
http://www.ee.unlv.edu/~b1morris/ecg782

ECG782: MULTIDIMENSIONAL
DIGITAL SIGNAL PROCESSING
INTRO TO ARTIFICIAL NEURAL NETWORKS

1

Géron Chapter 10

http://www.ee.unlv.edu/~b1morris/ecg782

Biological Inspiration

Logic Computation with Neurons

The Perceptron

The Multilayer Perceptron and Backpropagation

Regression MLPs

Classification MLPs

2

OUTLINE

 Artificial neural networks (ANNs) first introduced in 1943

 Excitement with ANNs waned in the 1960s

 1980s had renewed interest but was overtaken in the 1990s
with ML techniques such as SVM

 Since 2010s major renewed interest
 Huge quantities of data are available to train networks

 Major computing power increases for reduced training times (GPU
and cloud)

 Improved training algorithms

 Local optima issue rare

 Lots of funding in ANNs (Artificial Intelligence/Deep Learning)

3

FROM BIOLOGICAL TO ARTIFICIAL NEURONS

 Cell mostly found in animal brains
 Produce short electrical impulses

(action potentials, APs, or signals)
to make synapses release chemical
signals (neurotransmitters)

 When a neuron receives enough
neurotransmitters it fires its own
electrical pulses

 Individual neurons are simple but
arranged into vast networks of
billions
 Each neuron connected to thousands of

other neurons

 Neurons seem to be organized in
consecutive layers

4

BIOLOGICAL NEURONS

 Artificial neuron proposed by
McCulloch and Pitts
 Simple binary inputs and one

binary output

 Activates output when certain
number of inputs on/active

 Even with the simple model,
any logical proposition can be
computed

 Basic building block networks
can be combined for more
complex logical expressions

5

LOGICAL COMPUTATIONS WITH NEURONS

 Building block networks

 Implement basic logic functions

 Invented by Frank Rosenblatt in
1957

 Inputs/outputs are numbers
(instead of binary)

 Based on threshold logic unit (TLU)
or linear threshold unit

 Inputs associated with a weight
 TLU computes weighted sum of

input

 𝑧 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3
 Output after a step (threshold)

function
 Heavyside of sign function

 TLU can be used as a simple linear
binary classifier

6

THE PERCEPTRON I (TLU)

 Perceptron is a layer for TLU
 Fully connected (dense) layer –

all inputs connected to all
neurons

 Input neuron – pass value
through unchanged

 Bias neuron – always outputs 1

 Example: Multilabel classifier
 2 inputs 3 outputs

 Can classify into three binary
classes based on two input values

7

THE PERCEPTRON II

 Output of fully connected layer

ℎ𝑊,𝑏 𝑋 = 𝜙(𝑋𝑊 + 𝑏)
 𝑋 – matrix of input features

 𝑊 – weight matrix (all weights
between input and neurons)
 One row per input neuron

 One column per neuron layer

 𝑏 – bias (weights) vector

 𝜙 – activation function (e.g. step)

 Produces linear (non-complex)
decision boundary

 Perceptron training – reinforce
connections that reduce
prediction error

𝑤𝑖,𝑗
(𝑛𝑒𝑥𝑡 𝑠𝑡𝑒𝑝)

= 𝑤𝑖,𝑗 + 𝜂 𝑦𝑗 − ො𝑦𝑗 𝑥𝑖
 𝑤𝑖,𝑗 - connection weight between

ith input and jth output neuron

 𝑥𝑖 - ith input value

 ො𝑦𝑗 - perceptron output of jth
neuron

 𝑦𝑗 - target (ground truth) output
of jth neuron

 𝜂 – learning rate

8

THE PERCEPTRON III

 Stack TLU layers for more
complicated functions

 Input layer - passthrough

 Hidden layer – intermediate TLU
layer

 Output layer – final fully
connected TLU layer

 Lower layers – closer to input

 Upper layers – closer to output

 Deep neural network (DNN)
has many hidden layers

9

MULTILAYER PERCEPTRON (MLP)

Effective method to train a MLP developed in 1986

 Gradient Descent method with efficient gradient
computation technique

 Single forward-backward pass through network to
compute gradient of network error for all model
parameters

 Can update all connection weights and bias terms

Backpropagation uses reverse-mode autodiff to
automatically compute gradients (Appendix D)

10

BACKPROPAGATION I

 Process full dataset each epoch
 Use mini-batch at each iteration – larger more efficient and more stable gradient

but requires more memory

 Mini-batch of input is sent through the MLP in a forward pass (from input
to output prediction)
 All intermediate results (from hidden layers) are saved for backward pass

 Measure current network prediction error
 Use of loss function to define error metric

 Compute contribution of each connection to the total error
 Performed backward from output through hidden layers back to input using the

chain rule

 Perform Gradient Descent step to adjust all connection weights
 Using the error gradients from the backward pass

11

BACKPROPAGATION II

 Cannot use step for activation
since it has no gradient
information

 Sigmoid (logistic) function

 𝜎 𝑧 = 1/(1 + exp −𝑧)

 S-shaped between [0, 1]

 Hyperbolic tangent function

 tanh 𝑧 = 2𝜎 2𝑧 − 1

 Output between [-1,1] helps speed
convergence

 Rectified Linear Unit function

 𝑅𝑒𝐿𝑈 𝑧 = max(0, 𝑧)

 Not differentiable, but works well
and fast so popular

12

ACTIVATION FUNCTIONS

Activation functions
add non-linearity!

 Single output neuron
 Mulivariate regression requires an

output neuron for each output
dimension

 2: (x,y) for center of object

 4: (x,y,h,w) for a bounding box around
object

 Output activation
 No activation – no limits on output

range of value

 ReLU or softplus (smooth ReLU) –
positive output only

 Scaled sigmoid/tanh – fixed output
range

 Loss function

 Mean squared error (L2 norm)

 Mean absolute error (L1 norm)
when there are a lot of outliers

 Huber loss is a combination

 Regression MLP summary

13

REGRESSION MLPs

Single class (binary) – single output neuron

 Output between [0,1] using sigmoid

 Estimate probability of positive class (confidence)

Multilabel binary – output neuron for every binary
classification

 Output between [0,1] using sigmoid

 Output probabilities do not sum to one

 Combinational output space

14

CLASSIFICATION MLPs I

 Multiclass classification – multiple
possible classes (e.g. number 0-9)
 Each input instance can only belong to a

single class (>2)

 One output neuron per class

 Softmax activation on the full output
layer (Chapter 4 pg 148)

 ො𝑝𝑘 = 𝜎 𝑠 𝑥
𝑘
=

exp 𝑠𝑘 𝑥

σ𝑗 exp(𝑠𝑗 𝑥)

 𝑠𝑘 𝑥 = 𝜃 𝑘 𝑇
𝑥

 Estimated probabilities between [0,1] and
sum to 1

 Cross entropy loss

 𝐽 𝜃 = −
1

𝑚
σ𝑖σ𝑘 𝑦𝑘

(𝑖)
log Ƹ𝑝𝑘

𝑖

 Penalizes models with low probability
estimate for the ground truth class

 Classification summary

15

CLASSIFICATION MLPs II

Follow Chapter 2 for machine setup (Get the Data
section)

 Highly recommend use of Anaconda Python for setting
up your sandbox

 Google Colab is convenient and free with GPU access

 Additional notes from Stanford

Read and follow Implementing MLPs with Keras
section installation of Keras and TensorFlow2

16

IMPLEMENTATION

https://www.anaconda.com/download/
https://colab.research.google.com/
https://cs231n.github.io/setup-instructions/

 Many hyperparameters must be tweaked for good model performance
 Grid search can evaluate different hyperparameter combinations slow

 Book gives other libraries for hyperparam optimization

 These typically explore more in good hyperparameter space

 Number of hidden layers deeper is better
 Transfer learning – reuse lower layers from network trained on large dataset (good

initialization and avoid cost of learning from scratch)

 Number of neurons per hidden layers use fixed size
 Activation function ReLU works well
 Learning rate – very important parameter, need learning schedule
 Optimizer – more than just mini-batch gradient descent (e.g. Adam)
 Batch size – significant impact on model performance and training time

 Large batch – efficiently process for reduced training time maximize for GPU with
learning rate warm-up (schedule)

 Small batch – more stable early in learning and good generalization

17

FINE-TUNING HYPERPARAMETERS

