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Note: most of the content comes from Sonka
Chapter 16
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DENSE MOTION ESTIMATION

 Motion is extremely important in vision
 Biologically: motion indicates what is food and when to 

run away
 We have evolved to be very sensitive to motion cues 

(peripheral vision)
 Alignment of images and motion estimation is widely 

used in computer vision
 Optical flow
 Motion compensation for video compression
 Image stabilization
 Video summarization
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 Even limited motion information is perceptually meaningful

 http://www.biomotionlab.ca/Demos/BMLwalker.html
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BIOLOGICAL MOTION

http://www.biomotionlab.ca/Demos/BMLwalker.html


MOTION ESTIMATION

 Input:  sequence of images
 Output:  point correspondence
 Prior knowledge: decrease problem complexity
 E.g. camera motion (static or mobile), time interval between 

images, etc.

 Motion detection
 Simple problem to recognize any motion (e.g. security)

 Moving object detection and location
 Feature correspondence:  “Feature Tracking”
 Pixel (dense) correspondence:  “Optical Flow”
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 Motion description

 Motion/velocity field – velocity 
vector associated with 
corresponding keypoints

 Optical flow – dense 
correspondence that requires 
small time distance between 
images

 Motion assumptions

 Maximum velocity – object must be located 
in an circle defined by max velocity

 Small acceleration – limited acceleration

 Common motion – all object points move 
similarly

 Mutual correspondence – rigid objects with 
stable points
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DYNAMIC IMAGE ANALYSIS



Two interrelated components:

Localization and representation of object of interest 
(target)

 Bottom-up process: deal with appearance, orientation, 
illumination, scale, etc.

Trajectory filtering and data association

 Top-down process: consider object dynamics to infer 
motion (motion models)

7

GENERAL MOTION ANALYSIS AND TRACKING
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DIFFERENTIAL MOTION ANALYSIS

 Simple motion detection possible 
with image subtraction
 Requires a stationary camera and 

constant illumination

 Also known as change detection

 Difference image

 𝑑 𝑖, 𝑗 = ቊ
1 𝑓1 𝑖, 𝑗 − 𝑓2 𝑖, 𝑗 > 𝜖
0 𝑒𝑙𝑠𝑒

 Binary image that highlights moving 
pixels

 What are the various “detections” 
from this method?
 Chapter 16.1
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BACKGROUND SUBTRACTION

Motion is quite important
 Indicates an object of interest

Background subtraction:
Given an image (usually a video frame), identify the 
foreground objects in that image
 Assume that foreground objects are moving

 Typically, moving objects more interesting than the scene

 Simplifies processing – less processing cost and less room for 
error
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 Often used in traffic monitoring applications
 Vehicles are objects of interest (counting vehicles)

 Human action recognition (run, walk, jump, …)
 Human-computer interaction (“human as interface”)
 Object tracking
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BACKGROUND SUBTRACTION EXAMPLE

⟹



REQUIREMENTS

A reliable and robust background subtraction 
algorithm should handle:

 Sudden or gradual illumination changes

 Light turning on/off, cast shadows through a day

 High frequency, repetitive motion in the background

 Tree leaves blowing in the wind, flag, etc.

 Long-term scene changes

 A car parks in a parking spot
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BASIC APPROACH

 Estimate the background at time 𝑡

 Subtract the estimated background from the current input frame

 Apply a threshold, 𝑇ℎ, to the absolute difference to get the 
foreground mask.

 |𝐼 𝑥, 𝑦, 𝑡 − 𝐵(𝑥, 𝑦, 𝑡)| > 𝑇ℎ = 𝐹(𝑥, 𝑦, 𝑡)

− > 𝑇ℎ =

𝐼(𝑥, 𝑦, 𝑡) 𝐵(𝑥, 𝑦, 𝑡) 𝐹(𝑥, 𝑦, 𝑡)

How can we estimate the background?
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Background is estimated to be the previous frame

 𝐵 𝑥, 𝑦, 𝑡 = 𝐼(𝑥, 𝑦, 𝑡 − 1)

Depending on the object structure, speed, frame 
rate, and global threshold, may or may not be 
useful

 Usually not useful – generates impartial objects and 
ghosts
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FRAME DIFFERENCING

𝑡 − 1
𝑡

𝑡 − 1
𝑡

Incomplete object ghosts



FRAME DIFFERENCING EXAMPLE
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MEAN FILTER

Background is the mean of the previous 𝑁 frames

 𝐵 𝑥, 𝑦, 𝑡 =
1

𝑁
σ𝑖=0
𝑁−1 𝐼(𝑥, 𝑦, 𝑡 − 𝑖)

 Produces a background that is a temporal smoothing or 
“blur”

𝑁 = 10
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MEAN FILTER

𝑁 = 20

𝑁 = 50
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MEDIAN FILTER

Assume the background is more likely to appear 
than foreground objects

 𝐵 𝑥, 𝑦, 𝑡 = 𝑚𝑒𝑑𝑖𝑎𝑛 𝐼 𝑥, 𝑦, 𝑡 − 𝑖 , 𝑖 ∈ {0, 𝑁 − 1}

𝑁 = 10
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MEDIAN FILTER

𝑁 = 20

𝑁 = 50
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FRAME DIFFERENCE ADVANTAGES

Extremely easy to implement and use

All the described variants are pretty fast

The background models are not constant

 Background changes over time
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FRAME DIFFERENCING SHORTCOMINGS

 Accuracy depends on object speed/frame rate
 Mean and median require large memory
 Can use a running average

 𝐵 𝑥, 𝑦, 𝑡 = 1 − 𝛼 𝐵 𝑥, 𝑦, 𝑡 − 1 + 𝛼𝐼 𝑥, 𝑦, 𝑡
 𝛼 – is the learning rate

 Use of a global threshold
 Same for all pixels and does not change with time
 Will give poor results when the:

 Background is bimodal 
 Scene has many slow moving objects (mean, median)
 Objects are fast and low frame rate (frame diff)
 Lighting conditions change with time

21



IMPROVING BACKGROUND SUBTRACTION

Adaptive Background Mixture Models for Real-
Time Tracking 

 Chris Stauffer and W.E.L. Grimson

 “The” paper on background subtraction

 Over 10k citations since 1999

Will read this and see more later

 Example of paper presentation
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OPTICAL FLOW

Dense pixel correspondence
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OPTICAL FLOW

Dense pixel correspondence

 Hamburg Taxi Sequence
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TRANSLATIONAL ALIGNMENT

 Motion estimation between images requires a error metric for 
comparison

 Sum of squared differences (SSD)

 𝐸𝑆𝑆𝐷 𝑢 = σ𝑖[𝐼1 𝑥𝑖 + 𝑢 − 𝐼0 𝑥𝑖 ]
2 = σ𝑖 𝑒𝑖

2

 𝑢 = (𝑢, 𝑣) – is a displacement vector (can be subpixel)

 𝑒𝑖 - residual error

 Brightness constancy constraint
 Assumption that that corresponding pixels will retain the same value in 

two images
 Objects tend to maintain the perceived brightness under varying 

illumination conditions [Horn 1974]

 Color images processed by channels and summed or converted to 
colorspace that considers only luminance
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SSD IMPROVEMENTS

 As we have seen, SSD is the simplest approach and can be 
improved

 Robust error metrics
 𝐿1 norm (sum absolute differences)

 Better outlier resilience 

 Spatially varying weights
 Weighted SSD to weight contribution of each pixel during matching

 Ignore certain parts of the image (e.g. foreground), down-weight objects during 
images stabilization

 Bias and gain
 Normalize exposure between images

 Address brightness constancy
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CORRELATION 

 Instead of minimizing pixel differences, maximize 
correlation

 Normalized cross-correlation

 Normalize by the patch intensities
 Value is between [-1, 1] which makes it easy to use results 

(e.g. threshold to find matching pixels)
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 How to estimate pixel motion from 
image H to image I?

 Solve pixel correspondence problem
 Given a pixel in H, look for nearby pixels 

of the same color in I

 Key assumptions
 Color constancy:  a point in H looks 

the same in I
 For grayscale images, this is brightness 

constancy

 Small motion:  points do not move 
very far

 This is called the optical flow 
problem

29

PROBLEM DEFINITION: OPTICAL FLOW



 Let’s look at these constraints 
more closely

 Brightness constancy: 

 𝐻(𝑥, 𝑦) = 𝐼(𝑥 + 𝑢, 𝑦 + 𝑣)

 Small motion 

 𝑢 and 𝑣 are less than 1 pixel

 Take a Taylor series expansion of 
𝐼(𝑥 + 𝑢, 𝑦 + 𝑣)
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OPTICAL FLOW CONSTRAINTS (GRAYSCALE IMAGES)



 Combining these two equations

 In the limit as u and v go to zero, this becomes exact
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OPTICAL FLOW EQUATION



OPTICAL FLOW EQUATION

 How many unknowns and 
equations per pixel?
 𝑢 and 𝑣 are unknown - 1 equation, 2 

unknowns

 Intuitively, what does this 
constraint mean?
 The component of the flow in the 

gradient direction is determined

 The component of the flow parallel to 
an edge is unknown

 This explains the Barber Pole 
illusion
 http://www.sandlotscience.com/Ambiguous/Barb

erpole_Illusion.htm

 If (𝑢, 𝑣) satisfies the equation, so does 
(𝑢 + 𝑢’, 𝑣 + 𝑣’) if 𝛻𝐼 ⋅ 𝑢′ 𝑣′ = 0
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APERTURE PROBLEM

Actual Motion
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APERTURE PROBLEM

Perceived Motion
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 Basic idea:  assume motion field is smooth
 Horn & Schunk:  add smoothness term

 Lucas & Kanade:  assume locally constant motion
 Pretend the pixel’s neighbors have the same (u,v)

 Many other methods exist.  Here’s an overview:
 S. Baker, M. Black, J. P. Lewis, S. Roth, D. Scharstein, and R. 

Szeliski. A database and evaluation methodology for optical flow. 
In Proc. ICCV, 2007 

 http://vision.middlebury.edu/flow/
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SOLVING THE APERTURE PROBLEM

http://vision.middlebury.edu/flow/


 How to get more equations for 
a pixel?

 Basic idea:  impose additional 
constraints

 Most common is to assume 
that the flow field is smooth 
locally

 One method:  pretend the pixel’s 
neighbors have the same (u,v)

 If we use a 5x5 window, that 
gives us 25 equations per pixel!
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LUCAS-KANADE FLOW



 How to get more equations for 
a pixel?

 Basic idea:  impose additional 
constraints

 Most common is to assume 
that the flow field is smooth 
locally

 One method:  pretend the pixel’s 
neighbors have the same (u,v)

 If we use a 5x5 window, that 
gives us 25 equations per pixel!
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LUCAS-KANADE FLOW (RGB VERSION)



 Problem:  More equations than unknowns

 Solution:  Solve least squares problem
 Minimum LS solution by finding 𝑑

 The summations are over all pixels in the K x K window

 This technique was first proposed by Lucas & Kanade (1981)
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LUCAS-KANADE FLOW



 Optimal (u, v) satisfies Lucas-Kanade equation

 When is This Solvable?
 𝐴𝑇𝐴 should be invertible 
 𝐴𝑇𝐴 should not be too small due to noise

 Eigenvalues 𝑙1 and 𝑙2 of 𝐴𝑇𝐴 should not be too small

 𝐴𝑇𝐴 should be well-conditioned
 𝑙1/𝑙2 should not be too large (𝑙1 = larger eigenvalue)

 𝐴𝑇𝐴 is the Harris matrix (see Interest Points)
 Finds “corners” (areas of gradient in orthogonal directions)
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CONDITIONS FOR SOLVABILITY



This is a two image problem BUT

 Can measure sensitivity by just looking at one of the 
images!

 This tells us which pixels are easy to track, which are 
hard

 Very useful for feature tracking...
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OBSERVATION



APERTURE PROBLEM

Actual Motion
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APERTURE PROBLEM

Perceived Motion
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 What are the potential causes of errors in this 
procedure?
 Suppose 𝐴𝑇𝐴 is easily invertible
 Suppose there is not much noise in the image

 When our assumptions are violated
 Brightness constancy is not satisfied

 The motion is not small

 A point does not move like its neighbors
 Window size is too large

 What is the ideal window size?
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ERRORS IN LUCAS-KANADE



IMPROVING ACCURACY

 Recall our small motion assumption

 Not exact, need higher order terms to do better

 Results in polynomial root finding problem
 Can be solved using Newton’s method (also known as 

Newton-Raphson)
 Lucas-Kanade method does a single iteration of 

Newton’s method
 Better results are obtained with more iterations
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 Iterative Lucas-Kanade Algorithm

1. Estimate velocity at each pixel by solving Lucas-
Kanade equations

2. Warp H towards I using the estimated flow field

 Use image warping techniques

3. Repeat until convergence
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ITERATIVE REFINEMENT



 Is this motion small enough?

 Probably not—it’s much larger 
than one pixel (2nd order 
terms dominate)

 How might we solve this 
problem?
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REVISITING THE SMALL MOTION ASSUMPTION



REDUCE THE RESOLUTION!
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image Iimage H

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

COARSE-TO-FINE OPTICAL FLOW ESTIMATION
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image Iimage J

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H

COARSE-TO-FINE OPTICAL FLOW ESTIMATION

run iterative L-K

run iterative L-K

warp & upsample

.

.

.
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OPTICAL FLOW RESULTS

Khurram Hassan Shafique – CAP5415 UCF  2003 



ROBUST METHODS

L-K minimizes a sum-of-squares error metric

 Least squares techniques overly sensitive to outliers

quadratic truncated quadratic lorentzian

Error metrics
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Avg. position drifts
with outliers



ROBUST OPTICAL FLOW

Robust Horn & Schunk

Robust Lucas-Kanade 

first image quadratic flow lorentzian flow detected outliers

Black, M. J. and Anandan, P., A framework for the robust estimation of optical flow, Fourth International Conf. on 

Computer Vision (ICCV), 1993, pp. 231-236 

http://www.cs.washington.edu/education/courses/576/03sp/readings/black93.pdf
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BENCHMARKING OPTICAL FLOW ALGORITHMS

Middlebury flow page

 http://vision.middlebury.edu/flow/
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http://vision.middlebury.edu/flow/
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FLOW QUALITY EVALUATION
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FLOW QUALITY EVALUATION



Middlebury flow page

 http://vision.middlebury.edu/flow/
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FLOW QUALITY EVALUATION

Ground Truth

http://vision.middlebury.edu/flow/


 Middlebury flow page

 http://vision.middlebury.edu/flow/
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FLOW QUALITY EVALUATION

Ground TruthLucas-Kanade flow

http://vision.middlebury.edu/flow/


 Middlebury flow page

 http://vision.middlebury.edu/flow/
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FLOW QUALITY EVALUATION

Ground TruthBest-in-class alg. (as of 2/22/21)

[75] NNF-Local: Zhuoyuan Chen, Hailin Jin, Zhe Lin, Scott Cohen, and Ying Wu. 
Large displacement optical flow from nearest neighbor fields. CVPR 2013.

http://vision.middlebury.edu/flow/


DISCUSSION:  FEATURES VS. FLOW?

Features are better for:

Flow is better for:
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ADVANCED TOPICS

Particles:  combining features and flow
 Peter Sand et al. http://rvsn.csail.mit.edu/pv/

State-of-the-art feature tracking/SLAM
 Georg Klein et al. http://www.robots.ox.ac.uk/~gk/

Deep Motion 
 FlowNet2.0 – CNN architecture to learn flow directly

 DeepFlow – Deep matching 

 Gladh ICPR2016 – combined deep + hand crafted

 Deep Motion – flow + segmentation
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http://rvsn.csail.mit.edu/pv/
http://www.robots.ox.ac.uk/~gk/
https://arxiv.org/abs/1612.01925
https://arxiv.org/abs/1612.06615
https://thoth.inrialpes.fr/src/deepflow/
https://arxiv.org/abs/1612.06615
http://deepmotion.cs.uni-freiburg.de/

