ECG782: MULTIDIMENSIONAL DIGITAL SIGNAL PROCESSING INTRO TO ARTIFICIAL NEURAL NETWORKS

Géron Chapter 10

http://www.ee.unlv.edu/~b1morris/ecg782

OUTLINE

- Biological Inspiration
- Logic Computation with Neurons
- The Perceptron
- The Multilayer Perceptron and Backpropagation
- Regression MLPs
- Classification MLPs

FROM BIOLOGICAL TO ARTIFICIAL NEURONS

- Artificial neural networks (ANNs) first introduced in 1943
- Excitement with ANNs waned in the 1960s
- 1980s had renewed interest but was overtaken in the 1990s with ML techniques such as SVM
- Since 2010s major renewed interest
 - Huge quantities of data are available to train networks
 - Major computing power increases for reduced training times (GPU and cloud)
 - Improved training algorithms
 - Local optima issue rare
 - Lots of funding in ANNs (Artificial Intelligence/Deep Learning)

BIOLOGICAL NEURONS

- Cell mostly found in animal brains
- Produce short electrical impulses (action potentials, APs, or signals) to make synapses release chemical signals (neurotransmitters)
- When a neuron receives enough neurotransmitters it fires its own electrical pulses
- Individual neurons are simple but arranged into vast networks of billions
 - Each neuron connected to thousands of other neurons
 - Neurons seem to be organized in consecutive layers

LOGICAL COMPUTATIONS WITH NEURONS

- Artificial neuron proposed by McCulloch and Pitts
 - Simple binary inputs and one binary output
 - Activates output when certain number of inputs on/active
- Even with the simple model, any logical proposition can be computed
- Basic building block networks can be combined for more complex logical expressions

Building block networks

THE PERCEPTRON I (TLU)

- Invented by Frank Rosenblatt in 1957
- Inputs/outputs are numbers (instead of binary)
- Based on threshold logic unit (TLU) or linear threshold unit
- Inputs associated with a weight
- TLU computes weighted sum of input
 - $z = w_1 x_1 + w_2 x_2 + w_3 x_3$
- Output after a step (threshold) function
 - Heavyside of sign function
- TLU can be used as a simple linear binary classifier

THE PERCEPTRON II

- Perceptron is a layer for TLU
 - Fully connected (dense) layer all inputs connected to all neurons
- Input neuron pass value through unchanged
- Bias neuron always outputs 1
- Example: Multilabel classifier
 - 2 inputs 3 outputs
 - Can classify into three binary classes based on two input values

THE PERCEPTRON III

- Output of fully connected layer
 - $h_{W,b}(X) = \phi(XW + b)$
 - X matrix of input features
 - *W* weight matrix (all weights between input and neurons)
 - One row per input neuron
 - One column per neuron layer
 - b bias (weights) vector
 - ϕ activation function (e.g. step)
- Produces linear (non-complex) decision boundary

 Perceptron training – reinforce connections that reduce prediction error

 $w_{i,j}^{(next\ step)} = w_{i,j} + \eta \big(y_j - \hat{y}_j \big) x_i$

- $w_{i,j}$ connection weight between ith input and jth output neuron
- x_i ith input value
- \hat{y}_j perceptron output of jth neuron
- y_j target (ground truth) output of jth neuron
- η learning rate

MULTILAYER PERCEPTRON (MLP)

- Stack TLU layers for more complicated functions
 - Input layer passthrough
 - Hidden layer intermediate TLU layer
 - Output layer final fully connected TLU layer
- Lower layers closer to input
- Upper layers closer to output
- Deep neural network (DNN) has many hidden layers

BACKPROPAGATION I

• Effective method to train a MLP developed in 1986

- Gradient Descent method with efficient gradient computation technique
- Single forward-backward pass through network to compute gradient of network error for all model parameters
 - Can update all connection weights and bias terms
- Backpropagation uses reverse-mode autodiff to automatically compute gradients (Appendix D)

BACKPROPAGATION II

- Process full dataset each epoch
 - Use mini-batch at each iteration larger more efficient and more stable gradient but requires more memory
- Mini-batch of input is sent through the MLP in a forward pass (from input to output prediction)
 - All intermediate results (from hidden layers) are saved for backward pass
- Measure current network prediction error
 - Use of loss function to define error metric
- Compute contribution of each connection to the total error
 - Performed backward from output through hidden layers back to input using the chain rule
- Perform Gradient Descent step to adjust all connection weights
 - Using the error gradients from the backward pass

ACTIVATION FUNCTIONS

- Cannot use step for activation since it has no gradient information
- Sigmoid (logistic) function
 - $\sigma(z) = 1/(1 + \exp(-z))$
 - S-shaped between [0, 1]
- Hyperbolic tangent function
 - $\tanh(z) = 2\sigma(2z) 1$
 - Output between [-1,1] helps speed convergence
- Rectified Linear Unit function
 - ReLU(z) = max(0, z)
 - Not differentiable, but works well and fast so popular

Activation functions add non-linearity!

REGRESSION MLPs

- Single output neuron
 - Mulivariate regression requires an output neuron for each output dimension
 - 2: (x,y) for center of object
 - 4: (x,y,h,w) for a bounding box around object
- Output activation
 - No activation no limits on output range of value
 - ReLU or softplus (smooth ReLU) positive output only
 - Scaled sigmoid/tanh fixed output range

- Loss function
 - Mean squared error (L2 norm)
 - Mean absolute error (L1 norm) when there are a lot of outliers
 - Huber loss is a combination
- Regression MLP summary

Table 10-1. Typical regression MLP architecture

Hyperparameter	Typical value		
# input neurons	One per input feature (e.g., $28 \times 28 = 784$ for MNIST)		
# hidden layers	Depends on the problem, but typically 1 to 5		
# neurons per hidden layer	Depends on the problem, but typically 10 to 100		
# output neurons	1 per prediction dimension		
Hidden activation	ReLU (or SELU, see Chapter 11)		
Output activation	None, or ReLU/softplus (if positive outputs) or logistic/tanh (if bounded outputs)		
Loss function	MSE or MAE/Huber (if outliers)		

CLASSIFICATION MLPs I

- Single class (binary) single output neuron
 - Output between [0,1] using sigmoid
 - Estimate probability of positive class (confidence)
- Multilabel binary output neuron for every binary classification
 - Output between [0,1] using sigmoid
 - Output probabilities do not sum to one
 - Combinational output space

CLASSIFICATION MLPs II

- Multiclass classification multiple possible classes (e.g. number 0-9)
 - Each input instance can only belong to a single class (>2)
 - One output neuron per class
 - Softmax activation on the full output layer (Chapter 4 pg 148)

•
$$\hat{p}_k = \sigma(s(x))_k = \frac{\exp(s_k(x))}{\sum_j \exp(s_j(x))}$$

- $s_k(x) = \left(\theta^{(k)}\right)^T x$
- Estimated probabilities between [0,1] and sum to 1
- Cross entropy loss

•
$$J(\theta) = -\frac{1}{m} \sum_{k} \sum_{k} y_k^{(i)} \log\left(\hat{p}_k^{(i)}\right)$$

 Penalizes models with low probability estimate for the ground truth class

Classification summary

Table 10-2. Typical classification MLP architecture

Hyperparameter	Binary classification	Multilabel binary classification	Multiclass classification
Input and hidden layers	Same as regression	Same as regression	Same as regression
# output neurons	1	1 per label	1 per class
Output layer activation	Logistic	Logistic	Softmax
Loss function	Cross entropy	Cross entropy	Cross entropy

IMPLEMENTATION

Follow Chapter 2 for machine setup (Get the Data section)

- Highly recommend use of <u>Anaconda Python</u> for setting up your sandbox
- <u>Google Colab</u> is convenient and free with GPU access
- Additional notes from Stanford
- Read and follow Implementing MLPs with Keras section → installation of Keras and TensorFlow2

FINE-TUNING HYPERPARAMETERS

- Many hyperparameters must be tweaked for good model performance
- Grid search can evaluate different hyperparameter combinations \rightarrow slow
 - Book gives other libraries for hyperparam optimization
 - These typically explore more in good hyperparameter space
- Number of hidden layers \rightarrow deeper is better
 - Transfer learning reuse lower layers from network trained on large dataset (good initialization and avoid cost of learning from scratch)
- Number of neurons per hidden layers \rightarrow use fixed size
- Activation function \rightarrow ReLU works well
- Learning rate very important parameter, need learning schedule
- Optimizer more than just mini-batch gradient descent (e.g. Adam)
- Batch size significant impact on model performance and training time
 - Large batch efficiently process for reduced training time → maximize for GPU with learning rate warm-up (schedule)
 - Small batch more stable early in learning and good generalization