ECG782: MULTIDIMENSIONAL DIGITAL SIGNAL PROCESSING THE MACHINE LEARNING LANDSCAPE

http://www.ee.unlv.edu/~b1morris/ecg782

OUTLINE

- What is Machine Learning (ML)
- Why Use ML
- Example Applications
- Types of ML Systems
- Main Challenges of ML
- Testing and Validating

WHAT IS ML?

- [Machine Learning is the] field of study that gives computers the ability to learn without being explicitly programmed. – Arthur Samuel, 1959
- A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E. – Tom Mitchell, 1997
- Machine Learning is the science (and art) of programming computers so they can learn from data
 - Not enough to have lots of data, must be able to use data to solve a task

WHY USE ML?

 Traditional approach has complex rules and difficult to maintain

 Can inform humans of what was learned for new insight into a problem

 ML learns from data making code shorter, easier to maintain, and more accurate

• Can automatically be updated to changes

EXAMPLE APPLICATIONS

- Analyzing production line images to classify or detecting tumors in brain scans
 - Chapter 14 convolutional neural networks (CNNs)
- Visual representation of complex, highdimensional data
 - Chapter 8 data visualization and data reduction
- Intelligent bot for a game
 - Chapter 18 reinforcement learning (RL)
- Forecasting future company revenue
 - Chapter 4, 5, 7, 10, 15, 16 regression using classical (linear/polynomial SVM, Random Forest or deep learning methods)

- News article classification, flagging offensive comments, long document summarization, chatbot creation
 - Chapter 16 natural language processing (NLP)
- Making an app react to voice commands
 - Chapter 15/16 recurrent neural networks (RNNs), CNNs, Transformers
- Detecting credit card fraud, segmenting customers for marketing strategy
 - Chapter 9 anomaly detection, clustering
- Product recommendations based on past purchases
 - Chapter 10 ANN

TYPES OF ML SYSTEMS

- Broad categories:
 - Training with human supervision (supervised, unsupervised, semi-supervised, and reinforcement learning)
 - Learning incrementally or on the fly (online vs batch learning)
 - Comparison with known data points or by finding patterns in training data to build predictive models (instance-based vs model-based learning)
- Criteria are not exclusive and can be combined

SUPERVISED LEARNING

- Training with data and labels (desired solutions)
- Typical tasks
 - Classification: determine data class
 - Spam filter: data=emails, label={spam, not-spam}
 - Regression: predict target numeric value
 - Price of car: data=features (mileage, age, brand, etc.) label=price
- Important algorithms
 - k-NN, linear and logistic regression, SVM, decision trees and random forests, neural networks

UNSUPERVISED LEARNING

- Training with unlabeled data (no teacher)
- Important algorithms
 - Clustering discovering groups
 - K-means, DBSCAN
 - Visualization and dimensionality reduction – reduce feature dimension and maintain structure
 - (Kernel) principle component analysis (PCA), LLE, t-SNE
 - Anomaly/novelty detection find unusual test data
 - One-class SVM, isolation forest
 - Association rule learning find relations between features
 - Apriori, Eclat

SEMI-SUPERVISED LEARNING

- Training with partially labeled data
 - Lots of unlabeled and few labeled instances
- Most are combination of unsupervised and supervised algorithms
 - Deep belief networks (DBNs) are based on stacked unsupervised restricted Boltzmann machines (RBMs) that are fine-tuned using supervised learning techniques

Feature 2

- Example: Google Photos
 - Given large personal photo library
 - Automatically cluster photos into groups of people
 - Supervision when specify name of group
 - Need to merge and split groups to finetune

REINFORCEMENT LEARNING

- Agent-based learning paradigm
 - Agent learning system that can observe environment, select and perform actions, and get rewards
 - Rewards/penalties "value" associated with actions
 - Policy strategy, action to choose which is learned to maximize reward over time
- Popular for robotics and game playing
 - E.g. DeepMind's <u>Q-Learning</u> <u>Atari Breakout</u> or <u>AlphaGo</u>

BATCH LEARNING

- Learning uses all available data
- Offline learning train then launched into production with no more training
 - Often because of heavy time and resource requirements
- Can update model fairly easily by incorporating new data (say every 24 hours)
- Does not work in many situations
 - Rapidly changing data need to adapt more quickly
 - Big data and computational restrictions too costly to train, too large to batch, or not enough resources (mobile phone or mars rover)

ONLINE LEARNING

- Incremental training by feeding data instances sequentially
 - Use of mini-batch small groupings of data
- Well-suited for streaming data or limited computing resources
 - Can react/adapt quickly to changes autonomously
 - Can discard samples after incorporating into model
 - Out-of-core learning for large datasets that do not fit in memory
- Learning-rate how fast to adapt to changing data
 - High: quickly adapt, but forget old
 - Low: less sensitive to noise/outliers but slower to update (inertia)
- Major challenge: graceful degradation over time
 - How to handle bad data that comes in?

INSTANCE-BASED LEARNING

- System learns examples by-heart, then generalizes to new cases using a similarity measure
 - Simple learning method (e.g k-NN)
 - Needs to store instances (database)
 - Define meaningful similarity measure

MODEL-BASED LEARNING

 Build model of examples and use model to make predictions

- Need to choose a "model"
- Tune parameters for good fit
 - Define utility/fitness function for goodness or cost function for badness of fit

MAIN CHALLENGES OF ML

■"Bad Data"

- Insufficient quantity of data not enough
- Non-representative data biased data
- Poor quality data errors, noise, outliers
- Irrelevant features not measuring the right things
- "Bad Algorithms"
 - Overfitting overreliance on limited training data
 - Underfitting not enough model capacity

INSUFFICIENT QUANTITY OF TRAINING DATA

- ML still requires a lot of data to work properly
 - 1000s or more (millions for image/speech)
- The Unreasonable Effectiveness of Data
 - Given enough data, very different ML algorithms (including fairly simple) all perform similarly
 - "Reconsider trade-off between spending time and money on algorithm development versus spending it on corpus development"
 - Has led to much of modern ML and computer vision → massive datasets
 - Do we now have enough (too much) data?

16

NONREPRESENTITIVE TRAINING DATA

 Training data must be representative of test cases to generalize well

- Dashed blue old model using blue dots
- Solid line trained using also red squares
- Poor performance with old model
 - Especially with poor and rich countries

- Sampling noise nonrepresentative sample data due to chance
- Sampling bias training samples have systematic issue in collection which produces non-uniformity (or mismatching of underlying distribution)
 - E.g. facial recognition systems performing poorly on darker skin tones

POOR-QUALITY DATA

- Data full of errors, outliers, and noise (e.g., due to poor-quality measurements
 - Will make it harder to detect underlying patterns and less likely to perform well
- Data scientist spend significant time to cleaning up data
 - Clear outliers discard or manually fix errors
 - Missing a few features decide to ignore attribute, instances with "holes", fill in missing value, or train multiple models (with/without missing features)

IRRELEVANT FEATURES

- Garbage in, garbage out
 - Can only learn if features are relevant, not too much irrelevant info

19

- Feature engineering process of determining a good set of features to train on
 - Feature selection select most useful features among all available/existing features
 - Feature extraction combining existing features to produce more useful ones
 - Creating new features by gathering new data
- Classical ML uses "hand-crafted" features while deep learning has data-driven features

OVERFITTING THE TRAINING DATA

- Overgeneralizing based on limited data
 - Model is too complex relative to the amount of noisiness in the training data → modeling noise
 - Good performance on training but poor generalization (bad performance on test)

- Options to address problem
 - Simplify model by selecting one with fewer parameters, reducing the number of features, or constraining model

20

- Gather more training data
- Reduce noise in training data (e.g., fix data errors and remove outliers)

High degree polynomial with overfitting

REGULARLIZATION

- Constraining a model to make it simpler and reduce the risk of overfitting
 - E.g. constrain parameters to limit search space
- Hyperparameter parameter of a learning algorithm (not model) to control regularlization
 - Constant set prior to training
 - Not affected by the learning parameter itself

• Will have to tune (train) hyperparameters for best performance

UNDERFITTING THE TRAINING DATA

- Occurs when your model is too simple to learn the underlying structure of the data
 - Data is more complex that your selected model
 - Predictions will be poor, even on training data
- Options to address the problem
 - Select a more powerful model, with more parameters
 - Use better features (feature engineering)
 - Reduce the constraints on the model (e.g., reduce regularization hyperparameter)

BIG PICTURE

- ML making machines get better at a task by learning from data rather than explicitly coding rules
- ML comes in many flavors: un/supervised, batch/online, instance/model-based
- ML steps
 - Select modeling approach
 - Feed data to learning algorithm
 - Tune parameters to fit model to training data
- ML systems do not perform well if:
 - Training data is too small
 - Data is too noisy or polluted with irrelevant features
 - Model is not too simple or too complex

TESTING AND VALIDATION

- Most important goal for ML is to generalize well
 - Model should behave as expected to new unseen cases
 - Evaluate and fine-tune models to be sure it works well
- Split training into training and test sets
 - Training data used to train model
 - Test data test model on unseen data and measure the error rate (generalization or out-of-sample error) to estimate how well model performs
- Low training and test error is desired
 - Low training error but high test error means the model is overfitting

HYPERPARAMETER TUNING AND MODEL SELECTION

- Must select a model with various # parameters (e.g. linear and polynomial) and add regularization to avoid overfitting
- Can use test set for model generalization but not for regularization parameter tuning (test set tuning)
- Use a validation (val or development or dev set) for holdout validation
 - Subset of training data used specifically for model and hyper parameter tuning
 - Train full model on train+val and get generalization error on test set
- Cross-validation (multiple train/val data splits) can be used for better characterization with smaller datasets by averaging performance across splits
 - Val too small \rightarrow imprecise model evaluations
 - Val too large \rightarrow not enough training data

DATA MISMATCH

- Data must be representative
 - Don't want to train on magazine/professional (web) images if the use case are coming from user cell phones

26

- Makes sure val/test sets match use case
- Train-dev set is split of training data used to determine if model is overfitting or if there is data mismatch
 - \blacksquare Poor val performance \rightarrow data mismatch
 - Poor train-dev performance → overfit and need to simplify model, add regularization, get more data, or clean data

NO FREE LUNCH THEOREM

- If you make absolutely now assumptions about the data, then there is no reason to prefer one model over any other David Wolpert 1996
- A priori, there is no model guaranteed to work better
 - Cannot test all possible models
 - Must make reasonable assumptions about the data and evaluate only a few reasonable models
 - Simple tasks linear models with regularization
 - Complex tasks neural networks