOW RESULTS

Lucas-Kanade without pyramids

Fails in areas of large motion

Khurram Hassan Shafique – CAP5415 UCF 2003

ROBUST METHODS

- L-K minimizes a sum-of-squares error metric
 - Least squares techniques overly sensitive to outliers

ROBUST OPTICAL FLOW

Robust Horn & Schunk $\int \int \rho(I_t + \nabla I \cdot [u \ v]) + \lambda^2 \rho(\|\nabla u\|^2 + \|\nabla v\|^2) dx dy$

Robust Lucas-Kanade

$$\sum_{(x,y)\in W} \rho(I_t + \nabla I \cdot [u \ v])$$

Black, M. J. and Anandan, P., A framework for the robust estimation of optical flow, *Fourth International Conf. on Computer Vision* (ICCV), 1993, pp. 231-236 http://www.cs.washington.edu/education/courses/576/03sp/readings/black93.pdf

BENCHMARKING OPTICAL FLOW ALGORITHMS

- Middlebury flow page
 - http://vision.middlebury.edu/flow/

- Middlebury flow page
 - http://vision.middlebury.edu/flow/

Ground Truth

- Middlebury flow page
 - http://vision.middlebury.edu/flow/

Lucas-Kanade flow

Ground Truth

Middlebury flow page

Army - NNF-Local flow

http://vision.middlebury.edu/flow/

[75] NNF-Local: Zhuoyuan Chen, Hailin Jin, Zhe Lin, Scott Cohen, and Ying Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013.

DISCUSSION: FEATURES VS. FLOW?

Features are better for:

• Flow is better for:

ADVANCED TOPICS

- Particles: combining features and flow
 - Peter Sand et al. <u>http://rvsn.csail.mit.edu/pv/</u>
- State-of-the-art feature tracking/SLAM
 - \blacksquare Georg Klein et al. <u>http://www.robots.ox.ac.uk/~gk/</u>

60

Deep Motion

- FlowNet2.0 CNN architecture to learn flow directly
- DeepFlow Deep matching
- <u>Gladh ICPR2016</u> combined deep + hand crafted
- Deep Motion flow + segmentation