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OUTLINE



 Artificial neural networks (ANNs) first introduced in 1943

 Excitement with ANNs waned in the 1960s

 1980s had renewed interest but was overtaken in the 1990s 
with ML techniques such as SVM

 Since 2010s major renewed interest 
 Huge quantities of data are available to train networks

 Major computing power increases for reduced training times (GPU 
and cloud)

 Improved training algorithms

 Local optima issue rare

 Lots of funding in ANNs (Artificial Intelligence/Deep Learning)
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FROM BIOLOGICAL TO ARTIFICIAL NEURONS



 Cell mostly found in animal brains
 Produce short electrical impulses 

(action potentials, APs, or signals) 
to make synapses release chemical 
signals (neurotransmitters)

 When a neuron receives enough 
neurotransmitters it fires its own 
electrical pulses

 Individual neurons are simple but 
arranged into vast networks of 
billions
 Each neuron connected to thousands of 

other neurons

 Neurons seem to be organized in 
consecutive layers
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BIOLOGICAL NEURONS



 Artificial neuron proposed by 
McCulloch and Pitts
 Simple binary inputs and one 

binary output

 Activates output when certain 
number of inputs on/active

 Even with the simple model, 
any logical proposition can be 
computed

 Basic building block networks 
can be combined for more 
complex logical expressions
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LOGICAL COMPUTATIONS WITH NEURONS

 Building block networks

 Implement basic logic functions



 Invented by Frank Rosenblatt in 
1957

 Inputs/outputs are numbers 
(instead of binary)

 Based on threshold logic unit (TLU) 
or linear threshold unit

 Inputs associated with a weight
 TLU computes weighted sum of 

input

 𝑧 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3
 Output after a step (threshold) 

function
 Heavyside of sign function

 TLU can be used as a simple linear 
binary classifier
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THE PERCEPTRON I (TLU)



 Perceptron is a layer for TLU 
 Fully connected (dense) layer –

all inputs connected to all 
neurons

 Input neuron – pass value 
through unchanged

 Bias neuron – always outputs 1

 Example: Multilabel classifier
 2 inputs 3 outputs

 Can classify into three binary 
classes based on two input values
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THE PERCEPTRON II



 Output of fully connected layer

ℎ𝑊,𝑏 𝑋 = 𝜙(𝑋𝑊 + 𝑏)
 𝑋 – matrix of input features

 𝑊 – weight matrix (all weights 
between input and neurons)
 One row per input neuron

 One column per neuron layer

 𝑏 – bias (weights) vector 

 𝜙 – activation function (e.g. step)

 Produces linear (non-complex) 
decision boundary

 Perceptron training – reinforce 
connections that reduce 
prediction error 

𝑤𝑖,𝑗
(𝑛𝑒𝑥𝑡 𝑠𝑡𝑒𝑝)

= 𝑤𝑖,𝑗 + 𝜂 𝑦𝑗 − ො𝑦𝑗 𝑥𝑖
 𝑤𝑖,𝑗 - connection weight between 

ith input and jth output neuron

 𝑥𝑖 - ith input value

 ො𝑦𝑗 - perceptron output of jth
neuron

 𝑦𝑗 - target (ground truth) output 
of jth neuron

 𝜂 – learning rate
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THE PERCEPTRON III



 Stack TLU layers for more 
complicated functions

 Input layer - passthrough

 Hidden layer – intermediate TLU 
layer

 Output layer – final fully 
connected TLU layer

 Lower layers – closer to input

 Upper layers – closer to output

 Deep neural network (DNN) 
has many hidden layers
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MULTILAYER PERCEPTRON (MLP)



Effective method to train a MLP developed in 1986

 Gradient Descent method with efficient gradient 
computation technique

 Single forward-backward pass through network to 
compute gradient of network error for all model 
parameters

 Can update all connection weights and bias terms

Backpropagation uses reverse-mode autodiff to 
automatically compute gradients (Appendix D)
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BACKPROPAGATION I



 Process full dataset each epoch
 Use mini-batch at each iteration – larger more efficient and more stable gradient 

but requires more memory

 Mini-batch of input is sent through the MLP in a forward pass (from input 
to output prediction)
 All intermediate results (from hidden layers) are saved for backward pass

 Measure current network prediction error
 Use of loss function to define error metric

 Compute contribution of each connection to the total error
 Performed backward from output through hidden layers back to input using the 

chain rule

 Perform Gradient Descent step to adjust all connection weights
 Using the error gradients from the backward pass
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BACKPROPAGATION II



 Cannot use step for activation 
since it has no gradient 
information

 Sigmoid (logistic) function

 𝜎 𝑧 = 1/(1 + exp −𝑧 )

 S-shaped between [0, 1]

 Hyperbolic tangent function

 tanh 𝑧 = 2𝜎 2𝑧 − 1

 Output between [-1,1] helps speed 
convergence

 Rectified Linear Unit function

 𝑅𝑒𝐿𝑈 𝑧 = max(0, 𝑧)

 Not differentiable, but works well 
and fast so popular
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ACTIVATION FUNCTIONS

Activation functions 
add non-linearity!



 Single output neuron
 Mulivariate regression requires an 

output neuron for each output 
dimension 

 2: (x,y) for center of object 

 4: (x,y,h,w) for a bounding box around 
object

 Output activation 
 No activation – no limits on output 

range of value

 ReLU or softplus (smooth ReLU) –
positive output only

 Scaled sigmoid/tanh – fixed output 
range

 Loss function

 Mean squared error (L2 norm)

 Mean absolute error (L1 norm) 
when there are a lot of outliers

 Huber loss is a combination

 Regression MLP summary
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REGRESSION MLPs



Single class (binary) – single output neuron

 Output between [0,1] using sigmoid 

 Estimate probability of positive class (confidence)

Multilabel binary – output neuron for every binary 
classification

 Output between [0,1] using sigmoid

 Output probabilities do not sum to one

 Combinational output space
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CLASSIFICATION MLPs I



 Multiclass classification – multiple 
possible classes (e.g. number 0-9)
 Each input instance can only belong to a 

single class (>2)

 One output neuron per class

 Softmax activation on the full output 
layer (Chapter 4 pg 148)

 ො𝑝𝑘 = 𝜎 𝑠 𝑥
𝑘
=

exp 𝑠𝑘 𝑥

σ𝑗 exp(𝑠𝑗 𝑥 )

 𝑠𝑘 𝑥 = 𝜃 𝑘 𝑇
𝑥

 Estimated probabilities between [0,1] and 
sum to 1

 Cross entropy loss

 𝐽 𝜃 = −
1

𝑚
σ𝑖σ𝑘 𝑦𝑘

(𝑖)
log Ƹ𝑝𝑘

𝑖

 Penalizes models with low probability 
estimate for the ground truth class

 Classification summary
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CLASSIFICATION MLPs II



Follow Chapter 2 for machine setup (Get the Data 
section)

 Highly recommend use of Anaconda Python for setting 
up your sandbox

 Google Colab is convenient and free with GPU access

 Additional notes from Stanford

Read and follow Implementing MLPs with Keras
section  installation of Keras and TensorFlow2
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IMPLEMENTATION

https://www.anaconda.com/download/
https://colab.research.google.com/
https://cs231n.github.io/setup-instructions/


 Many hyperparameters must be tweaked for good model performance
 Grid search can evaluate different hyperparameter combinations  slow

 Book gives other libraries for hyperparam optimization

 These typically explore more in good hyperparameter space

 Number of hidden layers  deeper is better
 Transfer learning – reuse lower layers from network trained on large dataset (good 

initialization and avoid cost of learning from scratch)

 Number of neurons per hidden layers  use fixed size 
 Activation function  ReLU works well
 Learning rate – very important parameter, need learning schedule
 Optimizer – more than just mini-batch gradient descent (e.g. Adam)
 Batch size – significant impact on model performance and training time

 Large batch – efficiently process for reduced training time  maximize for GPU with 
learning rate warm-up (schedule)

 Small batch – more stable early in learning and good generalization
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FINE-TUNING HYPERPARAMETERS


